<
From version < 52.2 >
edited by Xiaoling
on 2022/07/08 11:12
To version < 31.21 >
edited by Xiaoling
on 2022/06/07 10:07
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,81 +10,62 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
61 61  
62 -== 1.3  Specification ==
63 63  
62 +== 1.3 Specification ==
64 64  
65 -(% style="color:#037691" %)**Common DC Characteristics:**
66 -
67 -* Supply Voltage: 2.1v ~~ 3.6v
68 -* Operating Temperature: -40 ~~ 85°C
69 -
70 -(% style="color:#037691" %)**NB-IoT Spec:**
71 -
72 -* - B1 @H-FDD: 2100MHz
73 -* - B3 @H-FDD: 1800MHz
74 -* - B8 @H-FDD: 900MHz
75 -* - B5 @H-FDD: 850MHz
76 -* - B20 @H-FDD: 800MHz
77 -* - B28 @H-FDD: 700MHz
78 -
79 -(% style="color:#037691" %)**Probe Specification:**
80 -
81 81  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82 82  
83 -[[image:image-20220708101224-1.png]]
66 +[[image:image-20220606162220-5.png]]
84 84  
85 85  
86 86  
87 -== ​1.4  Applications ==
70 +== ​1.4 Applications ==
88 88  
89 89  * Smart Agriculture
90 90  
... ... @@ -91,300 +91,157 @@
91 91  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 92  ​
93 93  
94 -== 1.5  Pin Definitions ==
77 +== 1.5 Firmware Change log ==
95 95  
96 96  
97 -[[image:1657246476176-652.png]]
80 +**LSE01 v1.0 :**  Release
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
84 += 2. Configure LSE01 to connect to LoRaWAN network =
102 102  
103 -== 2.1  How it works ==
86 +== 2.1 How it works ==
104 104  
105 -
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
89 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
108 108  )))
109 109  
110 -
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
93 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 116  
117 -(((
118 -
119 -)))
120 120  
98 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
121 121  
100 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
103 +[[image:1654503992078-669.png]]
125 125  
126 -=== 2.2.1 Test Requirement ===
127 127  
106 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 130  
131 -* Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
109 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
134 134  
135 -(((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 -)))
111 +Each LSE01 is shipped with a sticker with the default device EUI as below:
138 138  
113 +[[image:image-20220606163732-6.jpeg]]
139 139  
140 -[[image:1657249419225-449.png]]
115 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
141 141  
117 +**Add APP EUI in the application**
142 142  
143 143  
144 -=== 2.2.2 Insert SIM card ===
120 +[[image:1654504596150-405.png]]
145 145  
146 -Insert the NB-IoT Card get from your provider.
147 147  
148 -User need to take out the NB-IoT module and insert the SIM card like below:
149 149  
124 +**Add APP KEY and DEV EUI**
150 150  
151 -[[image:1657249468462-536.png]]
126 +[[image:1654504683289-357.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
130 +**Step 2**: Power on LSE01
156 156  
157 -(((
158 -(((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 -)))
161 -)))
162 162  
133 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 163  
164 -**Connection:**
135 +[[image:image-20220606163915-7.png]]
165 165  
166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167 167  
168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
138 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
169 169  
170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
140 +[[image:1654504778294-788.png]]
171 171  
172 172  
173 -In the PC, use below serial tool settings:
174 174  
175 -* Baud: (% style="color:green" %)**9600**
176 -* Data bits:** (% style="color:green" %)8(%%)**
177 -* Stop bits: (% style="color:green" %)**1**
178 -* Parity: (% style="color:green" %)**None**
179 -* Flow Control: (% style="color:green" %)**None**
180 -
181 -(((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 -)))
184 -
185 -[[image:image-20220708110657-3.png]]
186 -
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188 -
189 -
190 -
191 -=== 2.2.4 Use CoAP protocol to uplink data ===
192 -
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
194 -
195 -
196 -**Use below commands:**
197 -
198 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 -
202 -
203 -
204 -For parameter description, please refer to AT command set
205 -
206 -[[image:1657249793983-486.png]]
207 -
208 -
209 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210 -
211 -[[image:1657249831934-534.png]]
212 -
213 -
214 -
215 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216 -
217 -This feature is supported since firmware version v1.0.1
218 -
219 -
220 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223 -
224 -
225 -
226 -[[image:1657249864775-321.png]]
227 -
228 -
229 -
230 -[[image:1657249930215-289.png]]
231 -
232 -
233 -=== 2.2.6 Use MQTT protocol to uplink data ===
234 -
235 -
236 -This feature is supported since firmware version v110
237 -
238 -
239 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 -* (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
243 -* (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
246 -
247 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
248 -
249 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
250 -
251 -
252 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
253 -
254 -
255 -=== 2.2.7 Use TCP protocol to uplink data ===
256 -
257 -
258 -This feature is supported since firmware version v110
259 -
260 -
261 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
263 -
264 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
265 -
266 -
267 -
268 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
269 -
270 -
271 -=== 2.2.8 Change Update Interval ===
272 -
273 -User can use below command to change the (% style="color:green" %)**uplink interval**.
274 -
275 -**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
276 -
277 -
278 -(% style="color:red" %)**NOTE:**
279 -
280 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 -
282 -
283 -
284 -
285 -
286 -
287 -
288 288  == 2.3 Uplink Payload ==
289 289  
290 -
291 291  === 2.3.1 MOD~=0(Default Mode) ===
292 292  
293 293  LSE01 will uplink payload via LoRaWAN with below payload format: 
294 294  
295 -(((
150 +
296 296  Uplink payload includes in total 11 bytes.
297 -)))
152 +
298 298  
299 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
300 -|(((
154 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
155 +|=(((
301 301  **Size**
302 302  
303 303  **(bytes)**
304 -)))|**2**|**2**|**2**|**2**|**2**|**1**
305 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
159 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
160 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
306 306  Temperature
307 307  
308 308  (Reserve, Ignore now)
309 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
310 310  MOD & Digital Interrupt
311 311  
312 312  (Optional)
313 313  )))
314 314  
170 +[[image:1654504881641-514.png]]
171 +
172 +
173 +
315 315  === 2.3.2 MOD~=1(Original value) ===
316 316  
317 317  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
318 318  
319 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
320 -|(((
178 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
179 +|=(((
321 321  **Size**
322 322  
323 323  **(bytes)**
324 -)))|**2**|**2**|**2**|**2**|**2**|**1**
183 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
325 325  |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
326 326  Temperature
327 327  
328 328  (Reserve, Ignore now)
329 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
330 330  MOD & Digital Interrupt
331 331  
332 332  (Optional)
333 333  )))
334 334  
194 +[[image:1654504907647-967.png]]
195 +
196 +
197 +
335 335  === 2.3.3 Battery Info ===
336 336  
337 -(((
338 338  Check the battery voltage for LSE01.
339 -)))
340 340  
341 -(((
342 342  Ex1: 0x0B45 = 2885mV
343 -)))
344 344  
345 -(((
346 346  Ex2: 0x0B49 = 2889mV
347 -)))
348 348  
349 349  
350 350  
351 351  === 2.3.4 Soil Moisture ===
352 352  
353 -(((
354 354  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
355 -)))
356 356  
357 -(((
358 358  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
359 -)))
360 360  
361 -(((
362 -
363 -)))
364 364  
365 -(((
366 366  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
367 -)))
368 368  
369 369  
370 370  
371 371  === 2.3.5 Soil Temperature ===
372 372  
373 -(((
374 374   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
375 -)))
376 376  
377 -(((
378 378  **Example**:
379 -)))
380 380  
381 -(((
382 382  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
383 -)))
384 384  
385 -(((
386 386  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
387 -)))
388 388  
389 389  
390 390  
... ... @@ -419,7 +419,7 @@
419 419  mod=(bytes[10]>>7)&0x01=1.
420 420  
421 421  
422 -**Downlink Command:**
262 +Downlink Command:
423 423  
424 424  If payload = 0x0A00, workmode=0
425 425  
... ... @@ -434,21 +434,19 @@
434 434  
435 435  [[image:1654505570700-128.png]]
436 436  
437 -(((
438 438  The payload decoder function for TTN is here:
439 -)))
440 440  
441 -(((
442 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
443 -)))
279 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
444 444  
445 445  
446 446  == 2.4 Uplink Interval ==
447 447  
448 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
449 449  
286 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
450 450  
451 451  
289 +
452 452  == 2.5 Downlink Payload ==
453 453  
454 454  By default, LSE50 prints the downlink payload to console port.
... ... @@ -456,44 +456,24 @@
456 456  [[image:image-20220606165544-8.png]]
457 457  
458 458  
459 -(((
460 -(% style="color:blue" %)**Examples:**
461 -)))
297 +**Examples:**
462 462  
463 -(((
464 -
465 -)))
466 466  
467 -* (((
468 -(% style="color:blue" %)**Set TDC**
469 -)))
300 +* **Set TDC**
470 470  
471 -(((
472 472  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
473 -)))
474 474  
475 -(((
476 476  Payload:    01 00 00 1E    TDC=30S
477 -)))
478 478  
479 -(((
480 480  Payload:    01 00 00 3C    TDC=60S
481 -)))
482 482  
483 -(((
484 -
485 -)))
486 486  
487 -* (((
488 -(% style="color:blue" %)**Reset**
489 -)))
309 +* **Reset**
490 490  
491 -(((
492 492  If payload = 0x04FF, it will reset the LSE01
493 -)))
494 494  
495 495  
496 -* (% style="color:blue" %)**CFM**
314 +* **CFM**
497 497  
498 498  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
499 499  
... ... @@ -501,21 +501,12 @@
501 501  
502 502  == 2.6 ​Show Data in DataCake IoT Server ==
503 503  
504 -(((
505 505  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
506 -)))
507 507  
508 -(((
509 -
510 -)))
511 511  
512 -(((
513 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
514 -)))
325 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
515 515  
516 -(((
517 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
518 -)))
327 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
519 519  
520 520  
521 521  [[image:1654505857935-743.png]]
... ... @@ -523,12 +523,11 @@
523 523  
524 524  [[image:1654505874829-548.png]]
525 525  
335 +Step 3: Create an account or log in Datacake.
526 526  
527 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
337 +Step 4: Search the LSE01 and add DevEUI.
528 528  
529 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
530 530  
531 -
532 532  [[image:1654505905236-553.png]]
533 533  
534 534  
... ... @@ -838,7 +838,6 @@
838 838  )))
839 839  
840 840  
841 -
842 842  [[image:1654506665940-119.png]]
843 843  
844 844  (((
... ... @@ -900,16 +900,16 @@
900 900  )))
901 901  
902 902  * (((
903 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
710 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
904 904  )))
905 905  * (((
906 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
713 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
907 907  )))
908 908  * (((
909 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
716 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
910 910  )))
911 911  
912 - [[image:image-20220610172436-1.png]]
719 + [[image:image-20220606171726-9.png]]
913 913  
914 914  
915 915  
... ... @@ -944,13 +944,13 @@
944 944  
945 945  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
946 946  
947 -[[image:1654501986557-872.png||height="391" width="800"]]
754 +[[image:1654501986557-872.png]]
948 948  
949 949  
950 950  Or if you have below board, use below connection:
951 951  
952 952  
953 -[[image:1654502005655-729.png||height="503" width="801"]]
760 +[[image:1654502005655-729.png]]
954 954  
955 955  
956 956  
... ... @@ -957,10 +957,10 @@
957 957  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
958 958  
959 959  
960 - [[image:1654502050864-459.png||height="564" width="806"]]
767 + [[image:1654502050864-459.png]]
961 961  
962 962  
963 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
770 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
964 964  
965 965  
966 966  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -1072,38 +1072,20 @@
1072 1072  
1073 1073  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1074 1074  
1075 -(((
1076 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
1077 1077  When downloading the images, choose the required image file for download. ​
1078 -)))
1079 1079  
1080 -(((
1081 -
1082 -)))
1083 1083  
1084 -(((
1085 1085  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1086 -)))
1087 1087  
1088 -(((
1089 -
1090 -)))
1091 1091  
1092 -(((
1093 1093  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1094 -)))
1095 1095  
1096 -(((
1097 -
1098 -)))
1099 1099  
1100 -(((
1101 1101  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1102 -)))
1103 1103  
1104 1104  [[image:image-20220606154726-3.png]]
1105 1105  
1106 -
1107 1107  When you use the TTN network, the US915 frequency bands use are:
1108 1108  
1109 1109  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1116,47 +1116,37 @@
1116 1116  * 905.3 - SF7BW125 to SF10BW125
1117 1117  * 904.6 - SF8BW500
1118 1118  
1119 -(((
1120 1120  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1121 1121  
1122 -* (% style="color:#037691" %)**AT+CHE=2**
1123 -* (% style="color:#037691" %)**ATZ**
910 +(% class="box infomessage" %)
911 +(((
912 +**AT+CHE=2**
1124 1124  )))
1125 1125  
915 +(% class="box infomessage" %)
1126 1126  (((
1127 -
917 +**ATZ**
918 +)))
1128 1128  
1129 1129  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1130 -)))
1131 1131  
1132 -(((
1133 -
1134 -)))
1135 1135  
1136 -(((
1137 1137  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1138 -)))
1139 1139  
1140 1140  [[image:image-20220606154825-4.png]]
1141 1141  
1142 1142  
1143 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1144 1144  
1145 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1146 -
1147 -
1148 1148  = 5. Trouble Shooting =
1149 1149  
1150 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
931 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1151 1151  
1152 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
933 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1153 1153  
1154 1154  
1155 -== 5.2 AT Command input doesn't work ==
936 +== 5.2 AT Command input doesnt work ==
1156 1156  
1157 -(((
1158 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1159 -)))
938 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1160 1160  
1161 1161  
1162 1162  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1168,9 +1168,7 @@
1168 1168  
1169 1169  (% style="color:#4f81bd" %)**Cause for this issue:**
1170 1170  
1171 -(((
1172 1172  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1173 -)))
1174 1174  
1175 1175  
1176 1176  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1177,7 +1177,7 @@
1177 1177  
1178 1178  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1179 1179  
1180 -[[image:1654500929571-736.png||height="458" width="832"]]
957 +[[image:1654500929571-736.png]]
1181 1181  
1182 1182  
1183 1183  = 6. ​Order Info =
... ... @@ -1210,9 +1210,7 @@
1210 1210  = 7. Packing Info =
1211 1211  
1212 1212  (((
1213 -
1214 -
1215 -(% style="color:#037691" %)**Package Includes**:
990 +**Package Includes**:
1216 1216  )))
1217 1217  
1218 1218  * (((
... ... @@ -1221,8 +1221,10 @@
1221 1221  
1222 1222  (((
1223 1223  
999 +)))
1224 1224  
1225 -(% style="color:#037691" %)**Dimension and weight**:
1001 +(((
1002 +**Dimension and weight**:
1226 1226  )))
1227 1227  
1228 1228  * (((
... ... @@ -1237,6 +1237,7 @@
1237 1237  * (((
1238 1238  Weight / pcs : g
1239 1239  
1017 +
1240 1240  
1241 1241  )))
1242 1242  
... ... @@ -1244,3 +1244,5 @@
1244 1244  
1245 1245  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1246 1246  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1025 +
1026 +
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0