<
From version < 51.1 >
edited by Xiaoling
on 2022/07/08 11:11
To version < 31.22 >
edited by Xiaoling
on 2022/06/07 10:08
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,81 +10,62 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
61 61  
62 -== 1.3  Specification ==
63 63  
62 +== 1.3 Specification ==
64 64  
65 -(% style="color:#037691" %)**Common DC Characteristics:**
66 -
67 -* Supply Voltage: 2.1v ~~ 3.6v
68 -* Operating Temperature: -40 ~~ 85°C
69 -
70 -(% style="color:#037691" %)**NB-IoT Spec:**
71 -
72 -* - B1 @H-FDD: 2100MHz
73 -* - B3 @H-FDD: 1800MHz
74 -* - B8 @H-FDD: 900MHz
75 -* - B5 @H-FDD: 850MHz
76 -* - B20 @H-FDD: 800MHz
77 -* - B28 @H-FDD: 700MHz
78 -
79 -(% style="color:#037691" %)**Probe Specification:**
80 -
81 81  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82 82  
83 -[[image:image-20220708101224-1.png]]
66 +[[image:image-20220606162220-5.png]]
84 84  
85 85  
86 86  
87 -== ​1.4  Applications ==
70 +== ​1.4 Applications ==
88 88  
89 89  * Smart Agriculture
90 90  
... ... @@ -91,301 +91,157 @@
91 91  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 92  ​
93 93  
94 -== 1.5  Pin Definitions ==
77 +== 1.5 Firmware Change log ==
95 95  
96 96  
97 -[[image:1657246476176-652.png]]
80 +**LSE01 v1.0 :**  Release
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
84 += 2. Configure LSE01 to connect to LoRaWAN network =
102 102  
103 -== 2.1  How it works ==
86 +== 2.1 How it works ==
104 104  
105 -
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
89 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
108 108  )))
109 109  
110 -
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
93 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 116  
117 -(((
118 -
119 -)))
120 120  
98 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
121 121  
100 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
103 +[[image:1654503992078-669.png]]
125 125  
126 -=== 2.2.1 Test Requirement ===
127 127  
106 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 130  
131 -* Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
109 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
134 134  
135 -(((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 -)))
111 +Each LSE01 is shipped with a sticker with the default device EUI as below:
138 138  
113 +[[image:image-20220606163732-6.jpeg]]
139 139  
140 -[[image:1657249419225-449.png]]
115 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
141 141  
117 +**Add APP EUI in the application**
142 142  
143 143  
144 -=== 2.2.2 Insert SIM card ===
120 +[[image:1654504596150-405.png]]
145 145  
146 -Insert the NB-IoT Card get from your provider.
147 147  
148 -User need to take out the NB-IoT module and insert the SIM card like below:
149 149  
124 +**Add APP KEY and DEV EUI**
150 150  
151 -[[image:1657249468462-536.png]]
126 +[[image:1654504683289-357.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
130 +**Step 2**: Power on LSE01
156 156  
157 -(((
158 -(((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 -)))
161 -)))
162 162  
133 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 163  
164 -**Connection:**
135 +[[image:image-20220606163915-7.png]]
165 165  
166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167 167  
168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
138 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
169 169  
170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
140 +[[image:1654504778294-788.png]]
171 171  
172 172  
173 -In the PC, use below serial tool settings:
174 174  
175 -* Baud: (% style="color:green" %)**9600**
176 -* Data bits:** (% style="color:green" %)8(%%)**
177 -* Stop bits: (% style="color:green" %)**1**
178 -* Parity: (% style="color:green" %)**None**
179 -* Flow Control: (% style="color:green" %)**None**
180 -
181 -(((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 -)))
184 -
185 -[[image:image-20220708110657-3.png]]
186 -
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188 -
189 -
190 -
191 -=== 2.2.4 Use CoAP protocol to uplink data ===
192 -
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
194 -
195 -
196 -**Use below commands:**
197 -
198 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 -
202 -
203 -
204 -For parameter description, please refer to AT command set
205 -
206 -[[image:1657249793983-486.png]]
207 -
208 -
209 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210 -
211 -[[image:1657249831934-534.png]]
212 -
213 -
214 -
215 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
216 -
217 -
218 -This feature is supported since firmware version v1.0.1
219 -
220 -
221 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
223 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
224 -
225 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
226 -
227 -
228 -
229 -
230 -
231 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
232 -
233 -
234 -=== 2.2.6 Use MQTT protocol to uplink data ===
235 -
236 -
237 -This feature is supported since firmware version v110
238 -
239 -
240 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 -* (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
244 -* (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
245 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
246 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
247 -
248 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
249 -
250 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
251 -
252 -
253 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
254 -
255 -
256 -=== 2.2.7 Use TCP protocol to uplink data ===
257 -
258 -
259 -This feature is supported since firmware version v110
260 -
261 -
262 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
263 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
264 -
265 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
266 -
267 -
268 -
269 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
270 -
271 -
272 -=== 2.2.8 Change Update Interval ===
273 -
274 -User can use below command to change the (% style="color:green" %)**uplink interval**.
275 -
276 -**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
277 -
278 -
279 -(% style="color:red" %)**NOTE:**
280 -
281 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
282 -
283 -
284 -
285 -
286 -
287 -
288 -
289 289  == 2.3 Uplink Payload ==
290 290  
291 -
292 292  === 2.3.1 MOD~=0(Default Mode) ===
293 293  
294 294  LSE01 will uplink payload via LoRaWAN with below payload format: 
295 295  
296 -(((
150 +
297 297  Uplink payload includes in total 11 bytes.
298 -)))
152 +
299 299  
300 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
301 -|(((
154 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
155 +|=(((
302 302  **Size**
303 303  
304 304  **(bytes)**
305 -)))|**2**|**2**|**2**|**2**|**2**|**1**
306 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
159 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
160 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
307 307  Temperature
308 308  
309 309  (Reserve, Ignore now)
310 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
311 311  MOD & Digital Interrupt
312 312  
313 313  (Optional)
314 314  )))
315 315  
170 +[[image:1654504881641-514.png]]
171 +
172 +
173 +
316 316  === 2.3.2 MOD~=1(Original value) ===
317 317  
318 318  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
319 319  
320 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
321 -|(((
178 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
179 +|=(((
322 322  **Size**
323 323  
324 324  **(bytes)**
325 -)))|**2**|**2**|**2**|**2**|**2**|**1**
183 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
326 326  |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
327 327  Temperature
328 328  
329 329  (Reserve, Ignore now)
330 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
331 331  MOD & Digital Interrupt
332 332  
333 333  (Optional)
334 334  )))
335 335  
194 +[[image:1654504907647-967.png]]
195 +
196 +
197 +
336 336  === 2.3.3 Battery Info ===
337 337  
338 -(((
339 339  Check the battery voltage for LSE01.
340 -)))
341 341  
342 -(((
343 343  Ex1: 0x0B45 = 2885mV
344 -)))
345 345  
346 -(((
347 347  Ex2: 0x0B49 = 2889mV
348 -)))
349 349  
350 350  
351 351  
352 352  === 2.3.4 Soil Moisture ===
353 353  
354 -(((
355 355  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
356 -)))
357 357  
358 -(((
359 359  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
360 -)))
361 361  
362 -(((
363 -
364 -)))
365 365  
366 -(((
367 367  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
368 -)))
369 369  
370 370  
371 371  
372 372  === 2.3.5 Soil Temperature ===
373 373  
374 -(((
375 375   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
376 -)))
377 377  
378 -(((
379 379  **Example**:
380 -)))
381 381  
382 -(((
383 383  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
384 -)))
385 385  
386 -(((
387 387  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
388 -)))
389 389  
390 390  
391 391  
... ... @@ -420,7 +420,7 @@
420 420  mod=(bytes[10]>>7)&0x01=1.
421 421  
422 422  
423 -**Downlink Command:**
262 +Downlink Command:
424 424  
425 425  If payload = 0x0A00, workmode=0
426 426  
... ... @@ -435,21 +435,19 @@
435 435  
436 436  [[image:1654505570700-128.png]]
437 437  
438 -(((
439 439  The payload decoder function for TTN is here:
440 -)))
441 441  
442 -(((
443 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
444 -)))
279 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
445 445  
446 446  
447 447  == 2.4 Uplink Interval ==
448 448  
449 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
450 450  
286 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
451 451  
452 452  
289 +
453 453  == 2.5 Downlink Payload ==
454 454  
455 455  By default, LSE50 prints the downlink payload to console port.
... ... @@ -457,44 +457,24 @@
457 457  [[image:image-20220606165544-8.png]]
458 458  
459 459  
460 -(((
461 -(% style="color:blue" %)**Examples:**
462 -)))
297 +**Examples:**
463 463  
464 -(((
465 -
466 -)))
467 467  
468 -* (((
469 -(% style="color:blue" %)**Set TDC**
470 -)))
300 +* **Set TDC**
471 471  
472 -(((
473 473  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
474 -)))
475 475  
476 -(((
477 477  Payload:    01 00 00 1E    TDC=30S
478 -)))
479 479  
480 -(((
481 481  Payload:    01 00 00 3C    TDC=60S
482 -)))
483 483  
484 -(((
485 -
486 -)))
487 487  
488 -* (((
489 -(% style="color:blue" %)**Reset**
490 -)))
309 +* **Reset**
491 491  
492 -(((
493 493  If payload = 0x04FF, it will reset the LSE01
494 -)))
495 495  
496 496  
497 -* (% style="color:blue" %)**CFM**
314 +* **CFM**
498 498  
499 499  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
500 500  
... ... @@ -502,21 +502,12 @@
502 502  
503 503  == 2.6 ​Show Data in DataCake IoT Server ==
504 504  
505 -(((
506 506  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
507 -)))
508 508  
509 -(((
510 -
511 -)))
512 512  
513 -(((
514 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
515 -)))
325 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
516 516  
517 -(((
518 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
519 -)))
327 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
520 520  
521 521  
522 522  [[image:1654505857935-743.png]]
... ... @@ -524,12 +524,11 @@
524 524  
525 525  [[image:1654505874829-548.png]]
526 526  
335 +Step 3: Create an account or log in Datacake.
527 527  
528 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
337 +Step 4: Search the LSE01 and add DevEUI.
529 529  
530 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
531 531  
532 -
533 533  [[image:1654505905236-553.png]]
534 534  
535 535  
... ... @@ -839,7 +839,6 @@
839 839  )))
840 840  
841 841  
842 -
843 843  [[image:1654506665940-119.png]]
844 844  
845 845  (((
... ... @@ -901,16 +901,16 @@
901 901  )))
902 902  
903 903  * (((
904 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
710 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
905 905  )))
906 906  * (((
907 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
713 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
908 908  )))
909 909  * (((
910 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
716 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
911 911  )))
912 912  
913 - [[image:image-20220610172436-1.png]]
719 + [[image:image-20220606171726-9.png]]
914 914  
915 915  
916 916  
... ... @@ -945,13 +945,13 @@
945 945  
946 946  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
947 947  
948 -[[image:1654501986557-872.png||height="391" width="800"]]
754 +[[image:1654501986557-872.png]]
949 949  
950 950  
951 951  Or if you have below board, use below connection:
952 952  
953 953  
954 -[[image:1654502005655-729.png||height="503" width="801"]]
760 +[[image:1654502005655-729.png]]
955 955  
956 956  
957 957  
... ... @@ -958,10 +958,10 @@
958 958  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
959 959  
960 960  
961 - [[image:1654502050864-459.png||height="564" width="806"]]
767 + [[image:1654502050864-459.png]]
962 962  
963 963  
964 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
770 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
965 965  
966 966  
967 967  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -1073,38 +1073,20 @@
1073 1073  
1074 1074  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1075 1075  
1076 -(((
1077 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
1078 1078  When downloading the images, choose the required image file for download. ​
1079 -)))
1080 1080  
1081 -(((
1082 -
1083 -)))
1084 1084  
1085 -(((
1086 1086  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1087 -)))
1088 1088  
1089 -(((
1090 -
1091 -)))
1092 1092  
1093 -(((
1094 1094  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1095 -)))
1096 1096  
1097 -(((
1098 -
1099 -)))
1100 1100  
1101 -(((
1102 1102  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1103 -)))
1104 1104  
1105 1105  [[image:image-20220606154726-3.png]]
1106 1106  
1107 -
1108 1108  When you use the TTN network, the US915 frequency bands use are:
1109 1109  
1110 1110  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1117,47 +1117,37 @@
1117 1117  * 905.3 - SF7BW125 to SF10BW125
1118 1118  * 904.6 - SF8BW500
1119 1119  
1120 -(((
1121 1121  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1122 1122  
1123 -* (% style="color:#037691" %)**AT+CHE=2**
1124 -* (% style="color:#037691" %)**ATZ**
910 +(% class="box infomessage" %)
911 +(((
912 +**AT+CHE=2**
1125 1125  )))
1126 1126  
915 +(% class="box infomessage" %)
1127 1127  (((
1128 -
917 +**ATZ**
918 +)))
1129 1129  
1130 1130  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1131 -)))
1132 1132  
1133 -(((
1134 -
1135 -)))
1136 1136  
1137 -(((
1138 1138  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1139 -)))
1140 1140  
1141 1141  [[image:image-20220606154825-4.png]]
1142 1142  
1143 1143  
1144 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1145 1145  
1146 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1147 -
1148 -
1149 1149  = 5. Trouble Shooting =
1150 1150  
1151 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
931 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1152 1152  
1153 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
933 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1154 1154  
1155 1155  
1156 -== 5.2 AT Command input doesn't work ==
936 +== 5.2 AT Command input doesnt work ==
1157 1157  
1158 -(((
1159 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1160 -)))
938 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1161 1161  
1162 1162  
1163 1163  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1169,9 +1169,7 @@
1169 1169  
1170 1170  (% style="color:#4f81bd" %)**Cause for this issue:**
1171 1171  
1172 -(((
1173 1173  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1174 -)))
1175 1175  
1176 1176  
1177 1177  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1178,7 +1178,7 @@
1178 1178  
1179 1179  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1180 1180  
1181 -[[image:1654500929571-736.png||height="458" width="832"]]
957 +[[image:1654500929571-736.png]]
1182 1182  
1183 1183  
1184 1184  = 6. ​Order Info =
... ... @@ -1211,9 +1211,7 @@
1211 1211  = 7. Packing Info =
1212 1212  
1213 1213  (((
1214 -
1215 -
1216 -(% style="color:#037691" %)**Package Includes**:
990 +**Package Includes**:
1217 1217  )))
1218 1218  
1219 1219  * (((
... ... @@ -1222,8 +1222,10 @@
1222 1222  
1223 1223  (((
1224 1224  
999 +)))
1225 1225  
1226 -(% style="color:#037691" %)**Dimension and weight**:
1001 +(((
1002 +**Dimension and weight**:
1227 1227  )))
1228 1228  
1229 1229  * (((
... ... @@ -1238,6 +1238,7 @@
1238 1238  * (((
1239 1239  Weight / pcs : g
1240 1240  
1017 +
1241 1241  
1242 1242  )))
1243 1243  
... ... @@ -1245,3 +1245,5 @@
1245 1245  
1246 1246  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1247 1247  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1025 +
1026 +
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0