<
From version < 49.1 >
edited by Xiaoling
on 2022/07/08 11:09
To version < 31.11 >
edited by Xiaoling
on 2022/06/06 17:25
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220606151504-2.jpeg||height="848" width="848"]]
3 3  
4 4  
5 5  
... ... @@ -8,83 +8,61 @@
8 8  
9 9  
10 10  
11 += 1. Introduction =
11 11  
13 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
12 12  
15 +(((
16 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
17 +)))
13 13  
14 -**Table of Contents:**
19 +(((
20 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
21 +)))
15 15  
23 +(((
24 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
25 +)))
16 16  
17 -
18 -
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
28 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
29 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
31 +(((
32 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
35 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
39 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
45 +* LoRaWAN 1.0.3 Class A
46 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
50 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
55 +* 4000mAh or 8500mAh Battery for long term use
61 61  
62 -== 1.3  Specification ==
57 +== 1.3 Specification ==
63 63  
64 -
65 -(% style="color:#037691" %)**Common DC Characteristics:**
66 -
67 -* Supply Voltage: 2.1v ~~ 3.6v
68 -* Operating Temperature: -40 ~~ 85°C
69 -
70 -(% style="color:#037691" %)**NB-IoT Spec:**
71 -
72 -* - B1 @H-FDD: 2100MHz
73 -* - B3 @H-FDD: 1800MHz
74 -* - B8 @H-FDD: 900MHz
75 -* - B5 @H-FDD: 850MHz
76 -* - B20 @H-FDD: 800MHz
77 -* - B28 @H-FDD: 700MHz
78 -
79 -(% style="color:#037691" %)**Probe Specification:**
80 -
81 81  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82 82  
83 -[[image:image-20220708101224-1.png]]
61 +[[image:image-20220606162220-5.png]]
84 84  
85 85  
86 86  
87 -== ​1.4  Applications ==
65 +== ​1.4 Applications ==
88 88  
89 89  * Smart Agriculture
90 90  
... ... @@ -91,298 +91,155 @@
91 91  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 92  ​
93 93  
94 -== 1.5  Pin Definitions ==
72 +== 1.5 Firmware Change log ==
95 95  
96 96  
97 -[[image:1657246476176-652.png]]
75 +**LSE01 v1.0 :**  Release
98 98  
99 99  
100 100  
101 -= 2.  Use NSE01 to communicate with IoT Server =
79 += 2. Configure LSE01 to connect to LoRaWAN network =
102 102  
103 -== 2.1  How it works ==
81 +== 2.1 How it works ==
104 104  
105 -
106 106  (((
107 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
84 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
108 108  )))
109 109  
110 -
111 111  (((
112 -The diagram below shows the working flow in default firmware of NSE01:
88 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
113 113  )))
114 114  
115 -[[image:image-20220708101605-2.png]]
116 116  
117 -(((
118 -
119 -)))
120 120  
93 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
121 121  
95 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 122  
123 -== 2.2 ​ Configure the NSE01 ==
124 124  
98 +[[image:1654503992078-669.png]]
125 125  
126 -=== 2.2.1 Test Requirement ===
127 127  
101 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 128  
129 -To use NSE01 in your city, make sure meet below requirements:
130 130  
131 -* Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
104 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
134 134  
135 -(((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 -)))
106 +Each LSE01 is shipped with a sticker with the default device EUI as below:
138 138  
108 +[[image:image-20220606163732-6.jpeg]]
139 139  
140 -[[image:1657249419225-449.png]]
110 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
141 141  
112 +**Add APP EUI in the application**
142 142  
143 143  
144 -=== 2.2.2 Insert SIM card ===
115 +[[image:1654504596150-405.png]]
145 145  
146 -Insert the NB-IoT Card get from your provider.
147 147  
148 -User need to take out the NB-IoT module and insert the SIM card like below:
149 149  
119 +**Add APP KEY and DEV EUI**
150 150  
151 -[[image:1657249468462-536.png]]
121 +[[image:1654504683289-357.png]]
152 152  
153 153  
154 154  
155 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
125 +**Step 2**: Power on LSE01
156 156  
157 -(((
158 -(((
159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 -)))
161 -)))
162 162  
128 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 163  
164 -**Connection:**
130 +[[image:image-20220606163915-7.png]]
165 165  
166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
167 167  
168 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
133 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
169 169  
170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
135 +[[image:1654504778294-788.png]]
171 171  
172 172  
173 -In the PC, use below serial tool settings:
174 174  
175 -* Baud: (% style="color:green" %)**9600**
176 -* Data bits:** (% style="color:green" %)8(%%)**
177 -* Stop bits: (% style="color:green" %)**1**
178 -* Parity: (% style="color:green" %)**None**
179 -* Flow Control: (% style="color:green" %)**None**
180 -
181 -(((
182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 -)))
184 -
185 -[[image:image-20220708110657-3.png]]
186 -
187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
188 -
189 -
190 -
191 -=== 2.2.4 Use CoAP protocol to uplink data ===
192 -
193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
194 -
195 -
196 -Use below commands:
197 -
198 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 -
202 -For parameter description, please refer to AT command set
203 -
204 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
205 -
206 -
207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208 -
209 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
210 -
211 -
212 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
213 -
214 -
215 -This feature is supported since firmware version v1.0.1
216 -
217 -
218 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221 -
222 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
223 -
224 -
225 -
226 -
227 -
228 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
229 -
230 -
231 -=== 2.2.6 Use MQTT protocol to uplink data ===
232 -
233 -
234 -This feature is supported since firmware version v110
235 -
236 -
237 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
239 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
240 -* (% style="color:blue" %)**AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
241 -* (% style="color:blue" %)**AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
242 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB     **(%%)~/~/Set the sending topic of MQTT
243 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
244 -
245 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
246 -
247 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
248 -
249 -
250 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
251 -
252 -
253 -=== 2.2.7 Use TCP protocol to uplink data ===
254 -
255 -
256 -This feature is supported since firmware version v110
257 -
258 -
259 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
261 -
262 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
263 -
264 -
265 -
266 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
267 -
268 -
269 -=== 2.2.8 Change Update Interval ===
270 -
271 -User can use below command to change the (% style="color:green" %)**uplink interval**.
272 -
273 -**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
274 -
275 -
276 -(% style="color:red" %)**NOTE:**
277 -
278 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
279 -
280 -
281 -
282 -
283 -
284 -
285 -
286 286  == 2.3 Uplink Payload ==
287 287  
288 -
289 289  === 2.3.1 MOD~=0(Default Mode) ===
290 290  
291 291  LSE01 will uplink payload via LoRaWAN with below payload format: 
292 292  
293 -(((
145 +
294 294  Uplink payload includes in total 11 bytes.
295 -)))
147 +
296 296  
297 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
298 298  |(((
299 299  **Size**
300 300  
301 301  **(bytes)**
302 302  )))|**2**|**2**|**2**|**2**|**2**|**1**
303 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
154 +|**Value**|[[BAT>>path:#bat]]|(((
304 304  Temperature
305 305  
306 306  (Reserve, Ignore now)
307 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
158 +)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
308 308  MOD & Digital Interrupt
309 309  
310 310  (Optional)
311 311  )))
312 312  
164 +[[image:1654504881641-514.png]]
165 +
166 +
167 +
313 313  === 2.3.2 MOD~=1(Original value) ===
314 314  
315 315  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
316 316  
317 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
318 318  |(((
319 319  **Size**
320 320  
321 321  **(bytes)**
322 322  )))|**2**|**2**|**2**|**2**|**2**|**1**
323 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
177 +|**Value**|[[BAT>>path:#bat]]|(((
324 324  Temperature
325 325  
326 326  (Reserve, Ignore now)
327 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
181 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
328 328  MOD & Digital Interrupt
329 329  
330 330  (Optional)
331 331  )))
332 332  
187 +[[image:1654504907647-967.png]]
188 +
189 +
190 +
333 333  === 2.3.3 Battery Info ===
334 334  
335 -(((
336 336  Check the battery voltage for LSE01.
337 -)))
338 338  
339 -(((
340 340  Ex1: 0x0B45 = 2885mV
341 -)))
342 342  
343 -(((
344 344  Ex2: 0x0B49 = 2889mV
345 -)))
346 346  
347 347  
348 348  
349 349  === 2.3.4 Soil Moisture ===
350 350  
351 -(((
352 352  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
353 -)))
354 354  
355 -(((
356 356  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
357 -)))
358 358  
359 -(((
360 -
361 -)))
362 362  
363 -(((
364 364  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
365 -)))
366 366  
367 367  
368 368  
369 369  === 2.3.5 Soil Temperature ===
370 370  
371 -(((
372 372   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
373 -)))
374 374  
375 -(((
376 376  **Example**:
377 -)))
378 378  
379 -(((
380 380  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
381 -)))
382 382  
383 -(((
384 384  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
385 -)))
386 386  
387 387  
388 388  
... ... @@ -417,7 +417,7 @@
417 417  mod=(bytes[10]>>7)&0x01=1.
418 418  
419 419  
420 -**Downlink Command:**
255 +Downlink Command:
421 421  
422 422  If payload = 0x0A00, workmode=0
423 423  
... ... @@ -432,21 +432,19 @@
432 432  
433 433  [[image:1654505570700-128.png]]
434 434  
435 -(((
436 436  The payload decoder function for TTN is here:
437 -)))
438 438  
439 -(((
440 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
441 -)))
272 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
442 442  
443 443  
444 444  == 2.4 Uplink Interval ==
445 445  
446 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
277 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
447 447  
279 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
448 448  
449 449  
282 +
450 450  == 2.5 Downlink Payload ==
451 451  
452 452  By default, LSE50 prints the downlink payload to console port.
... ... @@ -454,44 +454,24 @@
454 454  [[image:image-20220606165544-8.png]]
455 455  
456 456  
457 -(((
458 -(% style="color:blue" %)**Examples:**
459 -)))
290 +**Examples:**
460 460  
461 -(((
462 -
463 -)))
464 464  
465 -* (((
466 -(% style="color:blue" %)**Set TDC**
467 -)))
293 +* **Set TDC**
468 468  
469 -(((
470 470  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
471 -)))
472 472  
473 -(((
474 474  Payload:    01 00 00 1E    TDC=30S
475 -)))
476 476  
477 -(((
478 478  Payload:    01 00 00 3C    TDC=60S
479 -)))
480 480  
481 -(((
482 -
483 -)))
484 484  
485 -* (((
486 -(% style="color:blue" %)**Reset**
487 -)))
302 +* **Reset**
488 488  
489 -(((
490 490  If payload = 0x04FF, it will reset the LSE01
491 -)))
492 492  
493 493  
494 -* (% style="color:blue" %)**CFM**
307 +* **CFM**
495 495  
496 496  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
497 497  
... ... @@ -499,21 +499,12 @@
499 499  
500 500  == 2.6 ​Show Data in DataCake IoT Server ==
501 501  
502 -(((
503 503  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
504 -)))
505 505  
506 -(((
507 -
508 -)))
509 509  
510 -(((
511 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
512 -)))
318 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
513 513  
514 -(((
515 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
516 -)))
320 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
517 517  
518 518  
519 519  [[image:1654505857935-743.png]]
... ... @@ -521,12 +521,11 @@
521 521  
522 522  [[image:1654505874829-548.png]]
523 523  
328 +Step 3: Create an account or log in Datacake.
524 524  
525 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
330 +Step 4: Search the LSE01 and add DevEUI.
526 526  
527 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
528 528  
529 -
530 530  [[image:1654505905236-553.png]]
531 531  
532 532  
... ... @@ -822,6 +822,7 @@
822 822  * Solid ON for 5 seconds once device successful Join the network.
823 823  * Blink once when device transmit a packet.
824 824  
628 +
825 825  == 2.9 Installation in Soil ==
826 826  
827 827  **Measurement the soil surface**
... ... @@ -836,7 +836,6 @@
836 836  )))
837 837  
838 838  
839 -
840 840  [[image:1654506665940-119.png]]
841 841  
842 842  (((
... ... @@ -898,16 +898,16 @@
898 898  )))
899 899  
900 900  * (((
901 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
704 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
902 902  )))
903 903  * (((
904 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
707 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
905 905  )))
906 906  * (((
907 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
710 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
908 908  )))
909 909  
910 - [[image:image-20220610172436-1.png]]
713 + [[image:image-20220606171726-9.png]]
911 911  
912 912  
913 913  
... ... @@ -942,13 +942,13 @@
942 942  
943 943  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
944 944  
945 -[[image:1654501986557-872.png||height="391" width="800"]]
748 +[[image:1654501986557-872.png]]
946 946  
947 947  
948 948  Or if you have below board, use below connection:
949 949  
950 950  
951 -[[image:1654502005655-729.png||height="503" width="801"]]
754 +[[image:1654502005655-729.png]]
952 952  
953 953  
954 954  
... ... @@ -955,10 +955,10 @@
955 955  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
956 956  
957 957  
958 - [[image:1654502050864-459.png||height="564" width="806"]]
761 + [[image:1654502050864-459.png]]
959 959  
960 960  
961 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
764 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
962 962  
963 963  
964 964  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -1070,38 +1070,20 @@
1070 1070  
1071 1071  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1072 1072  
1073 -(((
1074 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
876 +You can follow the instructions for [[how to upgrade image>>path:#3ygebqi]].
1075 1075  When downloading the images, choose the required image file for download. ​
1076 -)))
1077 1077  
1078 -(((
1079 -
1080 -)))
1081 1081  
1082 -(((
1083 1083  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1084 -)))
1085 1085  
1086 -(((
1087 -
1088 -)))
1089 1089  
1090 -(((
1091 1091  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1092 -)))
1093 1093  
1094 -(((
1095 -
1096 -)))
1097 1097  
1098 -(((
1099 1099  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1100 -)))
1101 1101  
1102 1102  [[image:image-20220606154726-3.png]]
1103 1103  
1104 -
1105 1105  When you use the TTN network, the US915 frequency bands use are:
1106 1106  
1107 1107  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1114,47 +1114,37 @@
1114 1114  * 905.3 - SF7BW125 to SF10BW125
1115 1115  * 904.6 - SF8BW500
1116 1116  
1117 -(((
1118 1118  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1119 1119  
1120 -* (% style="color:#037691" %)**AT+CHE=2**
1121 -* (% style="color:#037691" %)**ATZ**
904 +(% class="box infomessage" %)
905 +(((
906 +**AT+CHE=2**
1122 1122  )))
1123 1123  
909 +(% class="box infomessage" %)
1124 1124  (((
1125 -
911 +**ATZ**
912 +)))
1126 1126  
1127 1127  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1128 -)))
1129 1129  
1130 -(((
1131 -
1132 -)))
1133 1133  
1134 -(((
1135 1135  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1136 -)))
1137 1137  
1138 1138  [[image:image-20220606154825-4.png]]
1139 1139  
1140 1140  
1141 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1142 1142  
1143 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1144 -
1145 -
1146 1146  = 5. Trouble Shooting =
1147 1147  
1148 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
925 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1149 1149  
1150 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
927 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1151 1151  
1152 1152  
1153 -== 5.2 AT Command input doesn't work ==
930 +== 5.2 AT Command input doesnt work ==
1154 1154  
1155 -(((
1156 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1157 -)))
932 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1158 1158  
1159 1159  
1160 1160  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1166,9 +1166,7 @@
1166 1166  
1167 1167  (% style="color:#4f81bd" %)**Cause for this issue:**
1168 1168  
1169 -(((
1170 1170  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1171 -)))
1172 1172  
1173 1173  
1174 1174  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1175,7 +1175,7 @@
1175 1175  
1176 1176  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1177 1177  
1178 -[[image:1654500929571-736.png||height="458" width="832"]]
951 +[[image:1654500929571-736.png]]
1179 1179  
1180 1180  
1181 1181  = 6. ​Order Info =
... ... @@ -1200,6 +1200,7 @@
1200 1200  * (% style="color:red" %)**4**(%%): 4000mAh battery
1201 1201  * (% style="color:red" %)**8**(%%): 8500mAh battery
1202 1202  
976 +
1203 1203  (% class="wikigeneratedid" %)
1204 1204  (((
1205 1205  
... ... @@ -1208,9 +1208,7 @@
1208 1208  = 7. Packing Info =
1209 1209  
1210 1210  (((
1211 -
1212 -
1213 -(% style="color:#037691" %)**Package Includes**:
985 +**Package Includes**:
1214 1214  )))
1215 1215  
1216 1216  * (((
... ... @@ -1219,8 +1219,10 @@
1219 1219  
1220 1220  (((
1221 1221  
994 +)))
1222 1222  
1223 -(% style="color:#037691" %)**Dimension and weight**:
996 +(((
997 +**Dimension and weight**:
1224 1224  )))
1225 1225  
1226 1226  * (((
... ... @@ -1235,6 +1235,7 @@
1235 1235  * (((
1236 1236  Weight / pcs : g
1237 1237  
1012 +
1238 1238  
1239 1239  )))
1240 1240  
... ... @@ -1242,3 +1242,5 @@
1242 1242  
1243 1243  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1244 1244  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1020 +
1021 +
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0