Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 8 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height=" 554" width="554"]]2 +[[image:image-20220606151504-2.jpeg||height="848" width="848"]] 3 3 4 4 5 5 ... ... @@ -8,83 +8,61 @@ 8 8 9 9 10 10 11 += 1. Introduction = 11 11 13 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 12 12 15 +((( 16 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 +))) 13 13 14 -**Table of Contents:** 19 +((( 20 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 +))) 15 15 23 +((( 24 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 +))) 16 16 17 - 18 - 19 - 20 - 21 -= 1. Introduction = 22 - 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 - 25 25 ((( 26 - 28 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 +))) 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 - 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 - 31 +((( 32 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 35 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]39 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD45 +* LoRaWAN 1.0.3 Class A 46 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 50 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 55 +* 4000mAh or 8500mAh Battery for long term use 61 61 62 -== 1.3 57 +== 1.3 Specification == 63 63 64 - 65 -(% style="color:#037691" %)**Common DC Characteristics:** 66 - 67 -* Supply Voltage: 2.1v ~~ 3.6v 68 -* Operating Temperature: -40 ~~ 85°C 69 - 70 -(% style="color:#037691" %)**NB-IoT Spec:** 71 - 72 -* - B1 @H-FDD: 2100MHz 73 -* - B3 @H-FDD: 1800MHz 74 -* - B8 @H-FDD: 900MHz 75 -* - B5 @H-FDD: 850MHz 76 -* - B20 @H-FDD: 800MHz 77 -* - B28 @H-FDD: 700MHz 78 - 79 -(% style="color:#037691" %)**Probe Specification:** 80 - 81 81 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 83 -[[image:image-20220 708101224-1.png]]61 +[[image:image-20220606162220-5.png]] 84 84 85 85 86 86 87 -== 1.4 65 +== 1.4 Applications == 88 88 89 89 * Smart Agriculture 90 90 ... ... @@ -91,298 +91,155 @@ 91 91 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 92 93 93 94 -== 1.5 Pin Definitions==72 +== 1.5 Firmware Change log == 95 95 96 96 97 - [[image:1657246476176-652.png]]75 +**LSE01 v1.0 :** Release 98 98 99 99 100 100 101 -= 2. UseNSE01 to communicatewithIoTServer=79 += 2. Configure LSE01 to connect to LoRaWAN network = 102 102 103 -== 2.1 81 +== 2.1 How it works == 104 104 105 - 106 106 ((( 107 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.84 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 108 108 ))) 109 109 110 - 111 111 ((( 112 - Thediagrambelowshows theworkingflowindefaultfirmwaref NSE01:88 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 113 113 ))) 114 114 115 -[[image:image-20220708101605-2.png]] 116 116 117 -((( 118 - 119 -))) 120 120 93 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 121 121 95 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 122 122 123 -== 2.2 Configure the NSE01 == 124 124 98 +[[image:1654503992078-669.png]] 125 125 126 -=== 2.2.1 Test Requirement === 127 127 101 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 128 128 129 -To use NSE01 in your city, make sure meet below requirements: 130 130 131 -* Your local operator has already distributed a NB-IoT Network there. 132 -* The local NB-IoT network used the band that NSE01 supports. 133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 104 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 134 134 135 -((( 136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 -))) 106 +Each LSE01 is shipped with a sticker with the default device EUI as below: 138 138 108 +[[image:image-20220606163732-6.jpeg]] 139 139 140 - [[image:1657249419225-449.png]]110 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 141 141 112 +**Add APP EUI in the application** 142 142 143 143 144 - === 2.2.2 Insert SIM card ===115 +[[image:1654504596150-405.png]] 145 145 146 -Insert the NB-IoT Card get from your provider. 147 147 148 -User need to take out the NB-IoT module and insert the SIM card like below: 149 149 119 +**Add APP KEY and DEV EUI** 150 150 151 -[[image:165 7249468462-536.png]]121 +[[image:1654504683289-357.png]] 152 152 153 153 154 154 155 - ===2.2.3ConnectUSB – TTL toNSE01to configure it ===125 +**Step 2**: Power on LSE01 156 156 157 -((( 158 -((( 159 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 160 -))) 161 -))) 162 162 128 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 163 163 164 - **Connection:**130 +[[image:image-20220606163915-7.png]] 165 165 166 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 167 167 168 - (%style="background-color:yellow"%)USBTTLTXD<~-~-~-~->UART_RXD133 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 169 169 170 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD135 +[[image:1654504778294-788.png]] 171 171 172 172 173 -In the PC, use below serial tool settings: 174 174 175 -* Baud: (% style="color:green" %)**9600** 176 -* Data bits:** (% style="color:green" %)8(%%)** 177 -* Stop bits: (% style="color:green" %)**1** 178 -* Parity: (% style="color:green" %)**None** 179 -* Flow Control: (% style="color:green" %)**None** 180 - 181 -((( 182 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 183 -))) 184 - 185 -[[image:image-20220708110657-3.png]] 186 - 187 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 188 - 189 - 190 - 191 -=== 2.2.4 Use CoAP protocol to uplink data === 192 - 193 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]] 194 - 195 - 196 -Use below commands: 197 - 198 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 201 - 202 -For parameter description, please refer to AT command set 203 - 204 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]] 205 - 206 - 207 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 208 - 209 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]] 210 - 211 - 212 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 213 - 214 - 215 -This feature is supported since firmware version v1.0.1 216 - 217 - 218 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 221 - 222 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]] 223 - 224 - 225 - 226 - 227 - 228 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]] 229 - 230 - 231 -=== 2.2.6 Use MQTT protocol to uplink data === 232 - 233 - 234 -This feature is supported since firmware version v110 235 - 236 - 237 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 239 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 240 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 241 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 242 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 243 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 244 - 245 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]] 246 - 247 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]] 248 - 249 - 250 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 251 - 252 - 253 -=== 2.2.7 Use TCP protocol to uplink data === 254 - 255 - 256 -This feature is supported since firmware version v110 257 - 258 - 259 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 261 - 262 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]] 263 - 264 - 265 - 266 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]] 267 - 268 - 269 -=== 2.2.8 Change Update Interval === 270 - 271 -User can use below command to change the (% style="color:green" %)**uplink interval**. 272 - 273 -**~ (% style="color:blue" %)AT+TDC=600 (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s 274 - 275 - 276 -(% style="color:red" %)**NOTE:** 277 - 278 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 279 - 280 - 281 - 282 - 283 - 284 - 285 - 286 286 == 2.3 Uplink Payload == 287 287 288 - 289 289 === 2.3.1 MOD~=0(Default Mode) === 290 290 291 291 LSE01 will uplink payload via LoRaWAN with below payload format: 292 292 293 - (((145 + 294 294 Uplink payload includes in total 11 bytes. 295 - )))147 + 296 296 297 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 298 298 |((( 299 299 **Size** 300 300 301 301 **(bytes)** 302 302 )))|**2**|**2**|**2**|**2**|**2**|**1** 303 -|**Value**|[[BAT>> ||anchor="H2.3.3BatteryInfo"]]|(((154 +|**Value**|[[BAT>>path:#bat]]|((( 304 304 Temperature 305 305 306 306 (Reserve, Ignore now) 307 -)))|[[Soil Moisture>> ||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((158 +)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 308 308 MOD & Digital Interrupt 309 309 310 310 (Optional) 311 311 ))) 312 312 164 +[[image:1654504881641-514.png]] 165 + 166 + 167 + 313 313 === 2.3.2 MOD~=1(Original value) === 314 314 315 315 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 316 316 317 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 318 318 |((( 319 319 **Size** 320 320 321 321 **(bytes)** 322 322 )))|**2**|**2**|**2**|**2**|**2**|**1** 323 -|**Value**|[[BAT>> ||anchor="H2.3.3BatteryInfo"]]|(((177 +|**Value**|[[BAT>>path:#bat]]|((( 324 324 Temperature 325 325 326 326 (Reserve, Ignore now) 327 -)))|[[Soil Moisture>> ||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((181 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 328 328 MOD & Digital Interrupt 329 329 330 330 (Optional) 331 331 ))) 332 332 187 +[[image:1654504907647-967.png]] 188 + 189 + 190 + 333 333 === 2.3.3 Battery Info === 334 334 335 -((( 336 336 Check the battery voltage for LSE01. 337 -))) 338 338 339 -((( 340 340 Ex1: 0x0B45 = 2885mV 341 -))) 342 342 343 -((( 344 344 Ex2: 0x0B49 = 2889mV 345 -))) 346 346 347 347 348 348 349 349 === 2.3.4 Soil Moisture === 350 350 351 -((( 352 352 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 353 -))) 354 354 355 -((( 356 356 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 357 -))) 358 358 359 -((( 360 - 361 -))) 362 362 363 -((( 364 364 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 365 -))) 366 366 367 367 368 368 369 369 === 2.3.5 Soil Temperature === 370 370 371 -((( 372 372 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 373 -))) 374 374 375 -((( 376 376 **Example**: 377 -))) 378 378 379 -((( 380 380 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 381 -))) 382 382 383 -((( 384 384 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 385 -))) 386 386 387 387 388 388 ... ... @@ -417,7 +417,7 @@ 417 417 mod=(bytes[10]>>7)&0x01=1. 418 418 419 419 420 - **Downlink Command:**255 +Downlink Command: 421 421 422 422 If payload = 0x0A00, workmode=0 423 423 ... ... @@ -432,21 +432,19 @@ 432 432 433 433 [[image:1654505570700-128.png]] 434 434 435 -((( 436 436 The payload decoder function for TTN is here: 437 -))) 438 438 439 -((( 440 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 441 -))) 272 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 442 442 443 443 444 444 == 2.4 Uplink Interval == 445 445 446 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]277 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 447 447 279 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 448 448 449 449 282 + 450 450 == 2.5 Downlink Payload == 451 451 452 452 By default, LSE50 prints the downlink payload to console port. ... ... @@ -454,44 +454,24 @@ 454 454 [[image:image-20220606165544-8.png]] 455 455 456 456 457 -((( 458 -(% style="color:blue" %)**Examples:** 459 -))) 290 +**Examples:** 460 460 461 -((( 462 - 463 -))) 464 464 465 -* ((( 466 -(% style="color:blue" %)**Set TDC** 467 -))) 293 +* **Set TDC** 468 468 469 -((( 470 470 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 471 -))) 472 472 473 -((( 474 474 Payload: 01 00 00 1E TDC=30S 475 -))) 476 476 477 -((( 478 478 Payload: 01 00 00 3C TDC=60S 479 -))) 480 480 481 -((( 482 - 483 -))) 484 484 485 -* ((( 486 -(% style="color:blue" %)**Reset** 487 -))) 302 +* **Reset** 488 488 489 -((( 490 490 If payload = 0x04FF, it will reset the LSE01 491 -))) 492 492 493 493 494 -* (% style="color:blue" %)**CFM**307 +* **CFM** 495 495 496 496 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 497 497 ... ... @@ -499,21 +499,12 @@ 499 499 500 500 == 2.6 Show Data in DataCake IoT Server == 501 501 502 -((( 503 503 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 504 -))) 505 505 506 -((( 507 - 508 -))) 509 509 510 -((( 511 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 512 -))) 318 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 513 513 514 -((( 515 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 516 -))) 320 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 517 517 518 518 519 519 [[image:1654505857935-743.png]] ... ... @@ -521,12 +521,11 @@ 521 521 522 522 [[image:1654505874829-548.png]] 523 523 328 +Step 3: Create an account or log in Datacake. 524 524 525 - (% style="color:blue" %)**Step3**(%%)**:**Create an accountor log inDatacake.330 +Step 4: Search the LSE01 and add DevEUI. 526 526 527 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 528 528 529 - 530 530 [[image:1654505905236-553.png]] 531 531 532 532 ... ... @@ -822,6 +822,7 @@ 822 822 * Solid ON for 5 seconds once device successful Join the network. 823 823 * Blink once when device transmit a packet. 824 824 628 + 825 825 == 2.9 Installation in Soil == 826 826 827 827 **Measurement the soil surface** ... ... @@ -836,7 +836,6 @@ 836 836 ))) 837 837 838 838 839 - 840 840 [[image:1654506665940-119.png]] 841 841 842 842 ((( ... ... @@ -898,16 +898,16 @@ 898 898 ))) 899 899 900 900 * ((( 901 -[[Battery Dimension>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],704 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 902 902 ))) 903 903 * ((( 904 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/ index.php?dir=datasheet/Battery/]],707 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 905 905 ))) 906 906 * ((( 907 -[[Lithium-ion Battery-Capacitor datasheet>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]710 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 908 908 ))) 909 909 910 - [[image:image-202206 10172436-1.png]]713 + [[image:image-20220606171726-9.png]] 911 911 912 912 913 913 ... ... @@ -942,13 +942,13 @@ 942 942 943 943 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 944 944 945 -[[image:1654501986557-872.png ||height="391" width="800"]]748 +[[image:1654501986557-872.png]] 946 946 947 947 948 948 Or if you have below board, use below connection: 949 949 950 950 951 -[[image:1654502005655-729.png ||height="503" width="801"]]754 +[[image:1654502005655-729.png]] 952 952 953 953 954 954 ... ... @@ -955,10 +955,10 @@ 955 955 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 956 956 957 957 958 - [[image:1654502050864-459.png ||height="564" width="806"]]761 + [[image:1654502050864-459.png]] 959 959 960 960 961 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>http s://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]764 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 962 962 963 963 964 964 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -1070,38 +1070,20 @@ 1070 1070 1071 1071 == 4.1 How to change the LoRa Frequency Bands/Region? == 1072 1072 1073 -((( 1074 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 876 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 1075 1075 When downloading the images, choose the required image file for download. 1076 -))) 1077 1077 1078 -((( 1079 - 1080 -))) 1081 1081 1082 -((( 1083 1083 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 1084 -))) 1085 1085 1086 -((( 1087 - 1088 -))) 1089 1089 1090 -((( 1091 1091 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 1092 -))) 1093 1093 1094 -((( 1095 - 1096 -))) 1097 1097 1098 -((( 1099 1099 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 1100 -))) 1101 1101 1102 1102 [[image:image-20220606154726-3.png]] 1103 1103 1104 - 1105 1105 When you use the TTN network, the US915 frequency bands use are: 1106 1106 1107 1107 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -1114,47 +1114,37 @@ 1114 1114 * 905.3 - SF7BW125 to SF10BW125 1115 1115 * 904.6 - SF8BW500 1116 1116 1117 -((( 1118 1118 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1119 1119 1120 -* (% style="color:#037691" %)**AT+CHE=2** 1121 -* (% style="color:#037691" %)**ATZ** 904 +(% class="box infomessage" %) 905 +((( 906 +**AT+CHE=2** 1122 1122 ))) 1123 1123 909 +(% class="box infomessage" %) 1124 1124 ((( 1125 - 911 +**ATZ** 912 +))) 1126 1126 1127 1127 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1128 -))) 1129 1129 1130 -((( 1131 - 1132 -))) 1133 1133 1134 -((( 1135 1135 The **AU915** band is similar. Below are the AU915 Uplink Channels. 1136 -))) 1137 1137 1138 1138 [[image:image-20220606154825-4.png]] 1139 1139 1140 1140 1141 -== 4.2 Can I calibrate LSE01 to different soil types? == 1142 1142 1143 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1144 - 1145 - 1146 1146 = 5. Trouble Shooting = 1147 1147 1148 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==925 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1149 1149 1150 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.927 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1151 1151 1152 1152 1153 -== 5.2 AT Command input doesn 't work ==930 +== 5.2 AT Command input doesn’t work == 1154 1154 1155 -((( 1156 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1157 -))) 932 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1158 1158 1159 1159 1160 1160 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -1166,9 +1166,7 @@ 1166 1166 1167 1167 (% style="color:#4f81bd" %)**Cause for this issue:** 1168 1168 1169 -((( 1170 1170 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1171 -))) 1172 1172 1173 1173 1174 1174 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -1175,7 +1175,7 @@ 1175 1175 1176 1176 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1177 1177 1178 -[[image:1654500929571-736.png ||height="458" width="832"]]951 +[[image:1654500929571-736.png]] 1179 1179 1180 1180 1181 1181 = 6. Order Info = ... ... @@ -1200,6 +1200,7 @@ 1200 1200 * (% style="color:red" %)**4**(%%): 4000mAh battery 1201 1201 * (% style="color:red" %)**8**(%%): 8500mAh battery 1202 1202 976 + 1203 1203 (% class="wikigeneratedid" %) 1204 1204 ((( 1205 1205 ... ... @@ -1208,9 +1208,7 @@ 1208 1208 = 7. Packing Info = 1209 1209 1210 1210 ((( 1211 - 1212 - 1213 -(% style="color:#037691" %)**Package Includes**: 985 +**Package Includes**: 1214 1214 ))) 1215 1215 1216 1216 * ((( ... ... @@ -1219,8 +1219,10 @@ 1219 1219 1220 1220 ((( 1221 1221 994 +))) 1222 1222 1223 -(% style="color:#037691" %)**Dimension and weight**: 996 +((( 997 +**Dimension and weight**: 1224 1224 ))) 1225 1225 1226 1226 * ((( ... ... @@ -1235,6 +1235,7 @@ 1235 1235 * ((( 1236 1236 Weight / pcs : g 1237 1237 1012 + 1238 1238 1239 1239 ))) 1240 1240 ... ... @@ -1242,3 +1242,5 @@ 1242 1242 1243 1243 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1244 1244 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1020 + 1021 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content