Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 6 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,7 +3,9 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,85 +10,63 @@ 10 10 11 11 12 12 15 += 1. Introduction = 13 13 14 - **TableofContents:**17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 18 18 19 - 20 - 21 -= 1. Introduction = 22 - 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 - 25 25 ((( 26 - 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 - 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 39 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 61 61 62 62 63 63 64 -== 1.3 63 +== 1.3 Specification == 65 65 66 - 67 -(% style="color:#037691" %)**Common DC Characteristics:** 68 - 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 71 - 72 - 73 -(% style="color:#037691" %)**NB-IoT Spec:** 74 - 75 -* - B1 @H-FDD: 2100MHz 76 -* - B3 @H-FDD: 1800MHz 77 -* - B8 @H-FDD: 900MHz 78 -* - B5 @H-FDD: 850MHz 79 -* - B20 @H-FDD: 800MHz 80 -* - B28 @H-FDD: 700MHz 81 - 82 - 83 -(% style="color:#037691" %)**Probe Specification:** 84 - 85 85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -[[image:image-20220 708101224-1.png]]67 +[[image:image-20220606162220-5.png]] 88 88 89 89 90 90 91 -== 1.4 71 +== 1.4 Applications == 92 92 93 93 * Smart Agriculture 94 94 ... ... @@ -95,302 +95,157 @@ 95 95 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 96 96 97 97 98 -== 1.5 Pin Definitions==78 +== 1.5 Firmware Change log == 99 99 100 100 101 - [[image:1657246476176-652.png]]81 +**LSE01 v1.0 :** Release 102 102 103 103 104 104 105 -= 2. UseNSE01 to communicatewithIoTServer=85 += 2. Configure LSE01 to connect to LoRaWAN network = 106 106 107 -== 2.1 87 +== 2.1 How it works == 108 108 109 - 110 110 ((( 111 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.90 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 112 112 ))) 113 113 114 - 115 115 ((( 116 - Thediagrambelowshows theworkingflowindefaultfirmwaref NSE01:94 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 117 117 ))) 118 118 119 -[[image:image-20220708101605-2.png]] 120 120 121 -((( 122 - 123 -))) 124 124 99 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 125 125 101 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 126 126 127 -== 2.2 Configure the NSE01 == 128 128 129 - === 2.2.1 Test Requirement ===104 +[[image:1654503992078-669.png]] 130 130 131 131 132 -T o useNSE01inyourcity,make suremeetbelowrequirements:107 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 133 133 134 -* Your local operator has already distributed a NB-IoT Network there. 135 -* The local NB-IoT network used the band that NSE01 supports. 136 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 137 137 110 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 138 138 139 - Below figure shows our testing structure. Here we have NB-IoT networkcoverage by ChinaMobile, the band they use is B8. The NSE01will useCoAP((%style="color:red"%)120.24.4.116:5683)(%%) or rawUDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((%style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to senddatato thetestserver112 +Each LSE01 is shipped with a sticker with the default device EUI as below: 140 140 114 +[[image:image-20220606163732-6.jpeg]] 141 141 142 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]116 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 143 143 118 +**Add APP EUI in the application** 144 144 145 145 146 - === 2.2.2 Insert SIM card ===121 +[[image:1654504596150-405.png]] 147 147 148 -Insert the NB-IoT Card get from your provider. 149 149 150 150 151 - User needtotakeout the NB-IoT moduleandinsertthe SIM card like below:125 +**Add APP KEY and DEV EUI** 152 152 127 +[[image:1654504683289-357.png]] 153 153 154 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]] 155 155 156 156 157 - ===2.2.3ConnectUSB – TTL toNSE01to configure it ===131 +**Step 2**: Power on LSE01 158 158 159 159 160 - User needtoconfigure NSE01 viaserialporttosetthe **(% style="color:blue"%)Server Address** / **Uplink Topic** (%%)to definewhereandhow-touplink packets.NSE01support ATCommands,usercanuse a USBtoTTL adapterto connectto NSE01and use AT Commandsto configure it, as below.134 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 161 161 136 +[[image:image-20220606163915-7.png]] 162 162 163 163 139 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 164 164 165 - Connection:141 +[[image:1654504778294-788.png]] 166 166 167 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 168 168 169 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 170 170 171 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 172 - 173 - 174 - 175 -In the PC, use below serial tool settings: 176 - 177 -* Baud: ** (% style="background-color:green" %)9600**(%%) 178 -* Data bits:** (% style="background-color:green" %)8**(%%) 179 -* Stop bits: **(% style="background-color:green" %)1**(%%) 180 -* Parity: **(% style="background-color:green" %)None**(%%) 181 -* Flow Control: **(% style="background-color:green" %)None** 182 - 183 - 184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **(% style="background-color:green" %)password: 12345678**(%%) to access AT Command input. 185 - 186 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]] 187 - 188 -Note: the valid AT Commands can be found at: 189 - 190 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 191 - 192 - 193 - 194 -=== 2.2.4 Use CoAP protocol to uplink data === 195 - 196 - 197 -(% style="background-color:red" %)Note: if you don’t have CoAP server, you can refer this link to set up one: 198 - 199 -[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]] 200 - 201 - 202 -Use below commands: 203 - 204 -* **(% style="color:blue" %)AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 -* **(% style="color:blue" %)AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 207 - 208 - 209 -For parameter description, please refer to AT command set 210 - 211 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]] 212 - 213 - 214 -After configure the server address and **(% style="color:green" %)reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 215 - 216 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]] 217 - 218 - 219 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 220 - 221 - 222 -This feature is supported since firmware version v1.0.1 223 - 224 - 225 -* **(% style="color:blue" %)AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 226 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 227 -* **(% style="color:blue" %)AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 228 - 229 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]] 230 - 231 - 232 - 233 - 234 - 235 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]] 236 - 237 - 238 -=== 2.2.6 Use MQTT protocol to uplink data === 239 - 240 - 241 -This feature is supported since firmware version v110 242 - 243 - 244 -* **(% style="color:blue" %)AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 245 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 246 -* **(% style="color:blue" %)AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 247 -* **(% style="color:blue" %)AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 248 -* **(% style="color:blue" %)AT+PWD=PWD **(%%)~/~/Set the password of MQTT 249 -* **(% style="color:blue" %)AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 250 -* **(% style="color:blue" %)AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 251 - 252 - 253 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]] 254 - 255 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]] 256 - 257 - 258 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 259 - 260 - 261 -=== 2.2.7 Use TCP protocol to uplink data === 262 - 263 - 264 -This feature is supported since firmware version v110 265 - 266 - 267 -* **(% style="color:blue" %)AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 268 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 269 - 270 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]] 271 - 272 - 273 - 274 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]] 275 - 276 - 277 -=== 2.2.8 Change Update Interval === 278 - 279 -User can use below command to change the **(% style="color:green" %)uplink interval**. 280 - 281 -**~ (% style="color:blue" %)AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 282 - 283 - 284 -**(% style="color:red" %)NOTE:** 285 - 286 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 - 288 - 289 - 290 - 291 - 292 - 293 - 294 294 == 2.3 Uplink Payload == 295 295 296 - 297 297 === 2.3.1 MOD~=0(Default Mode) === 298 298 299 299 LSE01 will uplink payload via LoRaWAN with below payload format: 300 300 301 - (((151 + 302 302 Uplink payload includes in total 11 bytes. 303 - )))153 + 304 304 305 -(% border="1" cellspacing="10" style="background-color:#ffff cc; width:500px" %)306 -|((( 155 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 156 +|=((( 307 307 **Size** 308 308 309 309 **(bytes)** 310 -)))|**2**|**2**|**2**|**2**|**2**|**1** 311 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 161 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 312 312 Temperature 313 313 314 314 (Reserve, Ignore now) 315 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 165 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 316 316 MOD & Digital Interrupt 317 317 318 318 (Optional) 319 319 ))) 320 320 171 +[[image:1654504881641-514.png]] 172 + 173 + 174 + 321 321 === 2.3.2 MOD~=1(Original value) === 322 322 323 323 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 324 324 325 -(% border="1" cellspacing="10" style="background-color:#ffff cc; width:500px" %)326 -|((( 179 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 180 +|=((( 327 327 **Size** 328 328 329 329 **(bytes)** 330 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 331 331 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 332 332 Temperature 333 333 334 334 (Reserve, Ignore now) 335 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture" ]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((189 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 336 336 MOD & Digital Interrupt 337 337 338 338 (Optional) 339 339 ))) 340 340 195 +[[image:1654504907647-967.png]] 196 + 197 + 198 + 341 341 === 2.3.3 Battery Info === 342 342 343 -((( 344 344 Check the battery voltage for LSE01. 345 -))) 346 346 347 -((( 348 348 Ex1: 0x0B45 = 2885mV 349 -))) 350 350 351 -((( 352 352 Ex2: 0x0B49 = 2889mV 353 -))) 354 354 355 355 356 356 357 357 === 2.3.4 Soil Moisture === 358 358 359 -((( 360 360 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 361 -))) 362 362 363 -((( 364 364 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 365 -))) 366 366 367 -((( 368 - 369 -))) 370 370 371 -((( 372 372 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 373 -))) 374 374 375 375 376 376 377 377 === 2.3.5 Soil Temperature === 378 378 379 -((( 380 380 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 381 -))) 382 382 383 -((( 384 384 **Example**: 385 -))) 386 386 387 -((( 388 388 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 389 -))) 390 390 391 -((( 392 392 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 393 -))) 394 394 395 395 396 396 ... ... @@ -425,7 +425,7 @@ 425 425 mod=(bytes[10]>>7)&0x01=1. 426 426 427 427 428 - **Downlink Command:**263 +Downlink Command: 429 429 430 430 If payload = 0x0A00, workmode=0 431 431 ... ... @@ -440,21 +440,19 @@ 440 440 441 441 [[image:1654505570700-128.png]] 442 442 443 -((( 444 444 The payload decoder function for TTN is here: 445 -))) 446 446 447 -((( 448 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 449 -))) 280 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 450 450 451 451 452 452 == 2.4 Uplink Interval == 453 453 454 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]285 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 455 455 287 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 456 456 457 457 290 + 458 458 == 2.5 Downlink Payload == 459 459 460 460 By default, LSE50 prints the downlink payload to console port. ... ... @@ -462,44 +462,24 @@ 462 462 [[image:image-20220606165544-8.png]] 463 463 464 464 465 -((( 466 -(% style="color:blue" %)**Examples:** 467 -))) 298 +**Examples:** 468 468 469 -((( 470 - 471 -))) 472 472 473 -* ((( 474 -(% style="color:blue" %)**Set TDC** 475 -))) 301 +* **Set TDC** 476 476 477 -((( 478 478 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 479 -))) 480 480 481 -((( 482 482 Payload: 01 00 00 1E TDC=30S 483 -))) 484 484 485 -((( 486 486 Payload: 01 00 00 3C TDC=60S 487 -))) 488 488 489 -((( 490 - 491 -))) 492 492 493 -* ((( 494 -(% style="color:blue" %)**Reset** 495 -))) 310 +* **Reset** 496 496 497 -((( 498 498 If payload = 0x04FF, it will reset the LSE01 499 -))) 500 500 501 501 502 -* (% style="color:blue" %)**CFM**315 +* **CFM** 503 503 504 504 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 505 505 ... ... @@ -507,21 +507,12 @@ 507 507 508 508 == 2.6 Show Data in DataCake IoT Server == 509 509 510 -((( 511 511 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 512 -))) 513 513 514 -((( 515 - 516 -))) 517 517 518 -((( 519 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 520 -))) 326 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 521 521 522 -((( 523 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 524 -))) 328 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 525 525 526 526 527 527 [[image:1654505857935-743.png]] ... ... @@ -529,12 +529,11 @@ 529 529 530 530 [[image:1654505874829-548.png]] 531 531 336 +Step 3: Create an account or log in Datacake. 532 532 533 - (% style="color:blue" %)**Step3**(%%)**:**Create an accountor log inDatacake.338 +Step 4: Search the LSE01 and add DevEUI. 534 534 535 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 536 536 537 - 538 538 [[image:1654505905236-553.png]] 539 539 540 540 ... ... @@ -844,7 +844,6 @@ 844 844 ))) 845 845 846 846 847 - 848 848 [[image:1654506665940-119.png]] 849 849 850 850 ((( ... ... @@ -906,16 +906,16 @@ 906 906 ))) 907 907 908 908 * ((( 909 -[[Battery Dimension>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],711 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 910 910 ))) 911 911 * ((( 912 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/ index.php?dir=datasheet/Battery/]],714 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 913 913 ))) 914 914 * ((( 915 -[[Lithium-ion Battery-Capacitor datasheet>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]717 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 916 916 ))) 917 917 918 - [[image:image-202206 10172436-1.png]]720 + [[image:image-20220606171726-9.png]] 919 919 920 920 921 921 ... ... @@ -950,13 +950,13 @@ 950 950 951 951 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 952 952 953 -[[image:1654501986557-872.png ||height="391" width="800"]]755 +[[image:1654501986557-872.png]] 954 954 955 955 956 956 Or if you have below board, use below connection: 957 957 958 958 959 -[[image:1654502005655-729.png ||height="503" width="801"]]761 +[[image:1654502005655-729.png]] 960 960 961 961 962 962 ... ... @@ -963,10 +963,10 @@ 963 963 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 964 964 965 965 966 - [[image:1654502050864-459.png ||height="564" width="806"]]768 + [[image:1654502050864-459.png]] 967 967 968 968 969 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>http s://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]771 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 970 970 971 971 972 972 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -1078,38 +1078,20 @@ 1078 1078 1079 1079 == 4.1 How to change the LoRa Frequency Bands/Region? == 1080 1080 1081 -((( 1082 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 1083 1083 When downloading the images, choose the required image file for download. 1084 -))) 1085 1085 1086 -((( 1087 - 1088 -))) 1089 1089 1090 -((( 1091 1091 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 1092 -))) 1093 1093 1094 -((( 1095 - 1096 -))) 1097 1097 1098 -((( 1099 1099 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 1100 -))) 1101 1101 1102 -((( 1103 - 1104 -))) 1105 1105 1106 -((( 1107 1107 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 1108 -))) 1109 1109 1110 1110 [[image:image-20220606154726-3.png]] 1111 1111 1112 - 1113 1113 When you use the TTN network, the US915 frequency bands use are: 1114 1114 1115 1115 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -1122,47 +1122,37 @@ 1122 1122 * 905.3 - SF7BW125 to SF10BW125 1123 1123 * 904.6 - SF8BW500 1124 1124 1125 -((( 1126 1126 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1127 1127 1128 -* (% style="color:#037691" %)**AT+CHE=2** 1129 -* (% style="color:#037691" %)**ATZ** 911 +(% class="box infomessage" %) 912 +((( 913 +**AT+CHE=2** 1130 1130 ))) 1131 1131 916 +(% class="box infomessage" %) 1132 1132 ((( 1133 - 918 +**ATZ** 919 +))) 1134 1134 1135 1135 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1136 -))) 1137 1137 1138 -((( 1139 - 1140 -))) 1141 1141 1142 -((( 1143 1143 The **AU915** band is similar. Below are the AU915 Uplink Channels. 1144 -))) 1145 1145 1146 1146 [[image:image-20220606154825-4.png]] 1147 1147 1148 1148 1149 -== 4.2 Can I calibrate LSE01 to different soil types? == 1150 1150 1151 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1152 - 1153 - 1154 1154 = 5. Trouble Shooting = 1155 1155 1156 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==932 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1157 1157 1158 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.934 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1159 1159 1160 1160 1161 -== 5.2 AT Command input doesn 't work ==937 +== 5.2 AT Command input doesn’t work == 1162 1162 1163 -((( 1164 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1165 -))) 939 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1166 1166 1167 1167 1168 1168 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -1174,9 +1174,7 @@ 1174 1174 1175 1175 (% style="color:#4f81bd" %)**Cause for this issue:** 1176 1176 1177 -((( 1178 1178 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1179 -))) 1180 1180 1181 1181 1182 1182 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -1183,7 +1183,7 @@ 1183 1183 1184 1184 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1185 1185 1186 -[[image:1654500929571-736.png ||height="458" width="832"]]958 +[[image:1654500929571-736.png]] 1187 1187 1188 1188 1189 1189 = 6. Order Info = ... ... @@ -1216,9 +1216,7 @@ 1216 1216 = 7. Packing Info = 1217 1217 1218 1218 ((( 1219 - 1220 - 1221 -(% style="color:#037691" %)**Package Includes**: 991 +**Package Includes**: 1222 1222 ))) 1223 1223 1224 1224 * ((( ... ... @@ -1227,8 +1227,10 @@ 1227 1227 1228 1228 ((( 1229 1229 1000 +))) 1230 1230 1231 -(% style="color:#037691" %)**Dimension and weight**: 1002 +((( 1003 +**Dimension and weight**: 1232 1232 ))) 1233 1233 1234 1234 * ((( ... ... @@ -1243,6 +1243,7 @@ 1243 1243 * ((( 1244 1244 Weight / pcs : g 1245 1245 1018 + 1246 1246 1247 1247 ))) 1248 1248 ... ... @@ -1250,3 +1250,5 @@ 1250 1250 1251 1251 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1252 1252 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1026 + 1027 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content