<
From version < 45.7 >
edited by Xiaoling
on 2022/07/08 11:03
To version < 31.23 >
edited by Xiaoling
on 2022/06/07 10:13
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,85 +10,62 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
61 61  
62 62  
62 +== 1.3 Specification ==
63 63  
64 -== 1.3  Specification ==
65 -
66 -
67 -(% style="color:#037691" %)**Common DC Characteristics:**
68 -
69 -* Supply Voltage: 2.1v ~~ 3.6v
70 -* Operating Temperature: -40 ~~ 85°C
71 -
72 -
73 -(% style="color:#037691" %)**NB-IoT Spec:**
74 -
75 -* - B1 @H-FDD: 2100MHz
76 -* - B3 @H-FDD: 1800MHz
77 -* - B8 @H-FDD: 900MHz
78 -* - B5 @H-FDD: 850MHz
79 -* - B20 @H-FDD: 800MHz
80 -* - B28 @H-FDD: 700MHz
81 -
82 -
83 -(% style="color:#037691" %)**Probe Specification:**
84 -
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -[[image:image-20220708101224-1.png]]
66 +[[image:image-20220606162220-5.png]]
88 88  
89 89  
90 90  
91 -== ​1.4  Applications ==
70 +== ​1.4 Applications ==
92 92  
93 93  * Smart Agriculture
94 94  
... ... @@ -95,302 +95,157 @@
95 95  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 96  ​
97 97  
98 -== 1.5  Pin Definitions ==
77 +== 1.5 Firmware Change log ==
99 99  
100 100  
101 -[[image:1657246476176-652.png]]
80 +**LSE01 v1.0 :**  Release
102 102  
103 103  
104 104  
105 -= 2.  Use NSE01 to communicate with IoT Server =
84 += 2. Configure LSE01 to connect to LoRaWAN network =
106 106  
107 -== 2.1  How it works ==
86 +== 2.1 How it works ==
108 108  
109 -
110 110  (((
111 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
89 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
112 112  )))
113 113  
114 -
115 115  (((
116 -The diagram below shows the working flow in default firmware of NSE01:
93 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
117 117  )))
118 118  
119 -[[image:image-20220708101605-2.png]]
120 120  
121 -(((
122 -
123 -)))
124 124  
98 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
125 125  
100 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126 126  
127 -== 2.2 ​ Configure the NSE01 ==
128 128  
129 -=== 2.2.1 Test Requirement ===
103 +[[image:1654503992078-669.png]]
130 130  
131 131  
132 -To use NSE01 in your city, make sure meet below requirements:
106 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 133  
134 -* Your local operator has already distributed a NB-IoT Network there.
135 -* The local NB-IoT network used the band that NSE01 supports.
136 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
137 137  
109 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
138 138  
139 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
111 +Each LSE01 is shipped with a sticker with the default device EUI as below:
140 140  
113 +[[image:image-20220606163732-6.jpeg]]
141 141  
142 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
115 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143 143  
117 +**Add APP EUI in the application**
144 144  
145 145  
146 -=== 2.2.2 Insert SIM card ===
120 +[[image:1654504596150-405.png]]
147 147  
148 -Insert the NB-IoT Card get from your provider.
149 149  
150 150  
151 -User need to take out the NB-IoT module and insert the SIM card like below:
124 +**Add APP KEY and DEV EUI**
152 152  
126 +[[image:1654504683289-357.png]]
153 153  
154 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
155 155  
156 156  
157 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
130 +**Step 2**: Power on LSE01
158 158  
159 159  
160 -User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
133 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
161 161  
135 +[[image:image-20220606163915-7.png]]
162 162  
163 163  
138 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
164 164  
165 -Connection:
140 +[[image:1654504778294-788.png]]
166 166  
167 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
168 168  
169 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
170 170  
171 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
172 -
173 -
174 -
175 -In the PC, use below serial tool settings:
176 -
177 -* Baud: ** (% style="background-color:green" %)9600**(%%)
178 -* Data bits:** (% style="background-color:green" %)8**(%%)
179 -* Stop bits: **(% style="background-color:green" %)1**(%%)
180 -* Parity: **(% style="background-color:green" %)None**(%%)
181 -* Flow Control: **(% style="background-color:green" %)None**
182 -
183 -
184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **(% style="background-color:green" %)password: 12345678**(%%) to access AT Command input.
185 -
186 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
187 -
188 -Note: the valid AT Commands can be found at:
189 -
190 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
191 -
192 -
193 -
194 -=== 2.2.4 Use CoAP protocol to uplink data === 
195 -
196 -
197 -(% style="background-color:red" %)Note: if you don’t have CoAP server, you can refer this link to set up one:
198 -
199 -[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
200 -
201 -
202 -Use below commands:
203 -
204 -* **(% style="color:blue" %)AT+PRO=1**  (%%)  ~/~/ Set to use CoAP protocol to uplink
205 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 -* **(% style="color:blue" %)AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)      ~/~/Set COAP resource path
207 -
208 -
209 -For parameter description, please refer to AT command set
210 -
211 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
212 -
213 -
214 -After configure the server address and **(% style="color:green" %)reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
215 -
216 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
217 -
218 -
219 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 -
221 -
222 -This feature is supported since firmware version v1.0.1
223 -
224 -
225 -* **(% style="color:blue" %)AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
226 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
227 -* **(% style="color:blue" %)AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
228 -
229 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
230 -
231 -
232 -
233 -
234 -
235 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
236 -
237 -
238 -=== 2.2.6 Use MQTT protocol to uplink data ===
239 -
240 -
241 -This feature is supported since firmware version v110
242 -
243 -
244 -* **(% style="color:blue" %)AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
245 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
246 -* **(% style="color:blue" %)AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT
247 -* **(% style="color:blue" %)AT+UNAME=UNAME            **(%%)~/~/Set the username of MQTT
248 -* **(% style="color:blue" %)AT+PWD=PWD                  **(%%)~/~/Set the password of MQTT
249 -* **(% style="color:blue" %)AT+PUBTOPIC=NSE01_PUB   **(%%)~/~/Set the sending topic of MQTT
250 -* **(% style="color:blue" %)AT+SUBTOPIC=NSE01_SUB    **(%%) ~/~/Set the subscription topic of MQTT
251 -
252 -
253 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
254 -
255 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
256 -
257 -
258 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
259 -
260 -
261 -=== 2.2.7 Use TCP protocol to uplink data ===
262 -
263 -
264 -This feature is supported since firmware version v110
265 -
266 -
267 -* **(% style="color:blue" %)AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
269 -
270 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
271 -
272 -
273 -
274 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
275 -
276 -
277 -=== 2.2.8 Change Update Interval ===
278 -
279 -User can use below command to change the **(% style="color:green" %)uplink interval**.
280 -
281 -**~ (% style="color:blue" %)AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
282 -
283 -
284 -**(% style="color:red" %)NOTE:**
285 -
286 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 -
288 -
289 -
290 -
291 -
292 -
293 -
294 294  == 2.3 Uplink Payload ==
295 295  
296 -
297 297  === 2.3.1 MOD~=0(Default Mode) ===
298 298  
299 299  LSE01 will uplink payload via LoRaWAN with below payload format: 
300 300  
301 -(((
150 +
302 302  Uplink payload includes in total 11 bytes.
303 -)))
152 +
304 304  
305 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
306 -|(((
154 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
155 +|=(((
307 307  **Size**
308 308  
309 309  **(bytes)**
310 -)))|**2**|**2**|**2**|**2**|**2**|**1**
311 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
159 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
160 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
312 312  Temperature
313 313  
314 314  (Reserve, Ignore now)
315 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
316 316  MOD & Digital Interrupt
317 317  
318 318  (Optional)
319 319  )))
320 320  
170 +[[image:1654504881641-514.png]]
171 +
172 +
173 +
321 321  === 2.3.2 MOD~=1(Original value) ===
322 322  
323 323  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
324 324  
325 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
326 -|(((
178 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
179 +|=(((
327 327  **Size**
328 328  
329 329  **(bytes)**
330 -)))|**2**|**2**|**2**|**2**|**2**|**1**
183 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
331 331  |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
332 332  Temperature
333 333  
334 334  (Reserve, Ignore now)
335 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
336 336  MOD & Digital Interrupt
337 337  
338 338  (Optional)
339 339  )))
340 340  
194 +[[image:1654504907647-967.png]]
195 +
196 +
197 +
341 341  === 2.3.3 Battery Info ===
342 342  
343 -(((
344 344  Check the battery voltage for LSE01.
345 -)))
346 346  
347 -(((
348 348  Ex1: 0x0B45 = 2885mV
349 -)))
350 350  
351 -(((
352 352  Ex2: 0x0B49 = 2889mV
353 -)))
354 354  
355 355  
356 356  
357 357  === 2.3.4 Soil Moisture ===
358 358  
359 -(((
360 360  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
361 -)))
362 362  
363 -(((
364 364  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
365 -)))
366 366  
367 -(((
368 -
369 -)))
370 370  
371 -(((
372 372  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
373 -)))
374 374  
375 375  
376 376  
377 377  === 2.3.5 Soil Temperature ===
378 378  
379 -(((
380 380   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
381 -)))
382 382  
383 -(((
384 384  **Example**:
385 -)))
386 386  
387 -(((
388 388  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
389 -)))
390 390  
391 -(((
392 392  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
393 -)))
394 394  
395 395  
396 396  
... ... @@ -440,21 +440,19 @@
440 440  
441 441  [[image:1654505570700-128.png]]
442 442  
443 -(((
444 444  The payload decoder function for TTN is here:
445 -)))
446 446  
447 -(((
448 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
449 -)))
279 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
450 450  
451 451  
452 452  == 2.4 Uplink Interval ==
453 453  
454 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
455 455  
286 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
456 456  
457 457  
289 +
458 458  == 2.5 Downlink Payload ==
459 459  
460 460  By default, LSE50 prints the downlink payload to console port.
... ... @@ -462,44 +462,24 @@
462 462  [[image:image-20220606165544-8.png]]
463 463  
464 464  
465 -(((
466 -(% style="color:blue" %)**Examples:**
467 -)))
297 +**Examples:**
468 468  
469 -(((
470 -
471 -)))
472 472  
473 -* (((
474 -(% style="color:blue" %)**Set TDC**
475 -)))
300 +* **Set TDC**
476 476  
477 -(((
478 478  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
479 -)))
480 480  
481 -(((
482 482  Payload:    01 00 00 1E    TDC=30S
483 -)))
484 484  
485 -(((
486 486  Payload:    01 00 00 3C    TDC=60S
487 -)))
488 488  
489 -(((
490 -
491 -)))
492 492  
493 -* (((
494 -(% style="color:blue" %)**Reset**
495 -)))
309 +* **Reset**
496 496  
497 -(((
498 498  If payload = 0x04FF, it will reset the LSE01
499 -)))
500 500  
501 501  
502 -* (% style="color:blue" %)**CFM**
314 +* **CFM**
503 503  
504 504  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
505 505  
... ... @@ -507,21 +507,12 @@
507 507  
508 508  == 2.6 ​Show Data in DataCake IoT Server ==
509 509  
510 -(((
511 511  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
512 -)))
513 513  
514 -(((
515 -
516 -)))
517 517  
518 -(((
519 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
520 -)))
325 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
521 521  
522 -(((
523 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
524 -)))
327 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
525 525  
526 526  
527 527  [[image:1654505857935-743.png]]
... ... @@ -529,12 +529,11 @@
529 529  
530 530  [[image:1654505874829-548.png]]
531 531  
335 +Step 3: Create an account or log in Datacake.
532 532  
533 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
337 +Step 4: Search the LSE01 and add DevEUI.
534 534  
535 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
536 536  
537 -
538 538  [[image:1654505905236-553.png]]
539 539  
540 540  
... ... @@ -830,6 +830,8 @@
830 830  * Solid ON for 5 seconds once device successful Join the network.
831 831  * Blink once when device transmit a packet.
832 832  
635 +
636 +
833 833  == 2.9 Installation in Soil ==
834 834  
835 835  **Measurement the soil surface**
... ... @@ -844,7 +844,6 @@
844 844  )))
845 845  
846 846  
847 -
848 848  [[image:1654506665940-119.png]]
849 849  
850 850  (((
... ... @@ -906,16 +906,16 @@
906 906  )))
907 907  
908 908  * (((
909 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
910 910  )))
911 911  * (((
912 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
715 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
913 913  )))
914 914  * (((
915 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
718 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
916 916  )))
917 917  
918 - [[image:image-20220610172436-1.png]]
721 + [[image:image-20220606171726-9.png]]
919 919  
920 920  
921 921  
... ... @@ -950,13 +950,13 @@
950 950  
951 951  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
952 952  
953 -[[image:1654501986557-872.png||height="391" width="800"]]
756 +[[image:1654501986557-872.png]]
954 954  
955 955  
956 956  Or if you have below board, use below connection:
957 957  
958 958  
959 -[[image:1654502005655-729.png||height="503" width="801"]]
762 +[[image:1654502005655-729.png]]
960 960  
961 961  
962 962  
... ... @@ -963,10 +963,10 @@
963 963  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
964 964  
965 965  
966 - [[image:1654502050864-459.png||height="564" width="806"]]
769 + [[image:1654502050864-459.png]]
967 967  
968 968  
969 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
772 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
970 970  
971 971  
972 972  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -1078,38 +1078,20 @@
1078 1078  
1079 1079  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1080 1080  
1081 -(((
1082 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
884 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
1083 1083  When downloading the images, choose the required image file for download. ​
1084 -)))
1085 1085  
1086 -(((
1087 -
1088 -)))
1089 1089  
1090 -(((
1091 1091  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1092 -)))
1093 1093  
1094 -(((
1095 -
1096 -)))
1097 1097  
1098 -(((
1099 1099  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1100 -)))
1101 1101  
1102 -(((
1103 -
1104 -)))
1105 1105  
1106 -(((
1107 1107  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1108 -)))
1109 1109  
1110 1110  [[image:image-20220606154726-3.png]]
1111 1111  
1112 -
1113 1113  When you use the TTN network, the US915 frequency bands use are:
1114 1114  
1115 1115  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1122,47 +1122,37 @@
1122 1122  * 905.3 - SF7BW125 to SF10BW125
1123 1123  * 904.6 - SF8BW500
1124 1124  
1125 -(((
1126 1126  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1127 1127  
1128 -* (% style="color:#037691" %)**AT+CHE=2**
1129 -* (% style="color:#037691" %)**ATZ**
912 +(% class="box infomessage" %)
913 +(((
914 +**AT+CHE=2**
1130 1130  )))
1131 1131  
917 +(% class="box infomessage" %)
1132 1132  (((
1133 -
919 +**ATZ**
920 +)))
1134 1134  
1135 1135  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1136 -)))
1137 1137  
1138 -(((
1139 -
1140 -)))
1141 1141  
1142 -(((
1143 1143  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1144 -)))
1145 1145  
1146 1146  [[image:image-20220606154825-4.png]]
1147 1147  
1148 1148  
1149 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1150 1150  
1151 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1152 -
1153 -
1154 1154  = 5. Trouble Shooting =
1155 1155  
1156 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
933 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1157 1157  
1158 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
935 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1159 1159  
1160 1160  
1161 -== 5.2 AT Command input doesn't work ==
938 +== 5.2 AT Command input doesnt work ==
1162 1162  
1163 -(((
1164 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1165 -)))
940 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1166 1166  
1167 1167  
1168 1168  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1174,9 +1174,7 @@
1174 1174  
1175 1175  (% style="color:#4f81bd" %)**Cause for this issue:**
1176 1176  
1177 -(((
1178 1178  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1179 -)))
1180 1180  
1181 1181  
1182 1182  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1183,7 +1183,7 @@
1183 1183  
1184 1184  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1185 1185  
1186 -[[image:1654500929571-736.png||height="458" width="832"]]
959 +[[image:1654500929571-736.png]]
1187 1187  
1188 1188  
1189 1189  = 6. ​Order Info =
... ... @@ -1216,9 +1216,7 @@
1216 1216  = 7. Packing Info =
1217 1217  
1218 1218  (((
1219 -
1220 -
1221 -(% style="color:#037691" %)**Package Includes**:
992 +**Package Includes**:
1222 1222  )))
1223 1223  
1224 1224  * (((
... ... @@ -1227,8 +1227,10 @@
1227 1227  
1228 1228  (((
1229 1229  
1001 +)))
1230 1230  
1231 -(% style="color:#037691" %)**Dimension and weight**:
1003 +(((
1004 +**Dimension and weight**:
1232 1232  )))
1233 1233  
1234 1234  * (((
... ... @@ -1243,6 +1243,7 @@
1243 1243  * (((
1244 1244  Weight / pcs : g
1245 1245  
1019 +
1246 1246  
1247 1247  )))
1248 1248  
... ... @@ -1250,3 +1250,5 @@
1250 1250  
1251 1251  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1252 1252  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1027 +
1028 +
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0