Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,7 +3,9 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,85 +10,63 @@ 10 10 11 11 12 12 15 += 1. Introduction = 13 13 14 - **TableofContents:**17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 18 18 19 - 20 - 21 -= 1. Introduction = 22 - 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 - 25 25 ((( 26 - 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 - 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 39 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 61 61 62 62 63 63 64 -== 1.3 63 +== 1.3 Specification == 65 65 66 - 67 -(% style="color:#037691" %)**Common DC Characteristics:** 68 - 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 71 - 72 - 73 -(% style="color:#037691" %)**NB-IoT Spec:** 74 - 75 -* - B1 @H-FDD: 2100MHz 76 -* - B3 @H-FDD: 1800MHz 77 -* - B8 @H-FDD: 900MHz 78 -* - B5 @H-FDD: 850MHz 79 -* - B20 @H-FDD: 800MHz 80 -* - B28 @H-FDD: 700MHz 81 - 82 - 83 -(% style="color:#037691" %)**Probe Specification:** 84 - 85 85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -[[image:image-20220 708101224-1.png]]67 +[[image:image-20220606162220-5.png]] 88 88 89 89 90 90 91 -== 1.4 71 +== 1.4 Applications == 92 92 93 93 * Smart Agriculture 94 94 ... ... @@ -95,308 +95,157 @@ 95 95 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 96 96 97 97 98 -== 1.5 Pin Definitions==78 +== 1.5 Firmware Change log == 99 99 100 100 101 - [[image:1657246476176-652.png]]81 +**LSE01 v1.0 :** Release 102 102 103 103 104 104 105 -= 2. UseNSE01 to communicatewithIoTServer=85 += 2. Configure LSE01 to connect to LoRaWAN network = 106 106 107 -== 2.1 87 +== 2.1 How it works == 108 108 109 - 110 110 ((( 111 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.90 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 112 112 ))) 113 113 114 - 115 115 ((( 116 - Thediagrambelowshows theworkingflowindefaultfirmwaref NSE01:94 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 117 117 ))) 118 118 119 -[[image:image-20220708101605-2.png]] 120 120 121 -((( 122 - 123 -))) 124 124 99 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 125 125 101 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 126 126 127 -== 2.2 Configure the NSE01 == 128 128 129 - === 2.2.1 Test Requirement ===104 +[[image:1654503992078-669.png]] 130 130 131 131 132 -T o useNSE01inyourcity,make suremeetbelowrequirements:107 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 133 133 134 -* Your local operator has already distributed a NB-IoT Network there. 135 -* The local NB-IoT network used the band that NSE01 supports. 136 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 137 137 110 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 138 138 139 - Below figure shows our testing structure. Here we have NB-IoT networkcoverage by ChinaMobile, the band they use is B8. The NSE01will useCoAP((%style="color:red"%)120.24.4.116:5683)(%%) or rawUDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((%style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to senddatato thetestserver112 +Each LSE01 is shipped with a sticker with the default device EUI as below: 140 140 114 +[[image:image-20220606163732-6.jpeg]] 141 141 142 - [[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]116 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 143 143 118 +**Add APP EUI in the application** 144 144 145 145 146 - === 2.2.2 Insert SIM card ===121 +[[image:1654504596150-405.png]] 147 147 148 -Insert the NB-IoT Card get from your provider. 149 149 150 150 151 - User needtotakeout the NB-IoT moduleandinsertthe SIM card like below:125 +**Add APP KEY and DEV EUI** 152 152 127 +[[image:1654504683289-357.png]] 153 153 154 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]] 155 155 156 156 157 - ===2.2.3ConnectUSB – TTL toNSE01to configure it ===131 +**Step 2**: Power on LSE01 158 158 159 159 160 - User needtoconfigure NSE01 viaserialporttosetthe **(% style="color:blue"%)Server Address** / **Uplink Topic** (%%)to definewhereandhow-touplink packets.NSE01support ATCommands,usercanuse a USBtoTTL adapterto connectto NSE01and use AT Commandsto configure it, as below.134 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 161 161 136 +[[image:image-20220606163915-7.png]] 162 162 163 163 139 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 164 164 165 - Connection:141 +[[image:1654504778294-788.png]] 166 166 167 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 168 168 169 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 170 170 171 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 172 - 173 - 174 - 175 -In the PC, use below serial tool settings: 176 - 177 -* Baud: ** (% style="background-color:green" %)9600**(%%) 178 -* Data bits:** (% style="background-color:green" %)8**(%%) 179 -* Stop bits: **(% style="background-color:green" %)1**(%%) 180 -* Parity: **(% style="background-color:green" %)None**(%%) 181 -* Flow Control: **(% style="background-color:green" %)None** 182 - 183 - 184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **(% style="background-color:green" %)password: 12345678**(%%) to access AT Command input. 185 - 186 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]] 187 - 188 -Note: the valid AT Commands can be found at: 189 - 190 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 191 - 192 - 193 - 194 -=== 2.2.4 Use CoAP protocol to uplink data === 195 - 196 - 197 -(% style="background-color:red" %)Note: if you don’t have CoAP server, you can refer this link to set up one: 198 - 199 -[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]] 200 - 201 - 202 -Use below commands: 203 - 204 -* **(% style="color:blue" %)AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 205 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 206 -* **(% style="color:blue" %)AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 207 - 208 - 209 -For parameter description, please refer to AT command set 210 - 211 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]] 212 - 213 - 214 -After configure the server address and **(% style="color:green" %)reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 215 - 216 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]] 217 - 218 - 219 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 220 - 221 - 222 -This feature is supported since firmware version v1.0.1 223 - 224 - 225 -* **AT+PRO=2 ** ~/~/ Set to use UDP protocol to uplink 226 -* **AT+SERVADDR=120.24.4.116,5601 **~/~/ to set UDP server address and port 227 -* **AT+CFM=1 **~/~/If the server does not respond, this command is unnecessary 228 - 229 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]] 230 - 231 - 232 - 233 - 234 - 235 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]] 236 - 237 - 238 -1. 239 -11. 240 -111. Use MQTT protocol to uplink data 241 - 242 - 243 -This feature is supported since firmware version v110 244 - 245 - 246 -* **AT+PRO=3 ** ~/~/Set to use MQTT protocol to uplink 247 -* **AT+SERVADDR=120.24.4.116,1883 **~/~/Set MQTT server address and port 248 -* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT 249 -* **AT+UNAME=UNAME **~/~/Set the username of MQTT 250 -* **AT+PWD=PWD **~/~/Set the password of MQTT 251 -* **AT+PUBTOPIC=NSE01_PUB **~/~/Set the sending topic of MQTT 252 -* **AT+SUBTOPIC=NSE01_SUB **~/~/Set the subscription topic of MQTT 253 - 254 - 255 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]] 256 - 257 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]] 258 - 259 - 260 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 261 - 262 - 263 -1. 264 -11. 265 -111. Use TCP protocol to uplink data 266 - 267 - 268 -This feature is supported since firmware version v110 269 - 270 - 271 -* **AT+PRO=4 ** ~/~/ Set to use TCP protocol to uplink 272 -* **AT+SERVADDR=120.24.4.116,5600 **~/~/ to set TCP server address and port 273 - 274 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]] 275 - 276 - 277 - 278 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]] 279 - 280 - 281 -1. 282 -11. 283 -111. Change Update Interval 284 - 285 -User can use below command to change the **uplink interval**. 286 - 287 -**~ AT+TDC=600 **~/~/ Set Update Interval to 600s 288 - 289 - 290 -**NOTE:** 291 - 292 -1. By default, the device will send an uplink message every 1 hour. 293 - 294 - 295 - 296 - 297 - 298 - 299 - 300 300 == 2.3 Uplink Payload == 301 301 302 - 303 303 === 2.3.1 MOD~=0(Default Mode) === 304 304 305 305 LSE01 will uplink payload via LoRaWAN with below payload format: 306 306 307 - (((151 + 308 308 Uplink payload includes in total 11 bytes. 309 - )))153 + 310 310 311 -(% border="1" cellspacing="10" style="background-color:#ffff cc; width:500px" %)312 -|((( 155 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 156 +|=((( 313 313 **Size** 314 314 315 315 **(bytes)** 316 -)))|**2**|**2**|**2**|**2**|**2**|**1** 317 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 161 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 318 318 Temperature 319 319 320 320 (Reserve, Ignore now) 321 -)))|[[Soil Moisture>> ||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((165 +)))|(% style="width:104px" %)[[Soil Moisture>>path:#soil_moisture]]|(% style="width:126px" %)[[Soil Temperature>>path:#soil_tem]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>path:#EC]]|(% style="width:114px" %)((( 322 322 MOD & Digital Interrupt 323 323 324 324 (Optional) 325 325 ))) 326 326 171 +[[image:1654504881641-514.png]] 172 + 173 + 174 + 327 327 === 2.3.2 MOD~=1(Original value) === 328 328 329 329 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 330 330 331 -(% border="1" cellspacing="10" style="background-color:#ffff cc; width:500px" %)332 -|((( 179 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 180 +|=((( 333 333 **Size** 334 334 335 335 **(bytes)** 336 -)))|**2**|**2**|**2**|**2**|**2**|**1** 337 -|**Value**|[[BAT>> ||anchor="H2.3.3BatteryInfo"]]|(((184 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 185 +|**Value**|[[BAT>>path:#bat]]|((( 338 338 Temperature 339 339 340 340 (Reserve, Ignore now) 341 -)))|[[Soil Moisture>> ||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((189 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 342 342 MOD & Digital Interrupt 343 343 344 344 (Optional) 345 345 ))) 346 346 195 +[[image:1654504907647-967.png]] 196 + 197 + 198 + 347 347 === 2.3.3 Battery Info === 348 348 349 -((( 350 350 Check the battery voltage for LSE01. 351 -))) 352 352 353 -((( 354 354 Ex1: 0x0B45 = 2885mV 355 -))) 356 356 357 -((( 358 358 Ex2: 0x0B49 = 2889mV 359 -))) 360 360 361 361 362 362 363 363 === 2.3.4 Soil Moisture === 364 364 365 -((( 366 366 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 367 -))) 368 368 369 -((( 370 370 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 371 -))) 372 372 373 -((( 374 - 375 -))) 376 376 377 -((( 378 378 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 379 -))) 380 380 381 381 382 382 383 383 === 2.3.5 Soil Temperature === 384 384 385 -((( 386 386 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 387 -))) 388 388 389 -((( 390 390 **Example**: 391 -))) 392 392 393 -((( 394 394 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 395 -))) 396 396 397 -((( 398 398 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 399 -))) 400 400 401 401 402 402 ... ... @@ -431,7 +431,7 @@ 431 431 mod=(bytes[10]>>7)&0x01=1. 432 432 433 433 434 - **Downlink Command:**263 +Downlink Command: 435 435 436 436 If payload = 0x0A00, workmode=0 437 437 ... ... @@ -446,21 +446,19 @@ 446 446 447 447 [[image:1654505570700-128.png]] 448 448 449 -((( 450 450 The payload decoder function for TTN is here: 451 -))) 452 452 453 -((( 454 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 455 -))) 280 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 456 456 457 457 458 458 == 2.4 Uplink Interval == 459 459 460 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]285 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 461 461 287 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 462 462 463 463 290 + 464 464 == 2.5 Downlink Payload == 465 465 466 466 By default, LSE50 prints the downlink payload to console port. ... ... @@ -468,44 +468,24 @@ 468 468 [[image:image-20220606165544-8.png]] 469 469 470 470 471 -((( 472 -(% style="color:blue" %)**Examples:** 473 -))) 298 +**Examples:** 474 474 475 -((( 476 - 477 -))) 478 478 479 -* ((( 480 -(% style="color:blue" %)**Set TDC** 481 -))) 301 +* **Set TDC** 482 482 483 -((( 484 484 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 485 -))) 486 486 487 -((( 488 488 Payload: 01 00 00 1E TDC=30S 489 -))) 490 490 491 -((( 492 492 Payload: 01 00 00 3C TDC=60S 493 -))) 494 494 495 -((( 496 - 497 -))) 498 498 499 -* ((( 500 -(% style="color:blue" %)**Reset** 501 -))) 310 +* **Reset** 502 502 503 -((( 504 504 If payload = 0x04FF, it will reset the LSE01 505 -))) 506 506 507 507 508 -* (% style="color:blue" %)**CFM**315 +* **CFM** 509 509 510 510 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 511 511 ... ... @@ -513,21 +513,12 @@ 513 513 514 514 == 2.6 Show Data in DataCake IoT Server == 515 515 516 -((( 517 517 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 518 -))) 519 519 520 -((( 521 - 522 -))) 523 523 524 -((( 525 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 526 -))) 326 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 527 527 528 -((( 529 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 530 -))) 328 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 531 531 532 532 533 533 [[image:1654505857935-743.png]] ... ... @@ -535,12 +535,11 @@ 535 535 536 536 [[image:1654505874829-548.png]] 537 537 336 +Step 3: Create an account or log in Datacake. 538 538 539 - (% style="color:blue" %)**Step3**(%%)**:**Create an accountor log inDatacake.338 +Step 4: Search the LSE01 and add DevEUI. 540 540 541 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 542 542 543 - 544 544 [[image:1654505905236-553.png]] 545 545 546 546 ... ... @@ -850,7 +850,6 @@ 850 850 ))) 851 851 852 852 853 - 854 854 [[image:1654506665940-119.png]] 855 855 856 856 ((( ... ... @@ -912,16 +912,16 @@ 912 912 ))) 913 913 914 914 * ((( 915 -[[Battery Dimension>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],711 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 916 916 ))) 917 917 * ((( 918 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/ index.php?dir=datasheet/Battery/]],714 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 919 919 ))) 920 920 * ((( 921 -[[Lithium-ion Battery-Capacitor datasheet>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]717 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 922 922 ))) 923 923 924 - [[image:image-202206 10172436-1.png]]720 + [[image:image-20220606171726-9.png]] 925 925 926 926 927 927 ... ... @@ -956,13 +956,13 @@ 956 956 957 957 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 958 958 959 -[[image:1654501986557-872.png ||height="391" width="800"]]755 +[[image:1654501986557-872.png]] 960 960 961 961 962 962 Or if you have below board, use below connection: 963 963 964 964 965 -[[image:1654502005655-729.png ||height="503" width="801"]]761 +[[image:1654502005655-729.png]] 966 966 967 967 968 968 ... ... @@ -969,10 +969,10 @@ 969 969 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 970 970 971 971 972 - [[image:1654502050864-459.png ||height="564" width="806"]]768 + [[image:1654502050864-459.png]] 973 973 974 974 975 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>http s://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]771 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 976 976 977 977 978 978 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -1084,38 +1084,20 @@ 1084 1084 1085 1085 == 4.1 How to change the LoRa Frequency Bands/Region? == 1086 1086 1087 -((( 1088 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 1089 1089 When downloading the images, choose the required image file for download. 1090 -))) 1091 1091 1092 -((( 1093 - 1094 -))) 1095 1095 1096 -((( 1097 1097 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 1098 -))) 1099 1099 1100 -((( 1101 - 1102 -))) 1103 1103 1104 -((( 1105 1105 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 1106 -))) 1107 1107 1108 -((( 1109 - 1110 -))) 1111 1111 1112 -((( 1113 1113 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 1114 -))) 1115 1115 1116 1116 [[image:image-20220606154726-3.png]] 1117 1117 1118 - 1119 1119 When you use the TTN network, the US915 frequency bands use are: 1120 1120 1121 1121 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -1128,47 +1128,37 @@ 1128 1128 * 905.3 - SF7BW125 to SF10BW125 1129 1129 * 904.6 - SF8BW500 1130 1130 1131 -((( 1132 1132 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1133 1133 1134 -* (% style="color:#037691" %)**AT+CHE=2** 1135 -* (% style="color:#037691" %)**ATZ** 911 +(% class="box infomessage" %) 912 +((( 913 +**AT+CHE=2** 1136 1136 ))) 1137 1137 916 +(% class="box infomessage" %) 1138 1138 ((( 1139 - 918 +**ATZ** 919 +))) 1140 1140 1141 1141 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1142 -))) 1143 1143 1144 -((( 1145 - 1146 -))) 1147 1147 1148 -((( 1149 1149 The **AU915** band is similar. Below are the AU915 Uplink Channels. 1150 -))) 1151 1151 1152 1152 [[image:image-20220606154825-4.png]] 1153 1153 1154 1154 1155 -== 4.2 Can I calibrate LSE01 to different soil types? == 1156 1156 1157 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1158 - 1159 - 1160 1160 = 5. Trouble Shooting = 1161 1161 1162 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==932 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1163 1163 1164 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.934 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1165 1165 1166 1166 1167 -== 5.2 AT Command input doesn 't work ==937 +== 5.2 AT Command input doesn’t work == 1168 1168 1169 -((( 1170 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1171 -))) 939 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1172 1172 1173 1173 1174 1174 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -1180,9 +1180,7 @@ 1180 1180 1181 1181 (% style="color:#4f81bd" %)**Cause for this issue:** 1182 1182 1183 -((( 1184 1184 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1185 -))) 1186 1186 1187 1187 1188 1188 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -1189,7 +1189,7 @@ 1189 1189 1190 1190 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1191 1191 1192 -[[image:1654500929571-736.png ||height="458" width="832"]]958 +[[image:1654500929571-736.png]] 1193 1193 1194 1194 1195 1195 = 6. Order Info = ... ... @@ -1222,9 +1222,7 @@ 1222 1222 = 7. Packing Info = 1223 1223 1224 1224 ((( 1225 - 1226 - 1227 -(% style="color:#037691" %)**Package Includes**: 991 +**Package Includes**: 1228 1228 ))) 1229 1229 1230 1230 * ((( ... ... @@ -1233,8 +1233,10 @@ 1233 1233 1234 1234 ((( 1235 1235 1000 +))) 1236 1236 1237 -(% style="color:#037691" %)**Dimension and weight**: 1002 +((( 1003 +**Dimension and weight**: 1238 1238 ))) 1239 1239 1240 1240 * ((( ... ... @@ -1249,6 +1249,7 @@ 1249 1249 * ((( 1250 1250 Weight / pcs : g 1251 1251 1018 + 1252 1252 1253 1253 ))) 1254 1254 ... ... @@ -1256,3 +1256,5 @@ 1256 1256 1257 1257 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1258 1258 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1026 + 1027 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content