<
From version < 45.6 >
edited by Xiaoling
on 2022/07/08 10:57
To version < 31.17 >
edited by Xiaoling
on 2022/06/07 09:31
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,85 +10,63 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
61 61  
62 62  
63 63  
64 -== 1.3  Specification ==
63 +== 1.3 Specification ==
65 65  
66 -
67 -(% style="color:#037691" %)**Common DC Characteristics:**
68 -
69 -* Supply Voltage: 2.1v ~~ 3.6v
70 -* Operating Temperature: -40 ~~ 85°C
71 -
72 -
73 -(% style="color:#037691" %)**NB-IoT Spec:**
74 -
75 -* - B1 @H-FDD: 2100MHz
76 -* - B3 @H-FDD: 1800MHz
77 -* - B8 @H-FDD: 900MHz
78 -* - B5 @H-FDD: 850MHz
79 -* - B20 @H-FDD: 800MHz
80 -* - B28 @H-FDD: 700MHz
81 -
82 -
83 -(% style="color:#037691" %)**Probe Specification:**
84 -
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -[[image:image-20220708101224-1.png]]
67 +[[image:image-20220606162220-5.png]]
88 88  
89 89  
90 90  
91 -== ​1.4  Applications ==
71 +== ​1.4 Applications ==
92 92  
93 93  * Smart Agriculture
94 94  
... ... @@ -95,308 +95,157 @@
95 95  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 96  ​
97 97  
98 -== 1.5  Pin Definitions ==
78 +== 1.5 Firmware Change log ==
99 99  
100 100  
101 -[[image:1657246476176-652.png]]
81 +**LSE01 v1.0 :**  Release
102 102  
103 103  
104 104  
105 -= 2.  Use NSE01 to communicate with IoT Server =
85 += 2. Configure LSE01 to connect to LoRaWAN network =
106 106  
107 -== 2.1  How it works ==
87 +== 2.1 How it works ==
108 108  
109 -
110 110  (((
111 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
90 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
112 112  )))
113 113  
114 -
115 115  (((
116 -The diagram below shows the working flow in default firmware of NSE01:
94 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
117 117  )))
118 118  
119 -[[image:image-20220708101605-2.png]]
120 120  
121 -(((
122 -
123 -)))
124 124  
99 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
125 125  
101 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126 126  
127 -== 2.2 ​ Configure the NSE01 ==
128 128  
129 -=== 2.2.1 Test Requirement ===
104 +[[image:1654503992078-669.png]]
130 130  
131 131  
132 -To use NSE01 in your city, make sure meet below requirements:
107 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 133  
134 -* Your local operator has already distributed a NB-IoT Network there.
135 -* The local NB-IoT network used the band that NSE01 supports.
136 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
137 137  
110 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
138 138  
139 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
112 +Each LSE01 is shipped with a sticker with the default device EUI as below:
140 140  
114 +[[image:image-20220606163732-6.jpeg]]
141 141  
142 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
116 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143 143  
118 +**Add APP EUI in the application**
144 144  
145 145  
146 -=== 2.2.2 Insert SIM card ===
121 +[[image:1654504596150-405.png]]
147 147  
148 -Insert the NB-IoT Card get from your provider.
149 149  
150 150  
151 -User need to take out the NB-IoT module and insert the SIM card like below:
125 +**Add APP KEY and DEV EUI**
152 152  
127 +[[image:1654504683289-357.png]]
153 153  
154 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
155 155  
156 156  
157 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
131 +**Step 2**: Power on LSE01
158 158  
159 159  
160 -User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
134 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
161 161  
136 +[[image:image-20220606163915-7.png]]
162 162  
163 163  
139 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
164 164  
165 -Connection:
141 +[[image:1654504778294-788.png]]
166 166  
167 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
168 168  
169 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
170 170  
171 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
172 -
173 -
174 -
175 -In the PC, use below serial tool settings:
176 -
177 -* Baud: ** (% style="background-color:green" %)9600**(%%)
178 -* Data bits:** (% style="background-color:green" %)8**(%%)
179 -* Stop bits: **(% style="background-color:green" %)1**(%%)
180 -* Parity: **(% style="background-color:green" %)None**(%%)
181 -* Flow Control: **(% style="background-color:green" %)None**
182 -
183 -
184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **(% style="background-color:green" %)password: 12345678**(%%) to access AT Command input.
185 -
186 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
187 -
188 -Note: the valid AT Commands can be found at:
189 -
190 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
191 -
192 -
193 -
194 -=== 2.2.4 Use CoAP protocol to uplink data === 
195 -
196 -
197 -(% style="background-color:red" %)Note: if you don’t have CoAP server, you can refer this link to set up one:
198 -
199 -[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
200 -
201 -
202 -Use below commands:
203 -
204 -* **(% style="color:blue" %)AT+PRO=1**  (%%)  ~/~/ Set to use CoAP protocol to uplink
205 -* **(% style="color:blue" %)AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 -* **(% style="color:blue" %)AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)      ~/~/Set COAP resource path
207 -
208 -
209 -For parameter description, please refer to AT command set
210 -
211 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
212 -
213 -
214 -After configure the server address and **(% style="color:green" %)reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
215 -
216 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
217 -
218 -
219 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 -
221 -
222 -This feature is supported since firmware version v1.0.1
223 -
224 -
225 -* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
226 -* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
227 -* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
228 -
229 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
230 -
231 -
232 -
233 -
234 -
235 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
236 -
237 -
238 -1.
239 -11.
240 -111. Use MQTT protocol to uplink data
241 -
242 -
243 -This feature is supported since firmware version v110
244 -
245 -
246 -* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
247 -* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
248 -* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
249 -* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
250 -* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
251 -* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
252 -* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
253 -
254 -
255 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
256 -
257 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
258 -
259 -
260 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
261 -
262 -
263 -1.
264 -11.
265 -111. Use TCP protocol to uplink data
266 -
267 -
268 -This feature is supported since firmware version v110
269 -
270 -
271 -* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
272 -* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
273 -
274 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
275 -
276 -
277 -
278 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
279 -
280 -
281 -1.
282 -11.
283 -111. Change Update Interval
284 -
285 -User can use below command to change the **uplink interval**.
286 -
287 -**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
288 -
289 -
290 -**NOTE:**
291 -
292 -1. By default, the device will send an uplink message every 1 hour.
293 -
294 -
295 -
296 -
297 -
298 -
299 -
300 300  == 2.3 Uplink Payload ==
301 301  
302 -
303 303  === 2.3.1 MOD~=0(Default Mode) ===
304 304  
305 305  LSE01 will uplink payload via LoRaWAN with below payload format: 
306 306  
307 -(((
151 +
308 308  Uplink payload includes in total 11 bytes.
309 -)))
153 +
310 310  
311 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
312 -|(((
155 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
156 +|=(((
313 313  **Size**
314 314  
315 315  **(bytes)**
316 -)))|**2**|**2**|**2**|**2**|**2**|**1**
317 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
161 +|**Value**|(% style="width:46px" %)[[BAT>>path:#bat]]|(% style="width:160px" %)(((
318 318  Temperature
319 319  
320 320  (Reserve, Ignore now)
321 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
165 +)))|(% style="width:104px" %)[[Soil Moisture>>path:#soil_moisture]]|(% style="width:126px" %)[[Soil Temperature>>path:#soil_tem]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>path:#EC]]|(% style="width:114px" %)(((
322 322  MOD & Digital Interrupt
323 323  
324 324  (Optional)
325 325  )))
326 326  
171 +[[image:1654504881641-514.png]]
172 +
173 +
174 +
327 327  === 2.3.2 MOD~=1(Original value) ===
328 328  
329 329  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
330 330  
331 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
332 -|(((
179 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
180 +|=(((
333 333  **Size**
334 334  
335 335  **(bytes)**
336 -)))|**2**|**2**|**2**|**2**|**2**|**1**
337 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
185 +|**Value**|[[BAT>>path:#bat]]|(((
338 338  Temperature
339 339  
340 340  (Reserve, Ignore now)
341 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
342 342  MOD & Digital Interrupt
343 343  
344 344  (Optional)
345 345  )))
346 346  
195 +[[image:1654504907647-967.png]]
196 +
197 +
198 +
347 347  === 2.3.3 Battery Info ===
348 348  
349 -(((
350 350  Check the battery voltage for LSE01.
351 -)))
352 352  
353 -(((
354 354  Ex1: 0x0B45 = 2885mV
355 -)))
356 356  
357 -(((
358 358  Ex2: 0x0B49 = 2889mV
359 -)))
360 360  
361 361  
362 362  
363 363  === 2.3.4 Soil Moisture ===
364 364  
365 -(((
366 366  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
367 -)))
368 368  
369 -(((
370 370  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
371 -)))
372 372  
373 -(((
374 -
375 -)))
376 376  
377 -(((
378 378  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
379 -)))
380 380  
381 381  
382 382  
383 383  === 2.3.5 Soil Temperature ===
384 384  
385 -(((
386 386   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
387 -)))
388 388  
389 -(((
390 390  **Example**:
391 -)))
392 392  
393 -(((
394 394  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
395 -)))
396 396  
397 -(((
398 398  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
399 -)))
400 400  
401 401  
402 402  
... ... @@ -431,7 +431,7 @@
431 431  mod=(bytes[10]>>7)&0x01=1.
432 432  
433 433  
434 -**Downlink Command:**
263 +Downlink Command:
435 435  
436 436  If payload = 0x0A00, workmode=0
437 437  
... ... @@ -446,21 +446,19 @@
446 446  
447 447  [[image:1654505570700-128.png]]
448 448  
449 -(((
450 450  The payload decoder function for TTN is here:
451 -)))
452 452  
453 -(((
454 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
455 -)))
280 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
456 456  
457 457  
458 458  == 2.4 Uplink Interval ==
459 459  
460 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
285 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
461 461  
287 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
462 462  
463 463  
290 +
464 464  == 2.5 Downlink Payload ==
465 465  
466 466  By default, LSE50 prints the downlink payload to console port.
... ... @@ -468,44 +468,24 @@
468 468  [[image:image-20220606165544-8.png]]
469 469  
470 470  
471 -(((
472 -(% style="color:blue" %)**Examples:**
473 -)))
298 +**Examples:**
474 474  
475 -(((
476 -
477 -)))
478 478  
479 -* (((
480 -(% style="color:blue" %)**Set TDC**
481 -)))
301 +* **Set TDC**
482 482  
483 -(((
484 484  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
485 -)))
486 486  
487 -(((
488 488  Payload:    01 00 00 1E    TDC=30S
489 -)))
490 490  
491 -(((
492 492  Payload:    01 00 00 3C    TDC=60S
493 -)))
494 494  
495 -(((
496 -
497 -)))
498 498  
499 -* (((
500 -(% style="color:blue" %)**Reset**
501 -)))
310 +* **Reset**
502 502  
503 -(((
504 504  If payload = 0x04FF, it will reset the LSE01
505 -)))
506 506  
507 507  
508 -* (% style="color:blue" %)**CFM**
315 +* **CFM**
509 509  
510 510  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
511 511  
... ... @@ -513,21 +513,12 @@
513 513  
514 514  == 2.6 ​Show Data in DataCake IoT Server ==
515 515  
516 -(((
517 517  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
518 -)))
519 519  
520 -(((
521 -
522 -)))
523 523  
524 -(((
525 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
526 -)))
326 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
527 527  
528 -(((
529 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
530 -)))
328 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
531 531  
532 532  
533 533  [[image:1654505857935-743.png]]
... ... @@ -535,12 +535,11 @@
535 535  
536 536  [[image:1654505874829-548.png]]
537 537  
336 +Step 3: Create an account or log in Datacake.
538 538  
539 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
338 +Step 4: Search the LSE01 and add DevEUI.
540 540  
541 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
542 542  
543 -
544 544  [[image:1654505905236-553.png]]
545 545  
546 546  
... ... @@ -850,7 +850,6 @@
850 850  )))
851 851  
852 852  
853 -
854 854  [[image:1654506665940-119.png]]
855 855  
856 856  (((
... ... @@ -912,16 +912,16 @@
912 912  )))
913 913  
914 914  * (((
915 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
711 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
916 916  )))
917 917  * (((
918 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
714 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
919 919  )))
920 920  * (((
921 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
717 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
922 922  )))
923 923  
924 - [[image:image-20220610172436-1.png]]
720 + [[image:image-20220606171726-9.png]]
925 925  
926 926  
927 927  
... ... @@ -956,13 +956,13 @@
956 956  
957 957  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
958 958  
959 -[[image:1654501986557-872.png||height="391" width="800"]]
755 +[[image:1654501986557-872.png]]
960 960  
961 961  
962 962  Or if you have below board, use below connection:
963 963  
964 964  
965 -[[image:1654502005655-729.png||height="503" width="801"]]
761 +[[image:1654502005655-729.png]]
966 966  
967 967  
968 968  
... ... @@ -969,10 +969,10 @@
969 969  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
970 970  
971 971  
972 - [[image:1654502050864-459.png||height="564" width="806"]]
768 + [[image:1654502050864-459.png]]
973 973  
974 974  
975 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
771 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
976 976  
977 977  
978 978  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -1084,38 +1084,20 @@
1084 1084  
1085 1085  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1086 1086  
1087 -(((
1088 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
1089 1089  When downloading the images, choose the required image file for download. ​
1090 -)))
1091 1091  
1092 -(((
1093 -
1094 -)))
1095 1095  
1096 -(((
1097 1097  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1098 -)))
1099 1099  
1100 -(((
1101 -
1102 -)))
1103 1103  
1104 -(((
1105 1105  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1106 -)))
1107 1107  
1108 -(((
1109 -
1110 -)))
1111 1111  
1112 -(((
1113 1113  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1114 -)))
1115 1115  
1116 1116  [[image:image-20220606154726-3.png]]
1117 1117  
1118 -
1119 1119  When you use the TTN network, the US915 frequency bands use are:
1120 1120  
1121 1121  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1128,47 +1128,37 @@
1128 1128  * 905.3 - SF7BW125 to SF10BW125
1129 1129  * 904.6 - SF8BW500
1130 1130  
1131 -(((
1132 1132  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1133 1133  
1134 -* (% style="color:#037691" %)**AT+CHE=2**
1135 -* (% style="color:#037691" %)**ATZ**
911 +(% class="box infomessage" %)
912 +(((
913 +**AT+CHE=2**
1136 1136  )))
1137 1137  
916 +(% class="box infomessage" %)
1138 1138  (((
1139 -
918 +**ATZ**
919 +)))
1140 1140  
1141 1141  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1142 -)))
1143 1143  
1144 -(((
1145 -
1146 -)))
1147 1147  
1148 -(((
1149 1149  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1150 -)))
1151 1151  
1152 1152  [[image:image-20220606154825-4.png]]
1153 1153  
1154 1154  
1155 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1156 1156  
1157 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1158 -
1159 -
1160 1160  = 5. Trouble Shooting =
1161 1161  
1162 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
932 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1163 1163  
1164 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
934 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1165 1165  
1166 1166  
1167 -== 5.2 AT Command input doesn't work ==
937 +== 5.2 AT Command input doesnt work ==
1168 1168  
1169 -(((
1170 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1171 -)))
939 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1172 1172  
1173 1173  
1174 1174  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1180,9 +1180,7 @@
1180 1180  
1181 1181  (% style="color:#4f81bd" %)**Cause for this issue:**
1182 1182  
1183 -(((
1184 1184  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1185 -)))
1186 1186  
1187 1187  
1188 1188  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1189,7 +1189,7 @@
1189 1189  
1190 1190  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1191 1191  
1192 -[[image:1654500929571-736.png||height="458" width="832"]]
958 +[[image:1654500929571-736.png]]
1193 1193  
1194 1194  
1195 1195  = 6. ​Order Info =
... ... @@ -1222,9 +1222,7 @@
1222 1222  = 7. Packing Info =
1223 1223  
1224 1224  (((
1225 -
1226 -
1227 -(% style="color:#037691" %)**Package Includes**:
991 +**Package Includes**:
1228 1228  )))
1229 1229  
1230 1230  * (((
... ... @@ -1233,8 +1233,10 @@
1233 1233  
1234 1234  (((
1235 1235  
1000 +)))
1236 1236  
1237 -(% style="color:#037691" %)**Dimension and weight**:
1002 +(((
1003 +**Dimension and weight**:
1238 1238  )))
1239 1239  
1240 1240  * (((
... ... @@ -1249,6 +1249,7 @@
1249 1249  * (((
1250 1250  Weight / pcs : g
1251 1251  
1018 +
1252 1252  
1253 1253  )))
1254 1254  
... ... @@ -1256,3 +1256,5 @@
1256 1256  
1257 1257  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1258 1258  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1026 +
1027 +
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0