<
From version < 45.5 >
edited by Xiaoling
on 2022/07/08 10:39
To version < 31.17 >
edited by Xiaoling
on 2022/06/07 09:31
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,85 +10,63 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
61 61  
62 62  
63 63  
64 -== 1.3  Specification ==
63 +== 1.3 Specification ==
65 65  
66 -
67 -(% style="color:#037691" %)**Common DC Characteristics:**
68 -
69 -* Supply Voltage: 2.1v ~~ 3.6v
70 -* Operating Temperature: -40 ~~ 85°C
71 -
72 -
73 -(% style="color:#037691" %)**NB-IoT Spec:**
74 -
75 -* - B1 @H-FDD: 2100MHz
76 -* - B3 @H-FDD: 1800MHz
77 -* - B8 @H-FDD: 900MHz
78 -* - B5 @H-FDD: 850MHz
79 -* - B20 @H-FDD: 800MHz
80 -* - B28 @H-FDD: 700MHz
81 -
82 -
83 -(% style="color:#037691" %)**Probe Specification:**
84 -
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -[[image:image-20220708101224-1.png]]
67 +[[image:image-20220606162220-5.png]]
88 88  
89 89  
90 90  
91 -== ​1.4  Applications ==
71 +== ​1.4 Applications ==
92 92  
93 93  * Smart Agriculture
94 94  
... ... @@ -95,310 +95,157 @@
95 95  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 96  ​
97 97  
98 -== 1.5  Pin Definitions ==
78 +== 1.5 Firmware Change log ==
99 99  
100 100  
101 -[[image:1657246476176-652.png]]
81 +**LSE01 v1.0 :**  Release
102 102  
103 103  
104 104  
105 -= 2.  Use NSE01 to communicate with IoT Server =
85 += 2. Configure LSE01 to connect to LoRaWAN network =
106 106  
107 -== 2.1  How it works ==
87 +== 2.1 How it works ==
108 108  
109 -
110 110  (((
111 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
90 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
112 112  )))
113 113  
114 -
115 115  (((
116 -The diagram below shows the working flow in default firmware of NSE01:
94 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
117 117  )))
118 118  
119 -[[image:image-20220708101605-2.png]]
120 120  
121 -(((
122 -
123 -)))
124 124  
99 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
125 125  
101 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126 126  
127 -== 2.2 ​ Configure the NSE01 ==
128 128  
129 -=== 2.2.1 Test Requirement ===
104 +[[image:1654503992078-669.png]]
130 130  
131 131  
132 -To use NSE01 in your city, make sure meet below requirements:
107 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 133  
134 -* Your local operator has already distributed a NB-IoT Network there.
135 -* The local NB-IoT network used the band that NSE01 supports.
136 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
137 137  
110 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
138 138  
139 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
112 +Each LSE01 is shipped with a sticker with the default device EUI as below:
140 140  
114 +[[image:image-20220606163732-6.jpeg]]
141 141  
142 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
116 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143 143  
118 +**Add APP EUI in the application**
144 144  
145 145  
146 -=== 2.2.2 Insert SIM card ===
121 +[[image:1654504596150-405.png]]
147 147  
148 -Insert the NB-IoT Card get from your provider.
149 149  
150 150  
151 -User need to take out the NB-IoT module and insert the SIM card like below:
125 +**Add APP KEY and DEV EUI**
152 152  
127 +[[image:1654504683289-357.png]]
153 153  
154 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
155 155  
156 156  
157 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
131 +**Step 2**: Power on LSE01
158 158  
159 159  
160 -User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
134 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
161 161  
136 +[[image:image-20220606163915-7.png]]
162 162  
163 163  
139 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
164 164  
165 -Connection:
141 +[[image:1654504778294-788.png]]
166 166  
167 -USB TTL GND <~-~-~-~-> GND
168 168  
169 -USB TTL TXD <~-~-~-~-> UART_RXD
170 170  
171 -USB TTL RXD <~-~-~-~-> UART_TXD
172 -
173 -
174 -
175 -In the PC, use below serial tool settings:
176 -
177 -* Baud: **9600**
178 -* Data bits:** 8**
179 -* Stop bits: **1**
180 -* Parity: **None**
181 -* Flow Control: **None**
182 -
183 -
184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
185 -
186 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
187 -
188 -Note: the valid AT Commands can be found at:
189 -
190 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
191 -
192 -
193 -1.
194 -11.
195 -111. Use CoAP protocol to uplink data 
196 -
197 -
198 -Note: if you don’t have CoAP server, you can refer this link to set up one:
199 -
200 -[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
201 -
202 -
203 -Use below commands:
204 -
205 -* **AT+PRO=1**    ~/~/ Set to use CoAP protocol to uplink
206 -* **AT+SERVADDR=120.24.4.116,5683   **~/~/ to set CoAP server address and port
207 -* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"       **~/~/Set COAP resource path
208 -
209 -
210 -For parameter description, please refer to AT command set
211 -
212 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
213 -
214 -
215 -After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
216 -
217 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
218 -
219 -1.
220 -11.
221 -111. Use UDP protocol to uplink data(Default protocol)
222 -
223 -
224 -This feature is supported since firmware version v1.0.1
225 -
226 -
227 -* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
228 -* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
229 -* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
230 -
231 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
232 -
233 -
234 -
235 -
236 -
237 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
238 -
239 -
240 -1.
241 -11.
242 -111. Use MQTT protocol to uplink data
243 -
244 -
245 -This feature is supported since firmware version v110
246 -
247 -
248 -* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
249 -* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
250 -* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
251 -* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
252 -* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
253 -* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
254 -* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
255 -
256 -
257 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
258 -
259 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
260 -
261 -
262 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
263 -
264 -
265 -1.
266 -11.
267 -111. Use TCP protocol to uplink data
268 -
269 -
270 -This feature is supported since firmware version v110
271 -
272 -
273 -* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
274 -* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
275 -
276 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
277 -
278 -
279 -
280 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
281 -
282 -
283 -1.
284 -11.
285 -111. Change Update Interval
286 -
287 -User can use below command to change the **uplink interval**.
288 -
289 -**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
290 -
291 -
292 -**NOTE:**
293 -
294 -1. By default, the device will send an uplink message every 1 hour.
295 -
296 -
297 -
298 -
299 -
300 -
301 -
302 302  == 2.3 Uplink Payload ==
303 303  
304 -
305 305  === 2.3.1 MOD~=0(Default Mode) ===
306 306  
307 307  LSE01 will uplink payload via LoRaWAN with below payload format: 
308 308  
309 -(((
151 +
310 310  Uplink payload includes in total 11 bytes.
311 -)))
153 +
312 312  
313 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
314 -|(((
155 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
156 +|=(((
315 315  **Size**
316 316  
317 317  **(bytes)**
318 -)))|**2**|**2**|**2**|**2**|**2**|**1**
319 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
161 +|**Value**|(% style="width:46px" %)[[BAT>>path:#bat]]|(% style="width:160px" %)(((
320 320  Temperature
321 321  
322 322  (Reserve, Ignore now)
323 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
165 +)))|(% style="width:104px" %)[[Soil Moisture>>path:#soil_moisture]]|(% style="width:126px" %)[[Soil Temperature>>path:#soil_tem]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>path:#EC]]|(% style="width:114px" %)(((
324 324  MOD & Digital Interrupt
325 325  
326 326  (Optional)
327 327  )))
328 328  
171 +[[image:1654504881641-514.png]]
172 +
173 +
174 +
329 329  === 2.3.2 MOD~=1(Original value) ===
330 330  
331 331  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
332 332  
333 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
334 -|(((
179 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
180 +|=(((
335 335  **Size**
336 336  
337 337  **(bytes)**
338 -)))|**2**|**2**|**2**|**2**|**2**|**1**
339 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
185 +|**Value**|[[BAT>>path:#bat]]|(((
340 340  Temperature
341 341  
342 342  (Reserve, Ignore now)
343 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
344 344  MOD & Digital Interrupt
345 345  
346 346  (Optional)
347 347  )))
348 348  
195 +[[image:1654504907647-967.png]]
196 +
197 +
198 +
349 349  === 2.3.3 Battery Info ===
350 350  
351 -(((
352 352  Check the battery voltage for LSE01.
353 -)))
354 354  
355 -(((
356 356  Ex1: 0x0B45 = 2885mV
357 -)))
358 358  
359 -(((
360 360  Ex2: 0x0B49 = 2889mV
361 -)))
362 362  
363 363  
364 364  
365 365  === 2.3.4 Soil Moisture ===
366 366  
367 -(((
368 368  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
369 -)))
370 370  
371 -(((
372 372  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
373 -)))
374 374  
375 -(((
376 -
377 -)))
378 378  
379 -(((
380 380  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
381 -)))
382 382  
383 383  
384 384  
385 385  === 2.3.5 Soil Temperature ===
386 386  
387 -(((
388 388   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
389 -)))
390 390  
391 -(((
392 392  **Example**:
393 -)))
394 394  
395 -(((
396 396  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
397 -)))
398 398  
399 -(((
400 400  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
401 -)))
402 402  
403 403  
404 404  
... ... @@ -433,7 +433,7 @@
433 433  mod=(bytes[10]>>7)&0x01=1.
434 434  
435 435  
436 -**Downlink Command:**
263 +Downlink Command:
437 437  
438 438  If payload = 0x0A00, workmode=0
439 439  
... ... @@ -448,21 +448,19 @@
448 448  
449 449  [[image:1654505570700-128.png]]
450 450  
451 -(((
452 452  The payload decoder function for TTN is here:
453 -)))
454 454  
455 -(((
456 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
457 -)))
280 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
458 458  
459 459  
460 460  == 2.4 Uplink Interval ==
461 461  
462 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
285 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
463 463  
287 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
464 464  
465 465  
290 +
466 466  == 2.5 Downlink Payload ==
467 467  
468 468  By default, LSE50 prints the downlink payload to console port.
... ... @@ -470,44 +470,24 @@
470 470  [[image:image-20220606165544-8.png]]
471 471  
472 472  
473 -(((
474 -(% style="color:blue" %)**Examples:**
475 -)))
298 +**Examples:**
476 476  
477 -(((
478 -
479 -)))
480 480  
481 -* (((
482 -(% style="color:blue" %)**Set TDC**
483 -)))
301 +* **Set TDC**
484 484  
485 -(((
486 486  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
487 -)))
488 488  
489 -(((
490 490  Payload:    01 00 00 1E    TDC=30S
491 -)))
492 492  
493 -(((
494 494  Payload:    01 00 00 3C    TDC=60S
495 -)))
496 496  
497 -(((
498 -
499 -)))
500 500  
501 -* (((
502 -(% style="color:blue" %)**Reset**
503 -)))
310 +* **Reset**
504 504  
505 -(((
506 506  If payload = 0x04FF, it will reset the LSE01
507 -)))
508 508  
509 509  
510 -* (% style="color:blue" %)**CFM**
315 +* **CFM**
511 511  
512 512  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
513 513  
... ... @@ -515,21 +515,12 @@
515 515  
516 516  == 2.6 ​Show Data in DataCake IoT Server ==
517 517  
518 -(((
519 519  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
520 -)))
521 521  
522 -(((
523 -
524 -)))
525 525  
526 -(((
527 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
528 -)))
326 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
529 529  
530 -(((
531 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
532 -)))
328 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
533 533  
534 534  
535 535  [[image:1654505857935-743.png]]
... ... @@ -537,12 +537,11 @@
537 537  
538 538  [[image:1654505874829-548.png]]
539 539  
336 +Step 3: Create an account or log in Datacake.
540 540  
541 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
338 +Step 4: Search the LSE01 and add DevEUI.
542 542  
543 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
544 544  
545 -
546 546  [[image:1654505905236-553.png]]
547 547  
548 548  
... ... @@ -852,7 +852,6 @@
852 852  )))
853 853  
854 854  
855 -
856 856  [[image:1654506665940-119.png]]
857 857  
858 858  (((
... ... @@ -914,16 +914,16 @@
914 914  )))
915 915  
916 916  * (((
917 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
711 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
918 918  )))
919 919  * (((
920 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
714 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
921 921  )))
922 922  * (((
923 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
717 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
924 924  )))
925 925  
926 - [[image:image-20220610172436-1.png]]
720 + [[image:image-20220606171726-9.png]]
927 927  
928 928  
929 929  
... ... @@ -958,13 +958,13 @@
958 958  
959 959  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
960 960  
961 -[[image:1654501986557-872.png||height="391" width="800"]]
755 +[[image:1654501986557-872.png]]
962 962  
963 963  
964 964  Or if you have below board, use below connection:
965 965  
966 966  
967 -[[image:1654502005655-729.png||height="503" width="801"]]
761 +[[image:1654502005655-729.png]]
968 968  
969 969  
970 970  
... ... @@ -971,10 +971,10 @@
971 971  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
972 972  
973 973  
974 - [[image:1654502050864-459.png||height="564" width="806"]]
768 + [[image:1654502050864-459.png]]
975 975  
976 976  
977 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
771 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
978 978  
979 979  
980 980  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -1086,38 +1086,20 @@
1086 1086  
1087 1087  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1088 1088  
1089 -(((
1090 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
883 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
1091 1091  When downloading the images, choose the required image file for download. ​
1092 -)))
1093 1093  
1094 -(((
1095 -
1096 -)))
1097 1097  
1098 -(((
1099 1099  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1100 -)))
1101 1101  
1102 -(((
1103 -
1104 -)))
1105 1105  
1106 -(((
1107 1107  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1108 -)))
1109 1109  
1110 -(((
1111 -
1112 -)))
1113 1113  
1114 -(((
1115 1115  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1116 -)))
1117 1117  
1118 1118  [[image:image-20220606154726-3.png]]
1119 1119  
1120 -
1121 1121  When you use the TTN network, the US915 frequency bands use are:
1122 1122  
1123 1123  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1130,47 +1130,37 @@
1130 1130  * 905.3 - SF7BW125 to SF10BW125
1131 1131  * 904.6 - SF8BW500
1132 1132  
1133 -(((
1134 1134  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1135 1135  
1136 -* (% style="color:#037691" %)**AT+CHE=2**
1137 -* (% style="color:#037691" %)**ATZ**
911 +(% class="box infomessage" %)
912 +(((
913 +**AT+CHE=2**
1138 1138  )))
1139 1139  
916 +(% class="box infomessage" %)
1140 1140  (((
1141 -
918 +**ATZ**
919 +)))
1142 1142  
1143 1143  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1144 -)))
1145 1145  
1146 -(((
1147 -
1148 -)))
1149 1149  
1150 -(((
1151 1151  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1152 -)))
1153 1153  
1154 1154  [[image:image-20220606154825-4.png]]
1155 1155  
1156 1156  
1157 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1158 1158  
1159 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1160 -
1161 -
1162 1162  = 5. Trouble Shooting =
1163 1163  
1164 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
932 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1165 1165  
1166 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
934 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1167 1167  
1168 1168  
1169 -== 5.2 AT Command input doesn't work ==
937 +== 5.2 AT Command input doesnt work ==
1170 1170  
1171 -(((
1172 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1173 -)))
939 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1174 1174  
1175 1175  
1176 1176  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1182,9 +1182,7 @@
1182 1182  
1183 1183  (% style="color:#4f81bd" %)**Cause for this issue:**
1184 1184  
1185 -(((
1186 1186  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1187 -)))
1188 1188  
1189 1189  
1190 1190  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1191,7 +1191,7 @@
1191 1191  
1192 1192  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1193 1193  
1194 -[[image:1654500929571-736.png||height="458" width="832"]]
958 +[[image:1654500929571-736.png]]
1195 1195  
1196 1196  
1197 1197  = 6. ​Order Info =
... ... @@ -1224,9 +1224,7 @@
1224 1224  = 7. Packing Info =
1225 1225  
1226 1226  (((
1227 -
1228 -
1229 -(% style="color:#037691" %)**Package Includes**:
991 +**Package Includes**:
1230 1230  )))
1231 1231  
1232 1232  * (((
... ... @@ -1235,8 +1235,10 @@
1235 1235  
1236 1236  (((
1237 1237  
1000 +)))
1238 1238  
1239 -(% style="color:#037691" %)**Dimension and weight**:
1002 +(((
1003 +**Dimension and weight**:
1240 1240  )))
1241 1241  
1242 1242  * (((
... ... @@ -1251,6 +1251,7 @@
1251 1251  * (((
1252 1252  Weight / pcs : g
1253 1253  
1018 +
1254 1254  
1255 1255  )))
1256 1256  
... ... @@ -1258,3 +1258,5 @@
1258 1258  
1259 1259  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1260 1260  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1026 +
1027 +
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0