<
From version < 45.4 >
edited by Xiaoling
on 2022/07/08 10:36
To version < 31.24 >
edited by Xiaoling
on 2022/06/07 10:16
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,85 +10,62 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
61 61  
62 62  
62 +== 1.3 Specification ==
63 63  
64 -== 1.3  Specification ==
65 -
66 -
67 -(% style="color:#037691" %)**Common DC Characteristics:**
68 -
69 -* Supply Voltage: 2.1v ~~ 3.6v
70 -* Operating Temperature: -40 ~~ 85°C
71 -
72 -
73 -(% style="color:#037691" %)**NB-IoT Spec:**
74 -
75 -* - B1 @H-FDD: 2100MHz
76 -* - B3 @H-FDD: 1800MHz
77 -* - B8 @H-FDD: 900MHz
78 -* - B5 @H-FDD: 850MHz
79 -* - B20 @H-FDD: 800MHz
80 -* - B28 @H-FDD: 700MHz
81 -
82 -
83 -(% style="color:#037691" %)**Probe Specification:**
84 -
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -[[image:image-20220708101224-1.png]]
66 +[[image:image-20220606162220-5.png]]
88 88  
89 89  
90 90  
91 -== ​1.4  Applications ==
70 +== ​1.4 Applications ==
92 92  
93 93  * Smart Agriculture
94 94  
... ... @@ -95,314 +95,157 @@
95 95  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 96  ​
97 97  
98 -== 1.5  Pin Definitions ==
77 +== 1.5 Firmware Change log ==
99 99  
100 100  
101 -[[image:1657246476176-652.png]]
80 +**LSE01 v1.0 :**  Release
102 102  
103 103  
104 104  
105 -= 2.  Use NSE01 to communicate with IoT Server =
84 += 2. Configure LSE01 to connect to LoRaWAN network =
106 106  
107 -== 2.1  How it works ==
86 +== 2.1 How it works ==
108 108  
109 -
110 110  (((
111 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
89 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
112 112  )))
113 113  
114 -
115 115  (((
116 -The diagram below shows the working flow in default firmware of NSE01:
93 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
117 117  )))
118 118  
119 -[[image:image-20220708101605-2.png]]
120 120  
121 -(((
122 -
123 -)))
124 124  
98 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
125 125  
100 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
126 126  
127 -== 2.2 ​ Configure the NSE01 ==
128 128  
129 -=== 2.2.1 Test Requirement ===
103 +[[image:1654503992078-669.png]]
130 130  
131 131  
132 -To use NSE01 in your city, make sure meet below requirements:
106 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 133  
134 -* Your local operator has already distributed a NB-IoT Network there.
135 -* The local NB-IoT network used the band that NSE01 supports.
136 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
137 137  
109 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
138 138  
139 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
111 +Each LSE01 is shipped with a sticker with the default device EUI as below:
140 140  
113 +[[image:image-20220606163732-6.jpeg]]
141 141  
142 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
115 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143 143  
117 +**Add APP EUI in the application**
144 144  
145 145  
146 -1.
147 -11.
148 -111. Insert SIM card
120 +[[image:1654504596150-405.png]]
149 149  
150 -Insert the NB-IoT Card get from your provider.
151 151  
152 152  
153 -User need to take out the NB-IoT module and insert the SIM card like below:
124 +**Add APP KEY and DEV EUI**
154 154  
126 +[[image:1654504683289-357.png]]
155 155  
156 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
157 157  
158 158  
159 -1.
160 -11.
161 -111. Connect USB – TTL to NSE01 to configure it
130 +**Step 2**: Power on LSE01
162 162  
163 163  
164 -User need to configure NSE01 via serial port to set the **Server Address** / **Uplink Topic** to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
133 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
165 165  
135 +[[image:image-20220606163915-7.png]]
166 166  
167 167  
138 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 168  
169 -Connection:
140 +[[image:1654504778294-788.png]]
170 170  
171 -USB TTL GND <~-~-~-~-> GND
172 172  
173 -USB TTL TXD <~-~-~-~-> UART_RXD
174 174  
175 -USB TTL RXD <~-~-~-~-> UART_TXD
176 -
177 -
178 -
179 -In the PC, use below serial tool settings:
180 -
181 -* Baud: **9600**
182 -* Data bits:** 8**
183 -* Stop bits: **1**
184 -* Parity: **None**
185 -* Flow Control: **None**
186 -
187 -
188 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
189 -
190 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
191 -
192 -Note: the valid AT Commands can be found at:
193 -
194 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
195 -
196 -
197 -1.
198 -11.
199 -111. Use CoAP protocol to uplink data 
200 -
201 -
202 -Note: if you don’t have CoAP server, you can refer this link to set up one:
203 -
204 -[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
205 -
206 -
207 -Use below commands:
208 -
209 -* **AT+PRO=1**    ~/~/ Set to use CoAP protocol to uplink
210 -* **AT+SERVADDR=120.24.4.116,5683   **~/~/ to set CoAP server address and port
211 -* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"       **~/~/Set COAP resource path
212 -
213 -
214 -For parameter description, please refer to AT command set
215 -
216 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
217 -
218 -
219 -After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
220 -
221 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
222 -
223 -1.
224 -11.
225 -111. Use UDP protocol to uplink data(Default protocol)
226 -
227 -
228 -This feature is supported since firmware version v1.0.1
229 -
230 -
231 -* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
232 -* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
233 -* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
234 -
235 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
236 -
237 -
238 -
239 -
240 -
241 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
242 -
243 -
244 -1.
245 -11.
246 -111. Use MQTT protocol to uplink data
247 -
248 -
249 -This feature is supported since firmware version v110
250 -
251 -
252 -* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
253 -* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
254 -* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
255 -* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
256 -* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
257 -* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
258 -* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
259 -
260 -
261 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
262 -
263 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
264 -
265 -
266 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 -
268 -
269 -1.
270 -11.
271 -111. Use TCP protocol to uplink data
272 -
273 -
274 -This feature is supported since firmware version v110
275 -
276 -
277 -* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
278 -* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
279 -
280 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
281 -
282 -
283 -
284 -[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
285 -
286 -
287 -1.
288 -11.
289 -111. Change Update Interval
290 -
291 -User can use below command to change the **uplink interval**.
292 -
293 -**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
294 -
295 -
296 -**NOTE:**
297 -
298 -1. By default, the device will send an uplink message every 1 hour.
299 -
300 -
301 -
302 -
303 -
304 -
305 -
306 306  == 2.3 Uplink Payload ==
307 307  
308 -
309 309  === 2.3.1 MOD~=0(Default Mode) ===
310 310  
311 311  LSE01 will uplink payload via LoRaWAN with below payload format: 
312 312  
313 -(((
150 +
314 314  Uplink payload includes in total 11 bytes.
315 -)))
152 +
316 316  
317 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
318 -|(((
154 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
155 +|=(((
319 319  **Size**
320 320  
321 321  **(bytes)**
322 -)))|**2**|**2**|**2**|**2**|**2**|**1**
323 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
159 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
160 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
324 324  Temperature
325 325  
326 326  (Reserve, Ignore now)
327 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
328 328  MOD & Digital Interrupt
329 329  
330 330  (Optional)
331 331  )))
332 332  
170 +[[image:1654504881641-514.png]]
171 +
172 +
173 +
333 333  === 2.3.2 MOD~=1(Original value) ===
334 334  
335 335  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
336 336  
337 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
338 -|(((
178 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
179 +|=(((
339 339  **Size**
340 340  
341 341  **(bytes)**
342 -)))|**2**|**2**|**2**|**2**|**2**|**1**
183 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
343 343  |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
344 344  Temperature
345 345  
346 346  (Reserve, Ignore now)
347 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
348 348  MOD & Digital Interrupt
349 349  
350 350  (Optional)
351 351  )))
352 352  
194 +[[image:1654504907647-967.png]]
195 +
196 +
197 +
353 353  === 2.3.3 Battery Info ===
354 354  
355 -(((
356 356  Check the battery voltage for LSE01.
357 -)))
358 358  
359 -(((
360 360  Ex1: 0x0B45 = 2885mV
361 -)))
362 362  
363 -(((
364 364  Ex2: 0x0B49 = 2889mV
365 -)))
366 366  
367 367  
368 368  
369 369  === 2.3.4 Soil Moisture ===
370 370  
371 -(((
372 372  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
373 -)))
374 374  
375 -(((
376 376  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
377 -)))
378 378  
379 -(((
380 -
381 -)))
382 382  
383 -(((
384 384  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
385 -)))
386 386  
387 387  
388 388  
389 389  === 2.3.5 Soil Temperature ===
390 390  
391 -(((
392 392   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
393 -)))
394 394  
395 -(((
396 396  **Example**:
397 -)))
398 398  
399 -(((
400 400  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
401 -)))
402 402  
403 -(((
404 404  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
405 -)))
406 406  
407 407  
408 408  
... ... @@ -452,21 +452,19 @@
452 452  
453 453  [[image:1654505570700-128.png]]
454 454  
455 -(((
456 456  The payload decoder function for TTN is here:
457 -)))
458 458  
459 -(((
460 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
461 -)))
279 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
462 462  
463 463  
464 464  == 2.4 Uplink Interval ==
465 465  
466 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
467 467  
286 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
468 468  
469 469  
289 +
470 470  == 2.5 Downlink Payload ==
471 471  
472 472  By default, LSE50 prints the downlink payload to console port.
... ... @@ -474,44 +474,24 @@
474 474  [[image:image-20220606165544-8.png]]
475 475  
476 476  
477 -(((
478 -(% style="color:blue" %)**Examples:**
479 -)))
297 +**Examples:**
480 480  
481 -(((
482 -
483 -)))
484 484  
485 -* (((
486 -(% style="color:blue" %)**Set TDC**
487 -)))
300 +* **Set TDC**
488 488  
489 -(((
490 490  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
491 -)))
492 492  
493 -(((
494 494  Payload:    01 00 00 1E    TDC=30S
495 -)))
496 496  
497 -(((
498 498  Payload:    01 00 00 3C    TDC=60S
499 -)))
500 500  
501 -(((
502 -
503 -)))
504 504  
505 -* (((
506 -(% style="color:blue" %)**Reset**
507 -)))
309 +* **Reset**
508 508  
509 -(((
510 510  If payload = 0x04FF, it will reset the LSE01
511 -)))
512 512  
513 513  
514 -* (% style="color:blue" %)**CFM**
314 +* **CFM**
515 515  
516 516  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
517 517  
... ... @@ -519,21 +519,12 @@
519 519  
520 520  == 2.6 ​Show Data in DataCake IoT Server ==
521 521  
522 -(((
523 523  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
524 -)))
525 525  
526 -(((
527 -
528 -)))
529 529  
530 -(((
531 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
532 -)))
325 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
533 533  
534 -(((
535 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
536 -)))
327 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
537 537  
538 538  
539 539  [[image:1654505857935-743.png]]
... ... @@ -541,12 +541,11 @@
541 541  
542 542  [[image:1654505874829-548.png]]
543 543  
335 +Step 3: Create an account or log in Datacake.
544 544  
545 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
337 +Step 4: Search the LSE01 and add DevEUI.
546 546  
547 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
548 548  
549 -
550 550  [[image:1654505905236-553.png]]
551 551  
552 552  
... ... @@ -842,6 +842,8 @@
842 842  * Solid ON for 5 seconds once device successful Join the network.
843 843  * Blink once when device transmit a packet.
844 844  
635 +
636 +
845 845  == 2.9 Installation in Soil ==
846 846  
847 847  **Measurement the soil surface**
... ... @@ -856,7 +856,6 @@
856 856  )))
857 857  
858 858  
859 -
860 860  [[image:1654506665940-119.png]]
861 861  
862 862  (((
... ... @@ -918,16 +918,16 @@
918 918  )))
919 919  
920 920  * (((
921 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
922 922  )))
923 923  * (((
924 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
715 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
925 925  )))
926 926  * (((
927 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
718 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
928 928  )))
929 929  
930 - [[image:image-20220610172436-1.png]]
721 + [[image:image-20220606171726-9.png]]
931 931  
932 932  
933 933  
... ... @@ -962,13 +962,13 @@
962 962  
963 963  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
964 964  
965 -[[image:1654501986557-872.png||height="391" width="800"]]
756 +[[image:1654501986557-872.png]]
966 966  
967 967  
968 968  Or if you have below board, use below connection:
969 969  
970 970  
971 -[[image:1654502005655-729.png||height="503" width="801"]]
762 +[[image:1654502005655-729.png]]
972 972  
973 973  
974 974  
... ... @@ -975,10 +975,10 @@
975 975  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
976 976  
977 977  
978 - [[image:1654502050864-459.png||height="564" width="806"]]
769 + [[image:1654502050864-459.png]]
979 979  
980 980  
981 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
772 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
982 982  
983 983  
984 984  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -1090,38 +1090,20 @@
1090 1090  
1091 1091  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1092 1092  
1093 -(((
1094 1094  You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1095 1095  When downloading the images, choose the required image file for download. ​
1096 -)))
1097 1097  
1098 -(((
1099 -
1100 -)))
1101 1101  
1102 -(((
1103 1103  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
1104 -)))
1105 1105  
1106 -(((
1107 -
1108 -)))
1109 1109  
1110 -(((
1111 1111  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1112 -)))
1113 1113  
1114 -(((
1115 -
1116 -)))
1117 1117  
1118 -(((
1119 1119  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
1120 -)))
1121 1121  
1122 1122  [[image:image-20220606154726-3.png]]
1123 1123  
1124 -
1125 1125  When you use the TTN network, the US915 frequency bands use are:
1126 1126  
1127 1127  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1134,47 +1134,37 @@
1134 1134  * 905.3 - SF7BW125 to SF10BW125
1135 1135  * 904.6 - SF8BW500
1136 1136  
1137 -(((
1138 1138  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1139 1139  
1140 -* (% style="color:#037691" %)**AT+CHE=2**
1141 -* (% style="color:#037691" %)**ATZ**
912 +(% class="box infomessage" %)
913 +(((
914 +**AT+CHE=2**
1142 1142  )))
1143 1143  
917 +(% class="box infomessage" %)
1144 1144  (((
1145 -
919 +**ATZ**
920 +)))
1146 1146  
1147 1147  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1148 -)))
1149 1149  
1150 -(((
1151 -
1152 -)))
1153 1153  
1154 -(((
1155 1155  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1156 -)))
1157 1157  
1158 1158  [[image:image-20220606154825-4.png]]
1159 1159  
1160 1160  
1161 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1162 1162  
1163 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1164 -
1165 -
1166 1166  = 5. Trouble Shooting =
1167 1167  
1168 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
933 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1169 1169  
1170 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
935 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1171 1171  
1172 1172  
1173 -== 5.2 AT Command input doesn't work ==
938 +== 5.2 AT Command input doesnt work ==
1174 1174  
1175 -(((
1176 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1177 -)))
940 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1178 1178  
1179 1179  
1180 1180  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1186,9 +1186,7 @@
1186 1186  
1187 1187  (% style="color:#4f81bd" %)**Cause for this issue:**
1188 1188  
1189 -(((
1190 1190  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1191 -)))
1192 1192  
1193 1193  
1194 1194  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1195,7 +1195,7 @@
1195 1195  
1196 1196  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1197 1197  
1198 -[[image:1654500929571-736.png||height="458" width="832"]]
959 +[[image:1654500929571-736.png]]
1199 1199  
1200 1200  
1201 1201  = 6. ​Order Info =
... ... @@ -1228,9 +1228,7 @@
1228 1228  = 7. Packing Info =
1229 1229  
1230 1230  (((
1231 -
1232 -
1233 -(% style="color:#037691" %)**Package Includes**:
992 +**Package Includes**:
1234 1234  )))
1235 1235  
1236 1236  * (((
... ... @@ -1239,8 +1239,10 @@
1239 1239  
1240 1240  (((
1241 1241  
1001 +)))
1242 1242  
1243 -(% style="color:#037691" %)**Dimension and weight**:
1003 +(((
1004 +**Dimension and weight**:
1244 1244  )))
1245 1245  
1246 1246  * (((
... ... @@ -1255,6 +1255,7 @@
1255 1255  * (((
1256 1256  Weight / pcs : g
1257 1257  
1019 +
1258 1258  
1259 1259  )))
1260 1260  
... ... @@ -1262,3 +1262,5 @@
1262 1262  
1263 1263  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1264 1264  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1027 +
1028 +
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0