<
From version < 45.3 >
edited by Xiaoling
on 2022/07/08 10:24
To version < 82.1 >
edited by Xiaoling
on 2022/07/09 09:32
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,16 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
15 +
21 21  = 1.  Introduction =
22 22  
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 +)))
29 29  
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 36  
37 37  )))
38 38  
... ... @@ -39,23 +39,23 @@
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
38 +[[image:1657327959271-447.png]]
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
47 47  
48 48  
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 -* Monitor Soil Moisture
51 -* Monitor Soil Temperature
52 -* Monitor Soil Conductivity
46 +* Ultra low power consumption
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
... ... @@ -69,7 +69,6 @@
69 69  * Supply Voltage: 2.1v ~~ 3.6v
70 70  * Operating Temperature: -40 ~~ 85°C
71 71  
72 -
73 73  (% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 75  * - B1 @H-FDD: 2100MHz
... ... @@ -80,726 +80,657 @@
80 80  * - B28 @H-FDD: 700MHz
81 81  
82 82  
83 -(% style="color:#037691" %)**Probe Specification:**
78 +(% style="color:#037691" %)**Battery:**
84 84  
85 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
86 86  
87 -[[image:image-20220708101224-1.png]]
88 88  
87 +(% style="color:#037691" %)**Power Consumption**
89 89  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
90 90  
92 +
93 +
94 +
91 91  == ​1.4  Applications ==
92 92  
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
93 93  * Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
94 94  
95 95  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 96  ​
97 97  
107 +
108 +
98 98  == 1.5  Pin Definitions ==
99 99  
100 100  
101 -[[image:1657246476176-652.png]]
112 +[[image:1657328609906-564.png]]
102 102  
103 103  
104 104  
105 -= 2.  Use NSE01 to communicate with IoT Server =
106 106  
117 += 2.  Use NDDS75 to communicate with IoT Server =
118 +
107 107  == 2.1  How it works ==
108 108  
109 -
110 110  (((
111 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
112 112  )))
113 113  
114 114  
115 115  (((
116 -The diagram below shows the working flow in default firmware of NSE01:
127 +The diagram below shows the working flow in default firmware of NDDS75:
117 117  )))
118 118  
119 -[[image:image-20220708101605-2.png]]
120 -
121 121  (((
122 122  
123 123  )))
124 124  
134 +[[image:1657328659945-416.png]]
125 125  
136 +(((
137 +
138 +)))
126 126  
127 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
128 128  
129 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
141 +== 2.2 Configure the NDDS75 ==
130 130  
131 131  
132 -[[image:1654503992078-669.png]]
144 +=== 2.2.1 Test Requirement ===
133 133  
146 +(((
147 +To use NDDS75 in your city, make sure meet below requirements:
148 +)))
134 134  
135 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
150 +* Your local operator has already distributed a NB-IoT Network there.
151 +* The local NB-IoT network used the band that NSE01 supports.
152 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
136 136  
154 +(((
155 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
156 +)))
137 137  
138 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 139  
140 -Each LSE01 is shipped with a sticker with the default device EUI as below:
159 +[[image:1657328756309-230.png]]
141 141  
142 -[[image:image-20220606163732-6.jpeg]]
143 143  
144 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 145  
146 -**Add APP EUI in the application**
163 +=== 2.2.2 Insert SIM card ===
147 147  
165 +(((
166 +Insert the NB-IoT Card get from your provider.
167 +)))
148 148  
149 -[[image:1654504596150-405.png]]
169 +(((
170 +User need to take out the NB-IoT module and insert the SIM card like below:
171 +)))
150 150  
151 151  
174 +[[image:1657328884227-504.png]]
152 152  
153 -**Add APP KEY and DEV EUI**
154 154  
155 -[[image:1654504683289-357.png]]
156 156  
178 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
157 157  
180 +(((
181 +(((
182 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
183 +)))
184 +)))
158 158  
159 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
186 +[[image:image-20220709092052-2.png]]
160 160  
188 +**Connection:**
161 161  
162 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
163 163  
164 -[[image:image-20220606163915-7.png]]
192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
165 165  
194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
166 166  
167 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 168  
169 -[[image:1654504778294-788.png]]
197 +In the PC, use below serial tool settings:
170 170  
199 +* Baud:  (% style="color:green" %)**9600**
200 +* Data bits:** (% style="color:green" %)8(%%)**
201 +* Stop bits: (% style="color:green" %)**1**
202 +* Parity:  (% style="color:green" %)**None**
203 +* Flow Control: (% style="color:green" %)**None**
171 171  
205 +(((
206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
207 +)))
172 172  
173 -== 2.3 Uplink Payload ==
209 +[[image:1657329814315-101.png]]
174 174  
175 -
176 -=== 2.3.1 MOD~=0(Default Mode) ===
177 -
178 -LSE01 will uplink payload via LoRaWAN with below payload format: 
179 -
180 180  (((
181 -Uplink payload includes in total 11 bytes.
212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
182 182  )))
183 183  
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
186 -**Size**
187 187  
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 -Temperature
192 192  
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 -MOD & Digital Interrupt
217 +=== 2.2.4 Use CoAP protocol to uplink data ===
196 196  
197 -(Optional)
198 -)))
219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
199 199  
200 -=== 2.3.2 MOD~=1(Original value) ===
201 201  
202 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
222 +**Use below commands:**
203 203  
204 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 -|(((
206 -**Size**
224 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
207 207  
208 -**(bytes)**
209 -)))|**2**|**2**|**2**|**2**|**2**|**1**
210 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 -Temperature
228 +For parameter description, please refer to AT command set
212 212  
213 -(Reserve, Ignore now)
214 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 -MOD & Digital Interrupt
230 +[[image:1657249793983-486.png]]
216 216  
217 -(Optional)
218 -)))
219 219  
220 -=== 2.3.3 Battery Info ===
233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
221 221  
222 -(((
223 -Check the battery voltage for LSE01.
224 -)))
235 +[[image:1657249831934-534.png]]
225 225  
226 -(((
227 -Ex1: 0x0B45 = 2885mV
228 -)))
229 229  
230 -(((
231 -Ex2: 0x0B49 = 2889mV
232 -)))
233 233  
239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
234 234  
241 +This feature is supported since firmware version v1.0.1
235 235  
236 -=== 2.3.4 Soil Moisture ===
237 237  
238 -(((
239 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
240 -)))
244 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
246 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
241 241  
242 -(((
243 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 -)))
248 +[[image:1657249864775-321.png]]
245 245  
246 -(((
247 -
248 -)))
249 249  
250 -(((
251 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 -)))
251 +[[image:1657249930215-289.png]]
253 253  
254 254  
255 255  
256 -=== 2.3.5 Soil Temperature ===
255 +=== 2.2.6 Use MQTT protocol to uplink data ===
257 257  
258 -(((
259 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 -)))
257 +This feature is supported since firmware version v110
261 261  
262 -(((
263 -**Example**:
264 -)))
265 265  
266 -(((
267 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 -)))
260 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
263 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
264 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
269 269  
270 -(((
271 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 -)))
268 +[[image:1657249978444-674.png]]
273 273  
274 274  
271 +[[image:1657249990869-686.png]]
275 275  
276 -=== 2.3.6 Soil Conductivity (EC) ===
277 277  
278 278  (((
279 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
280 280  )))
281 281  
282 -(((
283 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 -)))
285 285  
286 -(((
287 -Generally, the EC value of irrigation water is less than 800uS / cm.
288 -)))
289 289  
290 -(((
291 -
292 -)))
280 +=== 2.2.7 Use TCP protocol to uplink data ===
293 293  
294 -(((
295 -
296 -)))
282 +This feature is supported since firmware version v110
297 297  
298 -=== 2.3.7 MOD ===
299 299  
300 -Firmware version at least v2.1 supports changing mode.
285 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
301 301  
302 -For example, bytes[10]=90
288 +[[image:1657250217799-140.png]]
303 303  
304 -mod=(bytes[10]>>7)&0x01=1.
305 305  
291 +[[image:1657250255956-604.png]]
306 306  
307 -**Downlink Command:**
308 308  
309 -If payload = 0x0A00, workmode=0
310 310  
311 -If** **payload =** **0x0A01, workmode=1
295 +=== 2.2.8 Change Update Interval ===
312 312  
297 +User can use below command to change the (% style="color:green" %)**uplink interval**.
313 313  
299 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
314 314  
315 -=== 2.3.8 ​Decode payload in The Things Network ===
301 +(((
302 +(% style="color:red" %)**NOTE:**
303 +)))
316 316  
317 -While using TTN network, you can add the payload format to decode the payload.
305 +(((
306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +)))
318 318  
319 319  
320 -[[image:1654505570700-128.png]]
321 321  
322 -(((
323 -The payload decoder function for TTN is here:
324 -)))
311 +== 2.3  Uplink Payload ==
325 325  
313 +In this mode, uplink payload includes in total 18 bytes
314 +
315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 +|=(% style="width: 60px;" %)(((
317 +**Size(bytes)**
318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
320 +
326 326  (((
327 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
328 328  )))
329 329  
330 330  
331 -== 2.4 Uplink Interval ==
326 +[[image:image-20220708111918-4.png]]
332 332  
333 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
334 334  
329 +The payload is ASCII string, representative same HEX:
335 335  
331 +0x72403155615900640c7817075e0a8c02f900 where:
336 336  
337 -== 2.5 Downlink Payload ==
333 +* Device ID: 0x 724031556159 = 724031556159
334 +* Version: 0x0064=100=1.0.0
338 338  
339 -By default, LSE50 prints the downlink payload to console port.
336 +* BAT: 0x0c78 = 3192 mV = 3.192V
337 +* Singal: 0x17 = 23
338 +* Soil Moisture: 0x075e= 1886 = 18.86  %
339 +* Soil Temperature:0x0a8c =2700=27 °C
340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 +* Interrupt: 0x00 = 0
340 340  
341 -[[image:image-20220606165544-8.png]]
343 +== 2.4  Payload Explanation and Sensor Interface ==
342 342  
343 343  
346 +=== 2.4.1  Device ID ===
347 +
344 344  (((
345 -(% style="color:blue" %)**Examples:**
349 +By default, the Device ID equal to the last 6 bytes of IMEI.
346 346  )))
347 347  
348 348  (((
349 -
353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
350 350  )))
351 351  
352 -* (((
353 -(% style="color:blue" %)**Set TDC**
356 +(((
357 +**Example:**
354 354  )))
355 355  
356 356  (((
357 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
361 +AT+DEUI=A84041F15612
358 358  )))
359 359  
360 360  (((
361 -Payload:    01 00 00 1E    TDC=30S
365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
362 362  )))
363 363  
368 +
369 +
370 +=== 2.4.2  Version Info ===
371 +
364 364  (((
365 -Payload:    01 00 00 3C    TDC=60S
373 +Specify the software version: 0x64=100, means firmware version 1.00.
366 366  )))
367 367  
368 368  (((
369 -
377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
370 370  )))
371 371  
372 -* (((
373 -(% style="color:blue" %)**Reset**
380 +
381 +
382 +=== 2.4.3  Battery Info ===
383 +
384 +(((
385 +Check the battery voltage for LSE01.
374 374  )))
375 375  
376 376  (((
377 -If payload = 0x04FF, it will reset the LSE01
389 +Ex1: 0x0B45 = 2885mV
378 378  )))
379 379  
392 +(((
393 +Ex2: 0x0B49 = 2889mV
394 +)))
380 380  
381 -* (% style="color:blue" %)**CFM**
382 382  
383 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
384 384  
398 +=== 2.4.4  Signal Strength ===
385 385  
400 +(((
401 +NB-IoT Network signal Strength.
402 +)))
386 386  
387 -== 2.6 ​Show Data in DataCake IoT Server ==
404 +(((
405 +**Ex1: 0x1d = 29**
406 +)))
388 388  
389 389  (((
390 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
409 +(% style="color:blue" %)**0**(%%)  -113dBm or less
391 391  )))
392 392  
393 393  (((
394 -
413 +(% style="color:blue" %)**1**(%%)  -111dBm
395 395  )))
396 396  
397 397  (((
398 -(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
399 399  )))
400 400  
401 401  (((
402 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
421 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
403 403  )))
404 404  
424 +(((
425 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 +)))
405 405  
406 -[[image:1654505857935-743.png]]
407 407  
408 408  
409 -[[image:1654505874829-548.png]]
430 +=== 2.4.5  Soil Moisture ===
410 410  
432 +(((
433 +(((
434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
435 +)))
436 +)))
411 411  
412 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
438 +(((
439 +(((
440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
441 +)))
442 +)))
413 413  
414 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
444 +(((
445 +
446 +)))
415 415  
448 +(((
449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
450 +)))
416 416  
417 -[[image:1654505905236-553.png]]
418 418  
419 419  
420 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
454 +=== 2.4.6  Soil Temperature ===
421 421  
422 -[[image:1654505925508-181.png]]
456 +(((
457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
458 +)))
423 423  
460 +(((
461 +**Example**:
462 +)))
424 424  
464 +(((
465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
466 +)))
425 425  
426 -== 2.7 Frequency Plans ==
468 +(((
469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
470 +)))
427 427  
428 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
429 429  
430 430  
431 -=== 2.7.1 EU863-870 (EU868) ===
474 +=== 2.4.7  Soil Conductivity (EC) ===
432 432  
433 -(% style="color:#037691" %)** Uplink:**
476 +(((
477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
478 +)))
434 434  
435 -868.1 - SF7BW125 to SF12BW125
480 +(((
481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
482 +)))
436 436  
437 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
484 +(((
485 +Generally, the EC value of irrigation water is less than 800uS / cm.
486 +)))
438 438  
439 -868.5 - SF7BW125 to SF12BW125
488 +(((
489 +
490 +)))
440 440  
441 -867.1 - SF7BW125 to SF12BW125
492 +(((
493 +
494 +)))
442 442  
443 -867.3 - SF7BW125 to SF12BW125
496 +=== 2.4.8  Digital Interrupt ===
444 444  
445 -867.5 - SF7BW125 to SF12BW125
498 +(((
499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 +)))
446 446  
447 -867.7 - SF7BW125 to SF12BW125
502 +(((
503 +The command is:
504 +)))
448 448  
449 -867.9 - SF7BW125 to SF12BW125
506 +(((
507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 +)))
450 450  
451 -868.8 - FSK
452 452  
511 +(((
512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 +)))
453 453  
454 -(% style="color:#037691" %)** Downlink:**
455 455  
456 -Uplink channels 1-9 (RX1)
516 +(((
517 +Example:
518 +)))
457 457  
458 -869.525 - SF9BW125 (RX2 downlink only)
520 +(((
521 +0x(00): Normal uplink packet.
522 +)))
459 459  
524 +(((
525 +0x(01): Interrupt Uplink Packet.
526 +)))
460 460  
461 461  
462 -=== 2.7.2 US902-928(US915) ===
463 463  
464 -Used in USA, Canada and South America. Default use CHE=2
530 +=== 2.4.9  ​+5V Output ===
465 465  
466 -(% style="color:#037691" %)**Uplink:**
532 +(((
533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 +)))
467 467  
468 -903.9 - SF7BW125 to SF10BW125
469 469  
470 -904.1 - SF7BW125 to SF10BW125
537 +(((
538 +The 5V output time can be controlled by AT Command.
539 +)))
471 471  
472 -904.3 - SF7BW125 to SF10BW125
541 +(((
542 +(% style="color:blue" %)**AT+5VT=1000**
543 +)))
473 473  
474 -904.5 - SF7BW125 to SF10BW125
545 +(((
546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 +)))
475 475  
476 -904.7 - SF7BW125 to SF10BW125
477 477  
478 -904.9 - SF7BW125 to SF10BW125
479 479  
480 -905.1 - SF7BW125 to SF10BW125
551 +== 2.5  Downlink Payload ==
481 481  
482 -905.3 - SF7BW125 to SF10BW125
553 +By default, NSE01 prints the downlink payload to console port.
483 483  
555 +[[image:image-20220708133731-5.png]]
484 484  
485 -(% style="color:#037691" %)**Downlink:**
486 486  
487 -923.3 - SF7BW500 to SF12BW500
558 +(((
559 +(% style="color:blue" %)**Examples:**
560 +)))
488 488  
489 -923.9 - SF7BW500 to SF12BW500
562 +(((
563 +
564 +)))
490 490  
491 -924.5 - SF7BW500 to SF12BW500
566 +* (((
567 +(% style="color:blue" %)**Set TDC**
568 +)))
492 492  
493 -925.1 - SF7BW500 to SF12BW500
570 +(((
571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
572 +)))
494 494  
495 -925.7 - SF7BW500 to SF12BW500
574 +(((
575 +Payload:    01 00 00 1E    TDC=30S
576 +)))
496 496  
497 -926.3 - SF7BW500 to SF12BW500
578 +(((
579 +Payload:    01 00 00 3C    TDC=60S
580 +)))
498 498  
499 -926.9 - SF7BW500 to SF12BW500
582 +(((
583 +
584 +)))
500 500  
501 -927.5 - SF7BW500 to SF12BW500
586 +* (((
587 +(% style="color:blue" %)**Reset**
588 +)))
502 502  
503 -923.3 - SF12BW500(RX2 downlink only)
590 +(((
591 +If payload = 0x04FF, it will reset the NSE01
592 +)))
504 504  
505 505  
595 +* (% style="color:blue" %)**INTMOD**
506 506  
507 -=== 2.7.3 CN470-510 (CN470) ===
597 +(((
598 +Downlink Payload: 06000003, Set AT+INTMOD=3
599 +)))
508 508  
509 -Used in China, Default use CHE=1
510 510  
511 -(% style="color:#037691" %)**Uplink:**
512 512  
513 -486.3 - SF7BW125 to SF12BW125
603 +== 2.6  ​LED Indicator ==
514 514  
515 -486.5 - SF7BW125 to SF12BW125
605 +(((
606 +The NSE01 has an internal LED which is to show the status of different state.
516 516  
517 -486.7 - SF7BW125 to SF12BW125
518 518  
519 -486.9 - SF7BW125 to SF12BW125
609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 +* Then the LED will be on for 1 second means device is boot normally.
611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 +* For each uplink probe, LED will be on for 500ms.
613 +)))
520 520  
521 -487.1 - SF7BW125 to SF12BW125
522 522  
523 -487.3 - SF7BW125 to SF12BW125
524 524  
525 -487.5 - SF7BW125 to SF12BW125
526 526  
527 -487.7 - SF7BW125 to SF12BW125
618 +== 2.7  Installation in Soil ==
528 528  
620 +__**Measurement the soil surface**__
529 529  
530 -(% style="color:#037691" %)**Downlink:**
622 +(((
623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 +)))
531 531  
532 -506.7 - SF7BW125 to SF12BW125
626 +[[image:1657259653666-883.png]] ​
533 533  
534 -506.9 - SF7BW125 to SF12BW125
535 535  
536 -507.1 - SF7BW125 to SF12BW125
629 +(((
630 +
537 537  
538 -507.3 - SF7BW125 to SF12BW125
632 +(((
633 +Dig a hole with diameter > 20CM.
634 +)))
539 539  
540 -507.5 - SF7BW125 to SF12BW125
636 +(((
637 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 +)))
639 +)))
541 541  
542 -507.7 - SF7BW125 to SF12BW125
641 +[[image:1654506665940-119.png]]
543 543  
544 -507.9 - SF7BW125 to SF12BW125
643 +(((
644 +
645 +)))
545 545  
546 -508.1 - SF7BW125 to SF12BW125
547 547  
548 -505.3 - SF12BW125 (RX2 downlink only)
648 +== 2.8  ​Firmware Change Log ==
549 549  
550 550  
651 +Download URL & Firmware Change log
551 551  
552 -=== 2.7.4 AU915-928(AU915) ===
653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
553 553  
554 -Default use CHE=2
555 555  
556 -(% style="color:#037691" %)**Uplink:**
656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
557 557  
558 -916.8 - SF7BW125 to SF12BW125
559 559  
560 -917.0 - SF7BW125 to SF12BW125
561 561  
562 -917.2 - SF7BW125 to SF12BW125
660 +== 2.9  ​Battery Analysis ==
563 563  
564 -917.4 - SF7BW125 to SF12BW125
662 +=== 2.9.1  ​Battery Type ===
565 565  
566 -917.6 - SF7BW125 to SF12BW125
567 567  
568 -917.8 - SF7BW125 to SF12BW125
569 -
570 -918.0 - SF7BW125 to SF12BW125
571 -
572 -918.2 - SF7BW125 to SF12BW125
573 -
574 -
575 -(% style="color:#037691" %)**Downlink:**
576 -
577 -923.3 - SF7BW500 to SF12BW500
578 -
579 -923.9 - SF7BW500 to SF12BW500
580 -
581 -924.5 - SF7BW500 to SF12BW500
582 -
583 -925.1 - SF7BW500 to SF12BW500
584 -
585 -925.7 - SF7BW500 to SF12BW500
586 -
587 -926.3 - SF7BW500 to SF12BW500
588 -
589 -926.9 - SF7BW500 to SF12BW500
590 -
591 -927.5 - SF7BW500 to SF12BW500
592 -
593 -923.3 - SF12BW500(RX2 downlink only)
594 -
595 -
596 -
597 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
598 -
599 -(% style="color:#037691" %)**Default Uplink channel:**
600 -
601 -923.2 - SF7BW125 to SF10BW125
602 -
603 -923.4 - SF7BW125 to SF10BW125
604 -
605 -
606 -(% style="color:#037691" %)**Additional Uplink Channel**:
607 -
608 -(OTAA mode, channel added by JoinAccept message)
609 -
610 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
611 -
612 -922.2 - SF7BW125 to SF10BW125
613 -
614 -922.4 - SF7BW125 to SF10BW125
615 -
616 -922.6 - SF7BW125 to SF10BW125
617 -
618 -922.8 - SF7BW125 to SF10BW125
619 -
620 -923.0 - SF7BW125 to SF10BW125
621 -
622 -922.0 - SF7BW125 to SF10BW125
623 -
624 -
625 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
626 -
627 -923.6 - SF7BW125 to SF10BW125
628 -
629 -923.8 - SF7BW125 to SF10BW125
630 -
631 -924.0 - SF7BW125 to SF10BW125
632 -
633 -924.2 - SF7BW125 to SF10BW125
634 -
635 -924.4 - SF7BW125 to SF10BW125
636 -
637 -924.6 - SF7BW125 to SF10BW125
638 -
639 -
640 -(% style="color:#037691" %)** Downlink:**
641 -
642 -Uplink channels 1-8 (RX1)
643 -
644 -923.2 - SF10BW125 (RX2)
645 -
646 -
647 -
648 -=== 2.7.6 KR920-923 (KR920) ===
649 -
650 -Default channel:
651 -
652 -922.1 - SF7BW125 to SF12BW125
653 -
654 -922.3 - SF7BW125 to SF12BW125
655 -
656 -922.5 - SF7BW125 to SF12BW125
657 -
658 -
659 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 -
661 -922.1 - SF7BW125 to SF12BW125
662 -
663 -922.3 - SF7BW125 to SF12BW125
664 -
665 -922.5 - SF7BW125 to SF12BW125
666 -
667 -922.7 - SF7BW125 to SF12BW125
668 -
669 -922.9 - SF7BW125 to SF12BW125
670 -
671 -923.1 - SF7BW125 to SF12BW125
672 -
673 -923.3 - SF7BW125 to SF12BW125
674 -
675 -
676 -(% style="color:#037691" %)**Downlink:**
677 -
678 -Uplink channels 1-7(RX1)
679 -
680 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 -
682 -
683 -
684 -=== 2.7.7 IN865-867 (IN865) ===
685 -
686 -(% style="color:#037691" %)** Uplink:**
687 -
688 -865.0625 - SF7BW125 to SF12BW125
689 -
690 -865.4025 - SF7BW125 to SF12BW125
691 -
692 -865.9850 - SF7BW125 to SF12BW125
693 -
694 -
695 -(% style="color:#037691" %) **Downlink:**
696 -
697 -Uplink channels 1-3 (RX1)
698 -
699 -866.550 - SF10BW125 (RX2)
700 -
701 -
702 -
703 -
704 -== 2.8 LED Indicator ==
705 -
706 -The LSE01 has an internal LED which is to show the status of different state.
707 -
708 -* Blink once when device power on.
709 -* Solid ON for 5 seconds once device successful Join the network.
710 -* Blink once when device transmit a packet.
711 -
712 -== 2.9 Installation in Soil ==
713 -
714 -**Measurement the soil surface**
715 -
716 -
717 -[[image:1654506634463-199.png]] ​
718 -
719 719  (((
720 -(((
721 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
722 722  )))
723 -)))
724 724  
725 725  
726 -
727 -[[image:1654506665940-119.png]]
728 -
729 729  (((
730 -Dig a hole with diameter > 20CM.
671 +The battery is designed to last for several years depends on the actually use environment and update interval. 
731 731  )))
732 732  
733 -(((
734 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
735 -)))
736 736  
737 -
738 -== 2.10 ​Firmware Change Log ==
739 -
740 740  (((
741 -**Firmware download link:**
676 +The battery related documents as below:
742 742  )))
743 743  
744 -(((
745 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 -)))
679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
747 747  
748 748  (((
749 -
684 +[[image:image-20220708140453-6.png]]
750 750  )))
751 751  
752 -(((
753 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
754 -)))
755 755  
756 -(((
757 -
758 -)))
759 759  
760 -(((
761 -**V1.0.**
762 -)))
689 +=== 2.9.2  Power consumption Analyze ===
763 763  
764 764  (((
765 -Release
692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
766 766  )))
767 767  
768 768  
769 -== 2.11 ​Battery Analysis ==
770 -
771 -=== 2.11.1 ​Battery Type ===
772 -
773 773  (((
774 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 +Instruction to use as below:
775 775  )))
776 776  
777 777  (((
778 -The battery is designed to last for more than 5 years for the LSN50.
701 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
779 779  )))
780 780  
704 +
781 781  (((
782 -(((
783 -The battery-related documents are as below:
706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
784 784  )))
785 -)))
786 786  
787 787  * (((
788 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
710 +Product Model
789 789  )))
790 790  * (((
791 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
713 +Uplink Interval
792 792  )))
793 793  * (((
794 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
716 +Working Mode
795 795  )))
796 796  
797 - [[image:image-20220610172436-1.png]]
719 +(((
720 +And the Life expectation in difference case will be shown on the right.
721 +)))
798 798  
723 +[[image:image-20220708141352-7.jpeg]]
799 799  
800 800  
801 -=== 2.11.2 ​Battery Note ===
802 802  
727 +=== 2.9.3  ​Battery Note ===
728 +
803 803  (((
804 804  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
805 805  )))
... ... @@ -806,302 +806,176 @@
806 806  
807 807  
808 808  
809 -=== 2.11.3 Replace the battery ===
735 +=== 2.9. Replace the battery ===
810 810  
811 811  (((
812 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
813 813  )))
814 814  
741 +
742 +
743 += 3. ​ Access NB-IoT Module =
744 +
815 815  (((
816 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
746 +Users can directly access the AT command set of the NB-IoT module.
817 817  )))
818 818  
819 819  (((
820 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
821 821  )))
822 822  
753 +[[image:1657261278785-153.png]]
823 823  
824 824  
825 -= 3. ​Using the AT Commands =
826 826  
827 -== 3.1 Access AT Commands ==
757 += 4.  Using the AT Commands =
828 828  
759 +== 4.1  Access AT Commands ==
829 829  
830 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
831 831  
832 -[[image:1654501986557-872.png||height="391" width="800"]]
833 833  
764 +AT+<CMD>?  : Help on <CMD>
834 834  
835 -Or if you have below board, use below connection:
766 +AT+<CMD>         : Run <CMD>
836 836  
768 +AT+<CMD>=<value> : Set the value
837 837  
838 -[[image:1654502005655-729.png||height="503" width="801"]]
770 +AT+<CMD>=?  : Get the value
839 839  
840 840  
841 -
842 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
843 -
844 -
845 - [[image:1654502050864-459.png||height="564" width="806"]]
846 -
847 -
848 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
849 -
850 -
851 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
852 -
853 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 -
855 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 -
859 -
860 860  (% style="color:#037691" %)**General Commands**(%%)      
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
775 +AT  : Attention       
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
777 +AT?  : Short Help     
865 865  
866 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
779 +ATZ  : MCU Reset    
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
781 +AT+TDC  : Application Data Transmission Interval
869 869  
783 +AT+CFG  : Print all configurations
870 870  
871 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
785 +AT+CFGMOD           : Working mode selection
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
787 +AT+INTMOD            : Set the trigger interrupt mode
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
789 +AT+5VT  : Set extend the time of 5V power  
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
791 +AT+PRO  : Choose agreement
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
793 +AT+WEIGRE  : Get weight or set weight to 0
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
795 +AT+WEIGAP  : Get or Set the GapValue of weight
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
797 +AT+RXDL  : Extend the sending and receiving time
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
799 +AT+CNTFAC  : Get or set counting parameters
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
801 +AT+SERVADDR  : Server Address
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
804 +(% style="color:#037691" %)**COAP Management**      
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
806 +AT+URI            : Resource parameters
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
809 +(% style="color:#037691" %)**UDP Management**
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
811 +AT+CFM          : Upload confirmation mode (only valid for UDP)
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
814 +(% style="color:#037691" %)**MQTT Management**
904 904  
816 +AT+CLIENT               : Get or Set MQTT client
905 905  
906 -(% style="color:#037691" %)**LoRa Network Management**
818 +AT+UNAME  : Get or Set MQTT Username
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
820 +AT+PWD                  : Get or Set MQTT password
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
822 +AT+PUBTOPI : Get or Set MQTT publish topic
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
824 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
827 +(% style="color:#037691" %)**Information**          
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
829 +AT+FDR  : Factory Data Reset
919 919  
920 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
831 +AT+PWOR : Serial Access Password
921 921  
922 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
923 923  
924 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
925 925  
926 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
835 += ​5.  FAQ =
927 927  
928 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
837 +== 5.1 How to Upgrade Firmware ==
929 929  
930 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
931 931  
932 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 -
938 -
939 -(% style="color:#037691" %)**Information** 
940 -
941 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 -
943 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 -
945 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 -
947 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 -
949 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 -
951 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 -
953 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 -
955 -
956 -= ​4. FAQ =
957 -
958 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 -
960 960  (((
961 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 -When downloading the images, choose the required image file for download. ​
841 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
963 963  )))
964 964  
965 965  (((
966 -
845 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
967 967  )))
968 968  
969 969  (((
970 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
971 971  )))
972 972  
973 -(((
974 -
975 -)))
976 976  
977 -(((
978 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 -)))
980 980  
981 -(((
982 -
983 -)))
854 +== 5.2  Can I calibrate NSE01 to different soil types? ==
984 984  
985 985  (((
986 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
987 987  )))
988 988  
989 -[[image:image-20220606154726-3.png]]
990 990  
861 += 6.  Trouble Shooting =
991 991  
992 -When you use the TTN network, the US915 frequency bands use are:
863 +== 6.1  ​Connection problem when uploading firmware ==
993 993  
994 -* 903.9 - SF7BW125 to SF10BW125
995 -* 904.1 - SF7BW125 to SF10BW125
996 -* 904.3 - SF7BW125 to SF10BW125
997 -* 904.5 - SF7BW125 to SF10BW125
998 -* 904.7 - SF7BW125 to SF10BW125
999 -* 904.9 - SF7BW125 to SF10BW125
1000 -* 905.1 - SF7BW125 to SF10BW125
1001 -* 905.3 - SF7BW125 to SF10BW125
1002 -* 904.6 - SF8BW500
1003 1003  
1004 1004  (((
1005 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 -
1007 -* (% style="color:#037691" %)**AT+CHE=2**
1008 -* (% style="color:#037691" %)**ATZ**
867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1009 1009  )))
1010 1010  
870 +(% class="wikigeneratedid" %)
1011 1011  (((
1012 1012  
1013 -
1014 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1015 1015  )))
1016 1016  
1017 -(((
1018 -
1019 -)))
1020 1020  
1021 -(((
1022 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 -)))
876 +== 6.2  AT Command input doesn't work ==
1024 1024  
1025 -[[image:image-20220606154825-4.png]]
1026 -
1027 -
1028 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 -
1030 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 -
1032 -
1033 -= 5. Trouble Shooting =
1034 -
1035 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 -
1037 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 -
1039 -
1040 -== 5.2 AT Command input doesn't work ==
1041 -
1042 1042  (((
1043 1043  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 -)))
1045 1045  
1046 -
1047 -== 5.3 Device rejoin in at the second uplink packet ==
1048 -
1049 -(% style="color:#4f81bd" %)**Issue describe as below:**
1050 -
1051 -[[image:1654500909990-784.png]]
1052 -
1053 -
1054 -(% style="color:#4f81bd" %)**Cause for this issue:**
1055 -
1056 -(((
1057 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
881 +
1058 1058  )))
1059 1059  
1060 1060  
1061 -(% style="color:#4f81bd" %)**Solution: **
885 += 7. ​ Order Info =
1062 1062  
1063 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1064 1064  
1065 -[[image:1654500929571-736.png||height="458" width="832"]]
888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1066 1066  
1067 1067  
1068 -= 6. ​Order Info =
1069 -
1070 -
1071 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 -
1073 -
1074 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 -
1076 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 -
1085 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 -
1087 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 -
1090 1090  (% class="wikigeneratedid" %)
1091 1091  (((
1092 1092  
1093 1093  )))
1094 1094  
1095 -= 7. Packing Info =
896 += 8.  Packing Info =
1096 1096  
1097 1097  (((
1098 1098  
1099 1099  
1100 1100  (% style="color:#037691" %)**Package Includes**:
1101 -)))
1102 1102  
1103 -* (((
1104 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 +* External antenna x 1
1105 1105  )))
1106 1106  
1107 1107  (((
... ... @@ -1108,24 +1108,19 @@
1108 1108  
1109 1109  
1110 1110  (% style="color:#037691" %)**Dimension and weight**:
1111 -)))
1112 1112  
1113 -* (((
1114 -Device Size: cm
912 +* Size: 195 x 125 x 55 mm
913 +* Weight:   420g
1115 1115  )))
1116 -* (((
1117 -Device Weight: g
1118 -)))
1119 -* (((
1120 -Package Size / pcs : cm
1121 -)))
1122 -* (((
1123 -Weight / pcs : g
1124 1124  
916 +(((
1125 1125  
918 +
919 +
920 +
1126 1126  )))
1127 1127  
1128 -= 8. Support =
923 += 9.  Support =
1129 1129  
1130 1130  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1131 1131  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0