<
From version < 45.3 >
edited by Xiaoling
on 2022/07/08 10:24
To version < 65.12 >
edited by Xiaoling
on 2022/07/08 15:49
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -13,11 +13,14 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 +{{toc/}}
16 16  
17 17  
18 18  
19 19  
20 20  
22 +
23 +
21 21  = 1.  Introduction =
22 22  
23 23  == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
... ... @@ -25,13 +25,21 @@
25 25  (((
26 26  
27 27  
31 +(((
28 28  Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
33 +)))
29 29  
35 +(((
30 30  It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
37 +)))
31 31  
39 +(((
32 32  The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
41 +)))
33 33  
43 +(((
34 34  NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
45 +)))
35 35  
36 36  
37 37  )))
... ... @@ -43,9 +43,8 @@
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
47 47  
48 -
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
... ... @@ -60,7 +60,6 @@
60 60  * 8500mAh Battery for long term use
61 61  
62 62  
63 -
64 64  == 1.3  Specification ==
65 65  
66 66  
... ... @@ -69,7 +69,6 @@
69 69  * Supply Voltage: 2.1v ~~ 3.6v
70 70  * Operating Temperature: -40 ~~ 85°C
71 71  
72 -
73 73  (% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 75  * - B1 @H-FDD: 2100MHz
... ... @@ -79,9 +79,8 @@
79 79  * - B20 @H-FDD: 800MHz
80 80  * - B28 @H-FDD: 700MHz
81 81  
90 +Probe(% style="color:#037691" %)** Specification:**
82 82  
83 -(% style="color:#037691" %)**Probe Specification:**
84 -
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 87  [[image:image-20220708101224-1.png]]
... ... @@ -124,984 +124,695 @@
124 124  
125 125  
126 126  
127 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
134 +== 2.2 ​ Configure the NSE01 ==
128 128  
129 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
130 130  
137 +=== 2.2.1 Test Requirement ===
131 131  
132 -[[image:1654503992078-669.png]]
133 133  
134 -
135 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
136 -
137 -
138 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 -
140 -Each LSE01 is shipped with a sticker with the default device EUI as below:
141 -
142 -[[image:image-20220606163732-6.jpeg]]
143 -
144 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 -
146 -**Add APP EUI in the application**
147 -
148 -
149 -[[image:1654504596150-405.png]]
150 -
151 -
152 -
153 -**Add APP KEY and DEV EUI**
154 -
155 -[[image:1654504683289-357.png]]
156 -
157 -
158 -
159 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 -
161 -
162 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 -
164 -[[image:image-20220606163915-7.png]]
165 -
166 -
167 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 -
169 -[[image:1654504778294-788.png]]
170 -
171 -
172 -
173 -== 2.3 Uplink Payload ==
174 -
175 -
176 -=== 2.3.1 MOD~=0(Default Mode) ===
177 -
178 -LSE01 will uplink payload via LoRaWAN with below payload format: 
179 -
180 180  (((
181 -Uplink payload includes in total 11 bytes.
141 +To use NSE01 in your city, make sure meet below requirements:
182 182  )))
183 183  
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
186 -**Size**
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
187 187  
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 -Temperature
192 -
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 -MOD & Digital Interrupt
196 -
197 -(Optional)
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
198 198  )))
199 199  
200 -=== 2.3.2 MOD~=1(Original value) ===
201 201  
202 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
153 +[[image:1657249419225-449.png]]
203 203  
204 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 -|(((
206 -**Size**
207 207  
208 -**(bytes)**
209 -)))|**2**|**2**|**2**|**2**|**2**|**1**
210 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 -Temperature
212 212  
213 -(Reserve, Ignore now)
214 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 -MOD & Digital Interrupt
157 +=== 2.2.2 Insert SIM card ===
216 216  
217 -(Optional)
218 -)))
219 -
220 -=== 2.3.3 Battery Info ===
221 -
222 222  (((
223 -Check the battery voltage for LSE01.
160 +Insert the NB-IoT Card get from your provider.
224 224  )))
225 225  
226 226  (((
227 -Ex1: 0x0B45 = 2885mV
164 +User need to take out the NB-IoT module and insert the SIM card like below:
228 228  )))
229 229  
230 -(((
231 -Ex2: 0x0B49 = 2889mV
232 -)))
233 233  
168 +[[image:1657249468462-536.png]]
234 234  
235 235  
236 -=== 2.3.4 Soil Moisture ===
237 237  
238 -(((
239 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
240 -)))
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
241 241  
242 242  (((
243 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 -)))
245 -
246 246  (((
247 -
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
248 248  )))
249 -
250 -(((
251 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 252  )))
253 253  
254 254  
181 +**Connection:**
255 255  
256 -=== 2.3.5 Soil Temperature ===
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
257 257  
258 -(((
259 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 -)))
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
261 261  
262 -(((
263 -**Example**:
264 -)))
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
265 265  
266 -(((
267 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 -)))
269 269  
270 -(((
271 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 -)))
190 +In the PC, use below serial tool settings:
273 273  
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
274 274  
275 -
276 -=== 2.3.6 Soil Conductivity (EC) ===
277 -
278 278  (((
279 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
280 280  )))
281 281  
282 -(((
283 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 -)))
202 +[[image:image-20220708110657-3.png]]
285 285  
286 286  (((
287 -Generally, the EC value of irrigation water is less than 800uS / cm.
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
288 288  )))
289 289  
290 -(((
291 -
292 -)))
293 293  
294 -(((
295 -
296 -)))
297 297  
298 -=== 2.3.7 MOD ===
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
299 299  
300 -Firmware version at least v2.1 supports changing mode.
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
301 301  
302 -For example, bytes[10]=90
303 303  
304 -mod=(bytes[10]>>7)&0x01=1.
215 +**Use below commands:**
305 305  
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
306 306  
307 -**Downlink Command:**
221 +For parameter description, please refer to AT command set
308 308  
309 -If payload = 0x0A00, workmode=0
223 +[[image:1657249793983-486.png]]
310 310  
311 -If** **payload =** **0x0A01, workmode=1
312 312  
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
313 313  
228 +[[image:1657249831934-534.png]]
314 314  
315 -=== 2.3.8 ​Decode payload in The Things Network ===
316 316  
317 -While using TTN network, you can add the payload format to decode the payload.
318 318  
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
319 319  
320 -[[image:1654505570700-128.png]]
234 +This feature is supported since firmware version v1.0.1
321 321  
322 -(((
323 -The payload decoder function for TTN is here:
324 -)))
325 325  
326 -(((
327 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 -)))
237 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
329 329  
241 +[[image:1657249864775-321.png]]
330 330  
331 -== 2.4 Uplink Interval ==
332 332  
333 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
244 +[[image:1657249930215-289.png]]
334 334  
335 335  
336 336  
337 -== 2.5 Downlink Payload ==
248 +=== 2.2.6 Use MQTT protocol to uplink data ===
338 338  
339 -By default, LSE50 prints the downlink payload to console port.
250 +This feature is supported since firmware version v110
340 340  
341 -[[image:image-20220606165544-8.png]]
342 342  
253 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
259 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
343 343  
344 -(((
345 -(% style="color:blue" %)**Examples:**
346 -)))
261 +[[image:1657249978444-674.png]]
347 347  
348 -(((
349 -
350 -)))
351 351  
352 -* (((
353 -(% style="color:blue" %)**Set TDC**
354 -)))
264 +[[image:1657249990869-686.png]]
355 355  
356 -(((
357 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 -)))
359 359  
360 360  (((
361 -Payload:    01 00 00 1E    TDC=30S
268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
362 362  )))
363 363  
364 -(((
365 -Payload:    01 00 00 3C    TDC=60S
366 -)))
367 367  
368 -(((
369 -
370 -)))
371 371  
372 -* (((
373 -(% style="color:blue" %)**Reset**
374 -)))
273 +=== 2.2.7 Use TCP protocol to uplink data ===
375 375  
376 -(((
377 -If payload = 0x04FF, it will reset the LSE01
378 -)))
275 +This feature is supported since firmware version v110
379 379  
380 380  
381 -* (% style="color:blue" %)**CFM**
278 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
279 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
382 382  
383 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
281 +[[image:1657250217799-140.png]]
384 384  
385 385  
284 +[[image:1657250255956-604.png]]
386 386  
387 -== 2.6 ​Show Data in DataCake IoT Server ==
388 388  
389 -(((
390 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
391 -)))
392 392  
393 -(((
394 -
395 -)))
288 +=== 2.2.8 Change Update Interval ===
396 396  
290 +User can use below command to change the (% style="color:green" %)**uplink interval**.
291 +
292 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
293 +
397 397  (((
398 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
295 +(% style="color:red" %)**NOTE:**
399 399  )))
400 400  
401 401  (((
402 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
299 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
403 403  )))
404 404  
405 405  
406 -[[image:1654505857935-743.png]]
407 407  
304 +== 2.3  Uplink Payload ==
408 408  
409 -[[image:1654505874829-548.png]]
306 +In this mode, uplink payload includes in total 18 bytes
410 410  
308 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
309 +|=(% style="width: 60px;" %)(((
310 +**Size(bytes)**
311 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
312 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
411 411  
412 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
413 413  
414 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
415 415  
317 +[[image:image-20220708111918-4.png]]
416 416  
417 -[[image:1654505905236-553.png]]
418 418  
320 +The payload is ASCII string, representative same HEX:
419 419  
420 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
322 +0x72403155615900640c7817075e0a8c02f900 where:
421 421  
422 -[[image:1654505925508-181.png]]
324 +* Device ID: 0x 724031556159 = 724031556159
325 +* Version: 0x0064=100=1.0.0
423 423  
327 +* BAT: 0x0c78 = 3192 mV = 3.192V
328 +* Singal: 0x17 = 23
329 +* Soil Moisture: 0x075e= 1886 = 18.86  %
330 +* Soil Temperature:0x0a8c =2700=27 °C
331 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
332 +* Interrupt: 0x00 = 0
424 424  
425 425  
426 -== 2.7 Frequency Plans ==
335 +== 2. Payload Explanation and Sensor Interface ==
427 427  
428 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
429 429  
338 +=== 2.4.1  Device ID ===
430 430  
431 -=== 2.7.1 EU863-870 (EU868) ===
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
432 432  
433 -(% style="color:#037691" %)** Uplink:**
342 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
434 434  
435 -868.1 - SF7BW125 to SF12BW125
344 +**Example:**
436 436  
437 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
346 +AT+DEUI=A84041F15612
438 438  
439 -868.5 - SF7BW125 to SF12BW125
348 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
440 440  
441 -867.1 - SF7BW125 to SF12BW125
442 442  
443 -867.3 - SF7BW125 to SF12BW125
444 444  
445 -867.5 - SF7BW125 to SF12BW125
352 +=== 2.4.2  Version Info ===
446 446  
447 -867.7 - SF7BW125 to SF12BW125
354 +Specify the software version: 0x64=100, means firmware version 1.00.
448 448  
449 -867.9 - SF7BW125 to SF12BW125
356 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
450 450  
451 -868.8 - FSK
452 452  
453 453  
454 -(% style="color:#037691" %)** Downlink:**
360 +=== 2.4.3  Battery Info ===
455 455  
456 -Uplink channels 1-9 (RX1)
362 +(((
363 +Check the battery voltage for LSE01.
364 +)))
457 457  
458 -869.525 - SF9BW125 (RX2 downlink only)
366 +(((
367 +Ex1: 0x0B45 = 2885mV
368 +)))
459 459  
370 +(((
371 +Ex2: 0x0B49 = 2889mV
372 +)))
460 460  
461 461  
462 -=== 2.7.2 US902-928(US915) ===
463 463  
464 -Used in USA, Canada and South America. Default use CHE=2
376 +=== 2.4.4  Signal Strength ===
465 465  
466 -(% style="color:#037691" %)**Uplink:**
378 +NB-IoT Network signal Strength.
467 467  
468 -903.9 - SF7BW125 to SF10BW125
380 +**Ex1: 0x1d = 29**
469 469  
470 -904.1 - SF7BW125 to SF10BW125
382 +(% style="color:blue" %)**0**(%%)  -113dBm or less
471 471  
472 -904.3 - SF7BW125 to SF10BW125
384 +(% style="color:blue" %)**1**(%%)  -111dBm
473 473  
474 -904.5 - SF7BW125 to SF10BW125
386 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
475 475  
476 -904.7 - SF7BW125 to SF10BW125
388 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
477 477  
478 -904.9 - SF7BW125 to SF10BW125
390 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
479 479  
480 -905.1 - SF7BW125 to SF10BW125
481 481  
482 -905.3 - SF7BW125 to SF10BW125
483 483  
394 +=== 2.4.5  Soil Moisture ===
484 484  
485 -(% style="color:#037691" %)**Downlink:**
396 +(((
397 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
398 +)))
486 486  
487 -923.3 - SF7BW500 to SF12BW500
400 +(((
401 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
402 +)))
488 488  
489 -923.9 - SF7BW500 to SF12BW500
404 +(((
405 +
406 +)))
490 490  
491 -924.5 - SF7BW500 to SF12BW500
408 +(((
409 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
410 +)))
492 492  
493 -925.1 - SF7BW500 to SF12BW500
494 494  
495 -925.7 - SF7BW500 to SF12BW500
496 496  
497 -926.3 - SF7BW500 to SF12BW500
414 +=== 2.4.6  Soil Temperature ===
498 498  
499 -926.9 - SF7BW500 to SF12BW500
416 +(((
417 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
418 +)))
500 500  
501 -927.5 - SF7BW500 to SF12BW500
420 +(((
421 +**Example**:
422 +)))
502 502  
503 -923.3 - SF12BW500(RX2 downlink only)
424 +(((
425 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
426 +)))
504 504  
428 +(((
429 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
430 +)))
505 505  
506 506  
507 -=== 2.7.3 CN470-510 (CN470) ===
508 508  
509 -Used in China, Default use CHE=1
434 +=== 2.4.7  Soil Conductivity (EC) ===
510 510  
511 -(% style="color:#037691" %)**Uplink:**
436 +(((
437 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
438 +)))
512 512  
513 -486.3 - SF7BW125 to SF12BW125
440 +(((
441 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
442 +)))
514 514  
515 -486.5 - SF7BW125 to SF12BW125
444 +(((
445 +Generally, the EC value of irrigation water is less than 800uS / cm.
446 +)))
516 516  
517 -486.7 - SF7BW125 to SF12BW125
448 +(((
449 +
450 +)))
518 518  
519 -486.9 - SF7BW125 to SF12BW125
452 +(((
453 +
454 +)))
520 520  
521 -487.1 - SF7BW125 to SF12BW125
456 +=== 2.4. Digital Interrupt ===
522 522  
523 -487.3 - SF7BW125 to SF12BW125
458 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
524 524  
525 -487.5 - SF7BW125 to SF12BW125
460 +The command is:
526 526  
527 -487.7 - SF7BW125 to SF12BW125
462 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
528 528  
529 529  
530 -(% style="color:#037691" %)**Downlink:**
465 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
531 531  
532 -506.7 - SF7BW125 to SF12BW125
533 533  
534 -506.9 - SF7BW125 to SF12BW125
468 +Example:
535 535  
536 -507.1 - SF7BW125 to SF12BW125
470 +0x(00): Normal uplink packet.
537 537  
538 -507.3 - SF7BW125 to SF12BW125
472 +0x(01): Interrupt Uplink Packet.
539 539  
540 -507.5 - SF7BW125 to SF12BW125
541 541  
542 -507.7 - SF7BW125 to SF12BW125
543 543  
544 -507.9 - SF7BW125 to SF12BW125
476 +=== 2.4.9  ​+5V Output ===
545 545  
546 -508.1 - SF7BW125 to SF12BW125
478 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
547 547  
548 -505.3 - SF12BW125 (RX2 downlink only)
549 549  
481 +The 5V output time can be controlled by AT Command.
550 550  
483 +(% style="color:blue" %)**AT+5VT=1000**
551 551  
552 -=== 2.7.4 AU915-928(AU915) ===
485 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
553 553  
554 -Default use CHE=2
555 555  
556 -(% style="color:#037691" %)**Uplink:**
557 557  
558 -916.8 - SF7BW125 to SF12BW125
489 +== 2.5  Downlink Payload ==
559 559  
560 -917.0 - SF7BW125 to SF12BW125
491 +By default, NSE01 prints the downlink payload to console port.
561 561  
562 -917.2 - SF7BW125 to SF12BW125
493 +[[image:image-20220708133731-5.png]]
563 563  
564 -917.4 - SF7BW125 to SF12BW125
565 565  
566 -917.6 - SF7BW125 to SF12BW125
496 +(((
497 +(% style="color:blue" %)**Examples:**
498 +)))
567 567  
568 -917.8 - SF7BW125 to SF12BW125
500 +(((
501 +
502 +)))
569 569  
570 -918.0 - SF7BW125 to SF12BW125
504 +* (((
505 +(% style="color:blue" %)**Set TDC**
506 +)))
571 571  
572 -918.2 - SF7BW125 to SF12BW125
508 +(((
509 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
510 +)))
573 573  
512 +(((
513 +Payload:    01 00 00 1E    TDC=30S
514 +)))
574 574  
575 -(% style="color:#037691" %)**Downlink:**
516 +(((
517 +Payload:    01 00 00 3C    TDC=60S
518 +)))
576 576  
577 -923.3 - SF7BW500 to SF12BW500
520 +(((
521 +
522 +)))
578 578  
579 -923.9 - SF7BW500 to SF12BW500
524 +* (((
525 +(% style="color:blue" %)**Reset**
526 +)))
580 580  
581 -924.5 - SF7BW500 to SF12BW500
528 +(((
529 +If payload = 0x04FF, it will reset the NSE01
530 +)))
582 582  
583 -925.1 - SF7BW500 to SF12BW500
584 584  
585 -925.7 - SF7BW500 to SF12BW500
533 +* (% style="color:blue" %)**INTMOD**
586 586  
587 -926.3 - SF7BW500 to SF12BW500
535 +Downlink Payload: 06000003, Set AT+INTMOD=3
588 588  
589 -926.9 - SF7BW500 to SF12BW500
590 590  
591 -927.5 - SF7BW500 to SF12BW500
592 592  
593 -923.3 - SF12BW500(RX2 downlink only)
539 +== 2. ​LED Indicator ==
594 594  
541 +(((
542 +The NSE01 has an internal LED which is to show the status of different state.
595 595  
596 596  
597 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
545 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
546 +* Then the LED will be on for 1 second means device is boot normally.
547 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
548 +* For each uplink probe, LED will be on for 500ms.
549 +)))
598 598  
599 -(% style="color:#037691" %)**Default Uplink channel:**
600 600  
601 -923.2 - SF7BW125 to SF10BW125
602 602  
603 -923.4 - SF7BW125 to SF10BW125
604 604  
554 +== 2.7  Installation in Soil ==
605 605  
606 -(% style="color:#037691" %)**Additional Uplink Channel**:
556 +__**Measurement the soil surface**__
607 607  
608 -(OTAA mode, channel added by JoinAccept message)
558 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
609 609  
610 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
560 +[[image:1657259653666-883.png]] ​
611 611  
612 -922.2 - SF7BW125 to SF10BW125
613 613  
614 -922.4 - SF7BW125 to SF10BW125
563 +(((
564 +
615 615  
616 -922.6 - SF7BW125 to SF10BW125
566 +(((
567 +Dig a hole with diameter > 20CM.
568 +)))
617 617  
618 -922.8 - SF7BW125 to SF10BW125
570 +(((
571 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
572 +)))
573 +)))
619 619  
620 -923.0 - SF7BW125 to SF10BW125
575 +[[image:1654506665940-119.png]]
621 621  
622 -922.0 - SF7BW125 to SF10BW125
577 +(((
578 +
579 +)))
623 623  
624 624  
625 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
582 +== 2.8  ​Firmware Change Log ==
626 626  
627 -923.6 - SF7BW125 to SF10BW125
628 628  
629 -923.8 - SF7BW125 to SF10BW125
585 +Download URL & Firmware Change log
630 630  
631 -924.0 - SF7BW125 to SF10BW125
587 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
632 632  
633 -924.2 - SF7BW125 to SF10BW125
634 634  
635 -924.4 - SF7BW125 to SF10BW125
590 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
636 636  
637 -924.6 - SF7BW125 to SF10BW125
638 638  
639 639  
640 -(% style="color:#037691" %)** Downlink:**
594 +== 2.9  ​Battery Analysis ==
641 641  
642 -Uplink channels 1-8 (RX1)
596 +=== 2.9.1  ​Battery Type ===
643 643  
644 -923.2 - SF10BW125 (RX2)
645 645  
599 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
646 646  
647 647  
648 -=== 2.7.6 KR920-923 (KR920) ===
602 +The battery is designed to last for several years depends on the actually use environment and update interval. 
649 649  
650 -Default channel:
651 651  
652 -922.1 - SF7BW125 to SF12BW125
605 +The battery related documents as below:
653 653  
654 -922.3 - SF7BW125 to SF12BW125
607 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
608 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
609 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
655 655  
656 -922.5 - SF7BW125 to SF12BW125
657 -
658 -
659 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 -
661 -922.1 - SF7BW125 to SF12BW125
662 -
663 -922.3 - SF7BW125 to SF12BW125
664 -
665 -922.5 - SF7BW125 to SF12BW125
666 -
667 -922.7 - SF7BW125 to SF12BW125
668 -
669 -922.9 - SF7BW125 to SF12BW125
670 -
671 -923.1 - SF7BW125 to SF12BW125
672 -
673 -923.3 - SF7BW125 to SF12BW125
674 -
675 -
676 -(% style="color:#037691" %)**Downlink:**
677 -
678 -Uplink channels 1-7(RX1)
679 -
680 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 -
682 -
683 -
684 -=== 2.7.7 IN865-867 (IN865) ===
685 -
686 -(% style="color:#037691" %)** Uplink:**
687 -
688 -865.0625 - SF7BW125 to SF12BW125
689 -
690 -865.4025 - SF7BW125 to SF12BW125
691 -
692 -865.9850 - SF7BW125 to SF12BW125
693 -
694 -
695 -(% style="color:#037691" %) **Downlink:**
696 -
697 -Uplink channels 1-3 (RX1)
698 -
699 -866.550 - SF10BW125 (RX2)
700 -
701 -
702 -
703 -
704 -== 2.8 LED Indicator ==
705 -
706 -The LSE01 has an internal LED which is to show the status of different state.
707 -
708 -* Blink once when device power on.
709 -* Solid ON for 5 seconds once device successful Join the network.
710 -* Blink once when device transmit a packet.
711 -
712 -== 2.9 Installation in Soil ==
713 -
714 -**Measurement the soil surface**
715 -
716 -
717 -[[image:1654506634463-199.png]] ​
718 -
719 719  (((
720 -(((
721 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
612 +[[image:image-20220708140453-6.png]]
722 722  )))
723 -)))
724 724  
725 725  
726 726  
727 -[[image:1654506665940-119.png]]
617 +=== 2.9.2  Power consumption Analyze ===
728 728  
729 729  (((
730 -Dig a hole with diameter > 20CM.
620 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
731 731  )))
732 732  
733 -(((
734 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
735 -)))
736 736  
737 -
738 -== 2.10 ​Firmware Change Log ==
739 -
740 740  (((
741 -**Firmware download link:**
625 +Instruction to use as below:
742 742  )))
743 743  
744 744  (((
745 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
629 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
746 746  )))
747 747  
748 -(((
749 -
750 -)))
751 751  
752 752  (((
753 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
634 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
754 754  )))
755 755  
756 -(((
757 -
637 +* (((
638 +Product Model
758 758  )))
759 -
760 -(((
761 -**V1.0.**
640 +* (((
641 +Uplink Interval
762 762  )))
643 +* (((
644 +Working Mode
645 +)))
763 763  
764 764  (((
765 -Release
648 +And the Life expectation in difference case will be shown on the right.
766 766  )))
767 767  
651 +[[image:image-20220708141352-7.jpeg]]
768 768  
769 -== 2.11 ​Battery Analysis ==
770 770  
771 -=== 2.11.1 ​Battery Type ===
772 772  
773 -(((
774 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
775 -)))
655 +=== 2.9.3  ​Battery Note ===
776 776  
777 777  (((
778 -The battery is designed to last for more than 5 years for the LSN50.
658 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
779 779  )))
780 780  
781 -(((
782 -(((
783 -The battery-related documents are as below:
784 -)))
785 -)))
786 786  
787 -* (((
788 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
789 -)))
790 -* (((
791 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
792 -)))
793 -* (((
794 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
795 -)))
796 796  
797 - [[image:image-20220610172436-1.png]]
663 +=== 2.9.4  Replace the battery ===
798 798  
799 -
800 -
801 -=== 2.11.2 ​Battery Note ===
802 -
803 803  (((
804 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
666 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
805 805  )))
806 806  
807 807  
808 808  
809 -=== 2.11.3 Replace the battery ===
671 += 3. ​ Access NB-IoT Module =
810 810  
811 811  (((
812 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
674 +Users can directly access the AT command set of the NB-IoT module.
813 813  )))
814 814  
815 815  (((
816 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
678 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
817 817  )))
818 818  
819 -(((
820 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 -)))
681 +[[image:1657261278785-153.png]]
822 822  
823 823  
824 824  
825 -= 3. Using the AT Commands =
685 += 4.  Using the AT Commands =
826 826  
827 -== 3.1 Access AT Commands ==
687 +== 4.1  Access AT Commands ==
828 828  
689 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
829 829  
830 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
831 831  
832 -[[image:1654501986557-872.png||height="391" width="800"]]
692 +AT+<CMD>?  : Help on <CMD>
833 833  
694 +AT+<CMD>         : Run <CMD>
834 834  
835 -Or if you have below board, use below connection:
696 +AT+<CMD>=<value> : Set the value
836 836  
698 +AT+<CMD>=?  : Get the value
837 837  
838 -[[image:1654502005655-729.png||height="503" width="801"]]
839 839  
840 -
841 -
842 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
843 -
844 -
845 - [[image:1654502050864-459.png||height="564" width="806"]]
846 -
847 -
848 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
849 -
850 -
851 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
852 -
853 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 -
855 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 -
857 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 -
859 -
860 860  (% style="color:#037691" %)**General Commands**(%%)      
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
703 +AT  : Attention       
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
705 +AT?  : Short Help     
865 865  
866 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
707 +ATZ  : MCU Reset    
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
709 +AT+TDC  : Application Data Transmission Interval
869 869  
711 +AT+CFG  : Print all configurations
870 870  
871 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
713 +AT+CFGMOD           : Working mode selection
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
715 +AT+INTMOD            : Set the trigger interrupt mode
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
717 +AT+5VT  : Set extend the time of 5V power  
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
719 +AT+PRO  : Choose agreement
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
721 +AT+WEIGRE  : Get weight or set weight to 0
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
723 +AT+WEIGAP  : Get or Set the GapValue of weight
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
725 +AT+RXDL  : Extend the sending and receiving time
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
727 +AT+CNTFAC  : Get or set counting parameters
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
729 +AT+SERVADDR  : Server Address
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
732 +(% style="color:#037691" %)**COAP Management**      
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
734 +AT+URI            : Resource parameters
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
737 +(% style="color:#037691" %)**UDP Management**
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
739 +AT+CFM          : Upload confirmation mode (only valid for UDP)
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
742 +(% style="color:#037691" %)**MQTT Management**
904 904  
744 +AT+CLIENT               : Get or Set MQTT client
905 905  
906 -(% style="color:#037691" %)**LoRa Network Management**
746 +AT+UNAME  : Get or Set MQTT Username
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
748 +AT+PWD                  : Get or Set MQTT password
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
750 +AT+PUBTOPI : Get or Set MQTT publish topic
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
752 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
755 +(% style="color:#037691" %)**Information**          
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
757 +AT+FDR  : Factory Data Reset
919 919  
920 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
759 +AT+PWOR : Serial Access Password
921 921  
922 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
923 923  
924 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
925 925  
926 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
763 += ​5.  FAQ =
927 927  
928 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
765 +== 5.1 How to Upgrade Firmware ==
929 929  
930 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
931 931  
932 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 -
938 -
939 -(% style="color:#037691" %)**Information** 
940 -
941 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 -
943 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 -
945 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 -
947 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 -
949 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 -
951 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 -
953 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 -
955 -
956 -= ​4. FAQ =
957 -
958 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 -
960 960  (((
961 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 -When downloading the images, choose the required image file for download. ​
769 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
963 963  )))
964 964  
965 965  (((
966 -
773 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
967 967  )))
968 968  
969 969  (((
970 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
777 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
971 971  )))
972 972  
973 -(((
974 -
975 -)))
976 976  
977 -(((
978 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 -)))
980 980  
981 -(((
982 -
983 -)))
782 += 6.  Trouble Shooting =
984 984  
985 -(((
986 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 -)))
784 +== 6.1  ​Connection problem when uploading firmware ==
988 988  
989 -[[image:image-20220606154726-3.png]]
990 990  
991 -
992 -When you use the TTN network, the US915 frequency bands use are:
993 -
994 -* 903.9 - SF7BW125 to SF10BW125
995 -* 904.1 - SF7BW125 to SF10BW125
996 -* 904.3 - SF7BW125 to SF10BW125
997 -* 904.5 - SF7BW125 to SF10BW125
998 -* 904.7 - SF7BW125 to SF10BW125
999 -* 904.9 - SF7BW125 to SF10BW125
1000 -* 905.1 - SF7BW125 to SF10BW125
1001 -* 905.3 - SF7BW125 to SF10BW125
1002 -* 904.6 - SF8BW500
1003 -
787 +(% class="wikigeneratedid" %)
1004 1004  (((
1005 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 -
1007 -* (% style="color:#037691" %)**AT+CHE=2**
1008 -* (% style="color:#037691" %)**ATZ**
789 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
1009 1009  )))
1010 1010  
1011 -(((
1012 -
1013 1013  
1014 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1015 -)))
1016 1016  
1017 -(((
1018 -
1019 -)))
794 +== 6.2  AT Command input doesn't work ==
1020 1020  
1021 1021  (((
1022 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 -)))
1024 -
1025 -[[image:image-20220606154825-4.png]]
1026 -
1027 -
1028 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 -
1030 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 -
1032 -
1033 -= 5. Trouble Shooting =
1034 -
1035 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 -
1037 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 -
1039 -
1040 -== 5.2 AT Command input doesn't work ==
1041 -
1042 -(((
1043 1043  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 1044  )))
1045 1045  
1046 1046  
1047 -== 5.3 Device rejoin in at the second uplink packet ==
1048 1048  
1049 -(% style="color:#4f81bd" %)**Issue describe as below:**
802 += 7. ​ Order Info =
1050 1050  
1051 -[[image:1654500909990-784.png]]
1052 1052  
805 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1053 1053  
1054 -(% style="color:#4f81bd" %)**Cause for this issue:**
1055 1055  
1056 -(((
1057 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1058 -)))
1059 -
1060 -
1061 -(% style="color:#4f81bd" %)**Solution: **
1062 -
1063 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1064 -
1065 -[[image:1654500929571-736.png||height="458" width="832"]]
1066 -
1067 -
1068 -= 6. ​Order Info =
1069 -
1070 -
1071 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 -
1073 -
1074 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 -
1076 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 -
1085 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 -
1087 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 -
1090 1090  (% class="wikigeneratedid" %)
1091 1091  (((
1092 1092  
1093 1093  )))
1094 1094  
1095 -= 7. Packing Info =
813 += 8.  Packing Info =
1096 1096  
1097 1097  (((
1098 1098  
1099 1099  
1100 1100  (% style="color:#037691" %)**Package Includes**:
1101 -)))
1102 1102  
1103 -* (((
1104 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
820 +
821 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
822 +* External antenna x 1
1105 1105  )))
1106 1106  
1107 1107  (((
... ... @@ -1108,24 +1108,20 @@
1108 1108  
1109 1109  
1110 1110  (% style="color:#037691" %)**Dimension and weight**:
1111 -)))
1112 1112  
1113 -* (((
1114 -Device Size: cm
830 +
831 +* Size: 195 x 125 x 55 mm
832 +* Weight:   420g
1115 1115  )))
1116 -* (((
1117 -Device Weight: g
1118 -)))
1119 -* (((
1120 -Package Size / pcs : cm
1121 -)))
1122 -* (((
1123 -Weight / pcs : g
1124 1124  
835 +(((
1125 1125  
837 +
838 +
839 +
1126 1126  )))
1127 1127  
1128 -= 8. Support =
842 += 9.  Support =
1129 1129  
1130 1130  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1131 1131  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0