<
From version < 45.3 >
edited by Xiaoling
on 2022/07/08 10:24
To version < 62.3 >
edited by Xiaoling
on 2022/07/08 14:16
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -59,8 +59,6 @@
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
62 -
63 -
64 64  == 1.3  Specification ==
65 65  
66 66  
... ... @@ -69,7 +69,6 @@
69 69  * Supply Voltage: 2.1v ~~ 3.6v
70 70  * Operating Temperature: -40 ~~ 85°C
71 71  
72 -
73 73  (% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 75  * - B1 @H-FDD: 2100MHz
... ... @@ -79,7 +79,6 @@
79 79  * - B20 @H-FDD: 800MHz
80 80  * - B28 @H-FDD: 700MHz
81 81  
82 -
83 83  (% style="color:#037691" %)**Probe Specification:**
84 84  
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
... ... @@ -124,682 +124,521 @@
124 124  
125 125  
126 126  
127 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
123 +== 2.2 ​ Configure the NSE01 ==
128 128  
129 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
130 130  
126 +=== 2.2.1 Test Requirement ===
131 131  
132 -[[image:1654503992078-669.png]]
133 133  
129 +To use NSE01 in your city, make sure meet below requirements:
134 134  
135 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
136 136  
137 -
138 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 -
140 -Each LSE01 is shipped with a sticker with the default device EUI as below:
141 -
142 -[[image:image-20220606163732-6.jpeg]]
143 -
144 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 -
146 -**Add APP EUI in the application**
147 -
148 -
149 -[[image:1654504596150-405.png]]
150 -
151 -
152 -
153 -**Add APP KEY and DEV EUI**
154 -
155 -[[image:1654504683289-357.png]]
156 -
157 -
158 -
159 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 -
161 -
162 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 -
164 -[[image:image-20220606163915-7.png]]
165 -
166 -
167 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 -
169 -[[image:1654504778294-788.png]]
170 -
171 -
172 -
173 -== 2.3 Uplink Payload ==
174 -
175 -
176 -=== 2.3.1 MOD~=0(Default Mode) ===
177 -
178 -LSE01 will uplink payload via LoRaWAN with below payload format: 
179 -
180 180  (((
181 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
182 182  )))
183 183  
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
186 -**Size**
187 187  
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 -Temperature
140 +[[image:1657249419225-449.png]]
192 192  
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 -MOD & Digital Interrupt
196 196  
197 -(Optional)
198 -)))
199 199  
200 -=== 2.3.2 MOD~=1(Original value) ===
144 +=== 2.2.2 Insert SIM card ===
201 201  
202 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
146 +Insert the NB-IoT Card get from your provider.
203 203  
204 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 -|(((
206 -**Size**
148 +User need to take out the NB-IoT module and insert the SIM card like below:
207 207  
208 -**(bytes)**
209 -)))|**2**|**2**|**2**|**2**|**2**|**1**
210 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 -Temperature
212 212  
213 -(Reserve, Ignore now)
214 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 -MOD & Digital Interrupt
151 +[[image:1657249468462-536.png]]
216 216  
217 -(Optional)
218 -)))
219 219  
220 -=== 2.3.3 Battery Info ===
221 221  
222 -(((
223 -Check the battery voltage for LSE01.
224 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
225 225  
226 226  (((
227 -Ex1: 0x0B45 = 2885mV
228 -)))
229 -
230 230  (((
231 -Ex2: 0x0B49 = 2889mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
232 232  )))
233 -
234 -
235 -
236 -=== 2.3.4 Soil Moisture ===
237 -
238 -(((
239 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
240 240  )))
241 241  
242 -(((
243 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 -)))
245 245  
246 -(((
247 -
248 -)))
164 +**Connection:**
249 249  
250 -(((
251 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 -)))
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
253 253  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
254 254  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
255 255  
256 -=== 2.3.5 Soil Temperature ===
257 257  
258 -(((
259 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 -)))
173 +In the PC, use below serial tool settings:
261 261  
262 -(((
263 -**Example**:
264 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
265 265  
266 266  (((
267 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
268 268  )))
269 269  
270 -(((
271 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 -)))
185 +[[image:image-20220708110657-3.png]]
273 273  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
274 274  
275 275  
276 -=== 2.3.6 Soil Conductivity (EC) ===
277 277  
278 -(((
279 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 -)))
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
281 281  
282 -(((
283 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 -)))
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
285 285  
286 -(((
287 -Generally, the EC value of irrigation water is less than 800uS / cm.
288 -)))
289 289  
290 -(((
291 -
292 -)))
196 +**Use below commands:**
293 293  
294 -(((
295 -
296 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
297 297  
298 -=== 2.3.7 MOD ===
202 +For parameter description, please refer to AT command set
299 299  
300 -Firmware version at least v2.1 supports changing mode.
204 +[[image:1657249793983-486.png]]
301 301  
302 -For example, bytes[10]=90
303 303  
304 -mod=(bytes[10]>>7)&0x01=1.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
305 305  
209 +[[image:1657249831934-534.png]]
306 306  
307 -**Downlink Command:**
308 308  
309 -If payload = 0x0A00, workmode=0
310 310  
311 -If** **payload =** **0x0A01, workmode=1
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
312 312  
215 +This feature is supported since firmware version v1.0.1
313 313  
314 314  
315 -=== 2.3.8 ​Decode payload in The Things Network ===
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
316 316  
317 -While using TTN network, you can add the payload format to decode the payload.
222 +[[image:1657249864775-321.png]]
318 318  
319 319  
320 -[[image:1654505570700-128.png]]
225 +[[image:1657249930215-289.png]]
321 321  
322 -(((
323 -The payload decoder function for TTN is here:
324 -)))
325 325  
326 -(((
327 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 -)))
329 329  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
330 330  
331 -== 2.4 Uplink Interval ==
231 +This feature is supported since firmware version v110
332 332  
333 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
334 334  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
335 335  
242 +[[image:1657249978444-674.png]]
336 336  
337 -== 2.5 Downlink Payload ==
338 338  
339 -By default, LSE50 prints the downlink payload to console port.
245 +[[image:1657249990869-686.png]]
340 340  
341 -[[image:image-20220606165544-8.png]]
342 342  
343 -
344 344  (((
345 -(% style="color:blue" %)**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
346 346  )))
347 347  
348 -(((
349 -
350 -)))
351 351  
352 -* (((
353 -(% style="color:blue" %)**Set TDC**
354 -)))
355 355  
356 -(((
357 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
359 359  
360 -(((
361 -Payload:    01 00 00 1E    TDC=30S
362 -)))
256 +This feature is supported since firmware version v110
363 363  
364 -(((
365 -Payload:    01 00 00 3C    TDC=60S
366 -)))
367 367  
368 -(((
369 -
370 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
371 371  
372 -* (((
373 -(% style="color:blue" %)**Reset**
374 -)))
262 +[[image:1657250217799-140.png]]
375 375  
376 -(((
377 -If payload = 0x04FF, it will reset the LSE01
378 -)))
379 379  
265 +[[image:1657250255956-604.png]]
380 380  
381 -* (% style="color:blue" %)**CFM**
382 382  
383 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
384 384  
269 +=== 2.2.8 Change Update Interval ===
385 385  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
386 386  
387 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
388 388  
389 389  (((
390 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
391 391  )))
392 392  
393 393  (((
394 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
395 395  )))
396 396  
397 -(((
398 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
399 -)))
400 400  
401 -(((
402 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
403 -)))
404 404  
285 +== 2.3  Uplink Payload ==
405 405  
406 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
407 407  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
408 408  
409 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
410 410  
411 411  
412 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
298 +[[image:image-20220708111918-4.png]]
413 413  
414 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
415 415  
301 +The payload is ASCII string, representative same HEX:
416 416  
417 -[[image:1654505905236-553.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
418 418  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
419 419  
420 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
421 421  
422 -[[image:1654505925508-181.png]]
315 +== 2.4  Payload Explanation and Sensor Interface ==
423 423  
424 424  
318 +=== 2.4.1  Device ID ===
425 425  
426 -== 2.7 Frequency Plans ==
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
427 427  
428 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
429 429  
324 +**Example:**
430 430  
431 -=== 2.7.1 EU863-870 (EU868) ===
326 +AT+DEUI=A84041F15612
432 432  
433 -(% style="color:#037691" %)** Uplink:**
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
434 434  
435 -868.1 - SF7BW125 to SF12BW125
436 436  
437 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
438 438  
439 -868.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
440 440  
441 -867.1 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
442 442  
443 -867.3 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
444 444  
445 -867.5 - SF7BW125 to SF12BW125
446 446  
447 -867.7 - SF7BW125 to SF12BW125
448 448  
449 -867.9 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
450 450  
451 -868.8 - FSK
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
452 452  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
453 453  
454 -(% style="color:#037691" %)** Downlink:**
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
455 455  
456 -Uplink channels 1-9 (RX1)
457 457  
458 -869.525 - SF9BW125 (RX2 downlink only)
459 459  
356 +=== 2.4.4  Signal Strength ===
460 460  
358 +NB-IoT Network signal Strength.
461 461  
462 -=== 2.7.2 US902-928(US915) ===
360 +**Ex1: 0x1d = 29**
463 463  
464 -Used in USA, Canada and South America. Default use CHE=2
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
465 465  
466 -(% style="color:#037691" %)**Uplink:**
364 +(% style="color:blue" %)**1**(%%)  -111dBm
467 467  
468 -903.9 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
469 469  
470 -904.1 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
471 471  
472 -904.3 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
473 473  
474 -904.5 - SF7BW125 to SF10BW125
475 475  
476 -904.7 - SF7BW125 to SF10BW125
477 477  
478 -904.9 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
479 479  
480 -905.1 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
481 481  
482 -905.3 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
483 483  
384 +(((
385 +
386 +)))
484 484  
485 -(% style="color:#037691" %)**Downlink:**
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
486 486  
487 -923.3 - SF7BW500 to SF12BW500
488 488  
489 -923.9 - SF7BW500 to SF12BW500
490 490  
491 -924.5 - SF7BW500 to SF12BW500
394 +=== 2.4. Soil Temperature ===
492 492  
493 -925.1 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
494 494  
495 -925.7 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
496 496  
497 -926.3 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
498 498  
499 -926.9 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
500 500  
501 -927.5 - SF7BW500 to SF12BW500
502 502  
503 -923.3 - SF12BW500(RX2 downlink only)
504 504  
414 +=== 2.4.7  Soil Conductivity (EC) ===
505 505  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
506 506  
507 -=== 2.7.3 CN470-510 (CN470) ===
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
508 508  
509 -Used in China, Default use CHE=1
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
510 510  
511 -(% style="color:#037691" %)**Uplink:**
428 +(((
429 +
430 +)))
512 512  
513 -486.3 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
514 514  
515 -486.5 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
516 516  
517 -486.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
518 518  
519 -486.9 - SF7BW125 to SF12BW125
440 +The command is:
520 520  
521 -487.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
522 522  
523 -487.3 - SF7BW125 to SF12BW125
524 524  
525 -487.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
526 526  
527 -487.7 - SF7BW125 to SF12BW125
528 528  
448 +Example:
529 529  
530 -(% style="color:#037691" %)**Downlink:**
450 +0x(00): Normal uplink packet.
531 531  
532 -506.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
533 533  
534 -506.9 - SF7BW125 to SF12BW125
535 535  
536 -507.1 - SF7BW125 to SF12BW125
537 537  
538 -507.3 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
539 539  
540 -507.5 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
541 541  
542 -507.7 - SF7BW125 to SF12BW125
543 543  
544 -507.9 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
545 545  
546 -508.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
547 547  
548 -505.3 - SF12BW125 (RX2 downlink only)
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
549 549  
550 550  
551 551  
552 -=== 2.7.4 AU915-928(AU915) ===
469 +== 2.5  Downlink Payload ==
553 553  
554 -Default use CHE=2
471 +By default, NSE01 prints the downlink payload to console port.
555 555  
556 -(% style="color:#037691" %)**Uplink:**
473 +[[image:image-20220708133731-5.png]]
557 557  
558 -916.8 - SF7BW125 to SF12BW125
559 559  
560 -917.0 - SF7BW125 to SF12BW125
561 561  
562 -917.2 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
563 563  
564 -917.4 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
565 565  
566 -917.6 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
567 567  
568 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
569 569  
570 -918.0 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
571 571  
572 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
573 573  
501 +(((
502 +
503 +)))
574 574  
575 -(% style="color:#037691" %)**Downlink:**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
576 576  
577 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
578 578  
579 -923.9 - SF7BW500 to SF12BW500
580 580  
581 -924.5 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
582 582  
583 -925.1 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
584 584  
585 -925.7 - SF7BW500 to SF12BW500
586 586  
587 -926.3 - SF7BW500 to SF12BW500
588 588  
589 -926.9 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
590 590  
591 -927.5 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
592 592  
593 -923.3 - SF12BW500(RX2 downlink only)
594 594  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
595 595  
596 596  
597 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
598 598  
599 -(% style="color:#037691" %)**Default Uplink channel:**
600 600  
601 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
602 602  
603 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
604 604  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
605 605  
606 -(% style="color:#037691" %)**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
607 607  
608 -(OTAA mode, channel added by JoinAccept message)
609 609  
610 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
611 611  
612 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
613 613  
614 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
615 615  
616 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
617 617  
618 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
619 619  
620 -923.0 - SF7BW125 to SF10BW125
621 621  
622 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
623 623  
624 624  
625 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
626 626  
627 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
628 628  
629 -923.8 - SF7BW125 to SF10BW125
630 630  
631 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
632 632  
633 -924.2 - SF7BW125 to SF10BW125
634 634  
635 -924.4 - SF7BW125 to SF10BW125
636 636  
637 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
638 638  
577 +=== 2.9.1  ​Battery Type ===
639 639  
640 -(% style="color:#037691" %)** Downlink:**
641 641  
642 -Uplink channels 1-8 (RX1)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
643 643  
644 -923.2 - SF10BW125 (RX2)
645 645  
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
646 646  
647 647  
648 -=== 2.7.6 KR920-923 (KR920) ===
586 +The battery related documents as below:
649 649  
650 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
651 651  
652 -922.1 - SF7BW125 to SF12BW125
653 -
654 -922.3 - SF7BW125 to SF12BW125
655 -
656 -922.5 - SF7BW125 to SF12BW125
657 -
658 -
659 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 -
661 -922.1 - SF7BW125 to SF12BW125
662 -
663 -922.3 - SF7BW125 to SF12BW125
664 -
665 -922.5 - SF7BW125 to SF12BW125
666 -
667 -922.7 - SF7BW125 to SF12BW125
668 -
669 -922.9 - SF7BW125 to SF12BW125
670 -
671 -923.1 - SF7BW125 to SF12BW125
672 -
673 -923.3 - SF7BW125 to SF12BW125
674 -
675 -
676 -(% style="color:#037691" %)**Downlink:**
677 -
678 -Uplink channels 1-7(RX1)
679 -
680 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 -
682 -
683 -
684 -=== 2.7.7 IN865-867 (IN865) ===
685 -
686 -(% style="color:#037691" %)** Uplink:**
687 -
688 -865.0625 - SF7BW125 to SF12BW125
689 -
690 -865.4025 - SF7BW125 to SF12BW125
691 -
692 -865.9850 - SF7BW125 to SF12BW125
693 -
694 -
695 -(% style="color:#037691" %) **Downlink:**
696 -
697 -Uplink channels 1-3 (RX1)
698 -
699 -866.550 - SF10BW125 (RX2)
700 -
701 -
702 -
703 -
704 -== 2.8 LED Indicator ==
705 -
706 -The LSE01 has an internal LED which is to show the status of different state.
707 -
708 -* Blink once when device power on.
709 -* Solid ON for 5 seconds once device successful Join the network.
710 -* Blink once when device transmit a packet.
711 -
712 -== 2.9 Installation in Soil ==
713 -
714 -**Measurement the soil surface**
715 -
716 -
717 -[[image:1654506634463-199.png]] ​
718 -
719 719  (((
720 -(((
721 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
722 722  )))
723 -)))
724 724  
725 725  
726 726  
727 -[[image:1654506665940-119.png]]
598 +=== 2.9.2  Power consumption Analyze ===
728 728  
729 729  (((
730 -Dig a hole with diameter > 20CM.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
731 731  )))
732 732  
733 -(((
734 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
735 -)))
736 736  
737 -
738 -== 2.10 ​Firmware Change Log ==
739 -
740 740  (((
741 -**Firmware download link:**
606 +Instruction to use as below:
742 742  )))
743 743  
744 744  (((
745 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
746 746  )))
747 747  
748 -(((
749 -
750 -)))
751 751  
752 752  (((
753 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
754 754  )))
755 755  
756 -(((
757 -
758 -)))
759 -
760 -(((
761 -**V1.0.**
762 -)))
763 -
764 -(((
765 -Release
766 -)))
767 -
768 -
769 -== 2.11 ​Battery Analysis ==
770 -
771 -=== 2.11.1 ​Battery Type ===
772 -
773 -(((
774 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
775 -)))
776 -
777 -(((
778 -The battery is designed to last for more than 5 years for the LSN50.
779 -)))
780 -
781 -(((
782 -(((
783 -The battery-related documents are as below:
784 -)))
785 -)))
786 -
787 787  * (((
788 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
619 +Product Model
789 789  )))
790 790  * (((
791 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
622 +Uplink Interval
792 792  )))
793 793  * (((
794 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
625 +Working Mode
795 795  )))
796 796  
797 - [[image:image-20220610172436-1.png]]
628 +(((
629 +And the Life expectation in difference case will be shown on the right.
630 +)))
798 798  
632 +[[image:image-20220708141352-7.jpeg]]
799 799  
800 800  
801 -=== 2.11.2 ​Battery Note ===
802 802  
636 +=== 2.9.3  ​Battery Note ===
637 +
803 803  (((
804 804  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
805 805  )))
... ... @@ -806,22 +806,14 @@
806 806  
807 807  
808 808  
809 -=== 2.11.3 Replace the battery ===
644 +=== 2.9. Replace the battery ===
810 810  
811 811  (((
812 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
813 813  )))
814 814  
815 -(((
816 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
817 -)))
818 818  
819 -(((
820 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 -)))
822 822  
823 -
824 -
825 825  = 3. ​Using the AT Commands =
826 826  
827 827  == 3.1 Access AT Commands ==
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0