<
From version < 45.3 >
edited by Xiaoling
on 2022/07/08 10:24
To version < 57.8 >
edited by Xiaoling
on 2022/07/08 11:55
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -59,8 +59,6 @@
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
62 -
63 -
64 64  == 1.3  Specification ==
65 65  
66 66  
... ... @@ -69,7 +69,6 @@
69 69  * Supply Voltage: 2.1v ~~ 3.6v
70 70  * Operating Temperature: -40 ~~ 85°C
71 71  
72 -
73 73  (% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 75  * - B1 @H-FDD: 2100MHz
... ... @@ -79,7 +79,6 @@
79 79  * - B20 @H-FDD: 800MHz
80 80  * - B28 @H-FDD: 700MHz
81 81  
82 -
83 83  (% style="color:#037691" %)**Probe Specification:**
84 84  
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
... ... @@ -124,101 +124,226 @@
124 124  
125 125  
126 126  
127 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
123 +== 2.2 ​ Configure the NSE01 ==
128 128  
129 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
130 130  
126 +=== 2.2.1 Test Requirement ===
131 131  
132 -[[image:1654503992078-669.png]]
133 133  
129 +To use NSE01 in your city, make sure meet below requirements:
134 134  
135 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
136 136  
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
137 137  
138 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 139  
140 -Each LSE01 is shipped with a sticker with the default device EUI as below:
140 +[[image:1657249419225-449.png]]
141 141  
142 -[[image:image-20220606163732-6.jpeg]]
143 143  
144 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 145  
146 -**Add APP EUI in the application**
144 +=== 2.2.2 Insert SIM card ===
147 147  
146 +Insert the NB-IoT Card get from your provider.
148 148  
149 -[[image:1654504596150-405.png]]
148 +User need to take out the NB-IoT module and insert the SIM card like below:
150 150  
151 151  
151 +[[image:1657249468462-536.png]]
152 152  
153 -**Add APP KEY and DEV EUI**
154 154  
155 -[[image:1654504683289-357.png]]
156 156  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
157 157  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
158 158  
159 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 160  
164 +**Connection:**
161 161  
162 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
163 163  
164 -[[image:image-20220606163915-7.png]]
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
165 165  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
166 166  
167 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 168  
169 -[[image:1654504778294-788.png]]
173 +In the PC, use below serial tool settings:
170 170  
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
171 171  
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
172 172  
173 -== 2.3 Uplink Payload ==
185 +[[image:image-20220708110657-3.png]]
174 174  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
175 175  
176 -=== 2.3.1 MOD~=0(Default Mode) ===
177 177  
178 -LSE01 will uplink payload via LoRaWAN with below payload format: 
179 179  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
192 +
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194 +
195 +
196 +**Use below commands:**
197 +
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 +
202 +For parameter description, please refer to AT command set
203 +
204 +[[image:1657249793983-486.png]]
205 +
206 +
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208 +
209 +[[image:1657249831934-534.png]]
210 +
211 +
212 +
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214 +
215 +This feature is supported since firmware version v1.0.1
216 +
217 +
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221 +
222 +[[image:1657249864775-321.png]]
223 +
224 +
225 +[[image:1657249930215-289.png]]
226 +
227 +
228 +
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
230 +
231 +This feature is supported since firmware version v110
232 +
233 +
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 +
242 +[[image:1657249978444-674.png]]
243 +
244 +
245 +[[image:1657249990869-686.png]]
246 +
247 +
180 180  (((
181 -Uplink payload includes in total 11 bytes.
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
182 182  )))
183 183  
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
186 -**Size**
187 187  
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 -Temperature
192 192  
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 -MOD & Digital Interrupt
254 +=== 2.2.7 Use TCP protocol to uplink data ===
196 196  
197 -(Optional)
198 -)))
256 +This feature is supported since firmware version v110
199 199  
200 -=== 2.3.2 MOD~=1(Original value) ===
201 201  
202 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
203 203  
204 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 -|(((
206 -**Size**
262 +[[image:1657250217799-140.png]]
207 207  
208 -**(bytes)**
209 -)))|**2**|**2**|**2**|**2**|**2**|**1**
210 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 -Temperature
212 212  
213 -(Reserve, Ignore now)
214 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 -MOD & Digital Interrupt
265 +[[image:1657250255956-604.png]]
216 216  
217 -(Optional)
267 +
268 +
269 +=== 2.2.8 Change Update Interval ===
270 +
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
272 +
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274 +
275 +(((
276 +(% style="color:red" %)**NOTE:**
218 218  )))
219 219  
220 -=== 2.3.3 Battery Info ===
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
221 221  
283 +
284 +
285 +== 2.3  Uplink Payload ==
286 +
287 +In this mode, uplink payload includes in total 18 bytes
288 +
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294 +
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296 +
297 +
298 +[[image:image-20220708111918-4.png]]
299 +
300 +
301 +The payload is ASCII string, representative same HEX:
302 +
303 +0x72403155615900640c7817075e0a8c02f900 where:
304 +
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
307 +
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
314 +
315 +
316 +== 2.4  Payload Explanation and Sensor Interface ==
317 +
318 +
319 +=== 2.4.1  Device ID ===
320 +
321 +By default, the Device ID equal to the last 6 bytes of IMEI.
322 +
323 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
324 +
325 +**Example:**
326 +
327 +AT+DEUI=A84041F15612
328 +
329 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
330 +
331 +
332 +
333 +=== 2.4.2  Version Info ===
334 +
335 +Specify the software version: 0x64=100, means firmware version 1.00.
336 +
337 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
338 +
339 +
340 +
341 +=== 2.4.3  Battery Info ===
342 +
222 222  (((
223 223  Check the battery voltage for LSE01.
224 224  )))
... ... @@ -233,14 +233,32 @@
233 233  
234 234  
235 235  
236 -=== 2.3.4 Soil Moisture ===
357 +=== 2.4.4  Signal Strength ===
237 237  
359 +NB-IoT Network signal Strength.
360 +
361 +**Ex1: 0x1d = 29**
362 +
363 +(% style="color:blue" %)**0**(%%)  -113dBm or less
364 +
365 +(% style="color:blue" %)**1**(%%)  -111dBm
366 +
367 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
368 +
369 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
370 +
371 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
372 +
373 +
374 +
375 +=== 2.4.5  Soil Moisture ===
376 +
238 238  (((
239 239  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
240 240  )))
241 241  
242 242  (((
243 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
382 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
244 244  )))
245 245  
246 246  (((
... ... @@ -253,10 +253,10 @@
253 253  
254 254  
255 255  
256 -=== 2.3.5 Soil Temperature ===
395 +=== 2.4. Soil Temperature ===
257 257  
258 258  (((
259 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
398 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
260 260  )))
261 261  
262 262  (((
... ... @@ -273,7 +273,7 @@
273 273  
274 274  
275 275  
276 -=== 2.3.6 Soil Conductivity (EC) ===
415 +=== 2.4. Soil Conductivity (EC) ===
277 277  
278 278  (((
279 279  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -280,7 +280,7 @@
280 280  )))
281 281  
282 282  (((
283 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 284  )))
285 285  
286 286  (((
... ... @@ -295,39 +295,41 @@
295 295  
296 296  )))
297 297  
298 -=== 2.3.7 MOD ===
437 +=== 2.4. Digital Interrupt ===
299 299  
300 -Firmware version at least v2.1 supports changing mode.
439 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
301 301  
302 -For example, bytes[10]=90
441 +The command is:
303 303  
304 -mod=(bytes[10]>>7)&0x01=1.
443 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
305 305  
306 306  
307 -**Downlink Command:**
446 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
308 308  
309 -If payload = 0x0A00, workmode=0
310 310  
311 -If** **payload =** **0x0A01, workmode=1
449 +Example:
312 312  
451 +0x(00): Normal uplink packet.
313 313  
453 +0x(01): Interrupt Uplink Packet.
314 314  
315 -=== 2.3.8 ​Decode payload in The Things Network ===
316 316  
317 -While using TTN network, you can add the payload format to decode the payload.
318 318  
319 319  
320 -[[image:1654505570700-128.png]]
458 +=== 2.4.9  ​+5V Output ===
321 321  
322 -(((
323 -The payload decoder function for TTN is here:
324 -)))
325 325  
326 -(((
327 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 -)))
461 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
329 329  
330 330  
464 +The 5V output time can be controlled by AT Command.
465 +
466 +(% style="color:blue" %)**AT+5VT=1000**
467 +
468 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
469 +
470 +
471 +
331 331  == 2.4 Uplink Interval ==
332 332  
333 333  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0