Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 40 added, 0 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -NS E01-NB-IoTSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,16 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 16 ... ... @@ -18,21 +18,23 @@ 18 18 19 19 20 20 15 + 21 21 = 1. Introduction = 22 22 23 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 24 24 25 25 ((( 26 26 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 23 +((( 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 30 +))) 29 29 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 36 37 37 ))) 38 38 ... ... @@ -39,28 +39,26 @@ 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:16572 45163077-232.png]]38 +[[image:1657327959271-447.png]] 43 43 44 44 45 45 46 -== 1.2 Features == 42 +== 1.2 Features == 47 47 48 48 49 49 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 -* Monitor Soil Moisture 51 -* Monitor Soil Temperature 52 -* Monitor Soil Conductivity 46 +* Ultra low power consumption 47 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 59 * Micro SIM card slot for NB-IoT SIM 60 60 * 8500mAh Battery for long term use 61 61 62 - 63 - 64 64 == 1.3 Specification == 65 65 66 66 ... ... @@ -69,7 +69,6 @@ 69 69 * Supply Voltage: 2.1v ~~ 3.6v 70 70 * Operating Temperature: -40 ~~ 85°C 71 71 72 - 73 73 (% style="color:#037691" %)**NB-IoT Spec:** 74 74 75 75 * - B1 @H-FDD: 2100MHz ... ... @@ -79,727 +79,618 @@ 79 79 * - B20 @H-FDD: 800MHz 80 80 * - B28 @H-FDD: 700MHz 81 81 75 +(% style="color:#037691" %)**Battery:** 82 82 83 -(% style="color:#037691" %)**Probe Specification:** 77 +* Li/SOCI2 un-chargeable battery 78 +* Capacity: 8500mAh 79 +* Self Discharge: <1% / Year @ 25°C 80 +* Max continuously current: 130mA 81 +* Max boost current: 2A, 1 second 84 84 85 - MeasureVolume: Base ontheentra pinof the probe, a cylinderwith7cmdiameterand 10cmheight.83 +(% style="color:#037691" %)**Power Consumption** 86 86 87 -[[image:image-20220708101224-1.png]] 85 +* STOP Mode: 10uA @ 3.3v 86 +* Max transmit power: 350mA@3.3v 88 88 89 89 90 - 91 91 == 1.4 Applications == 92 92 91 +* Smart Buildings & Home Automation 92 +* Logistics and Supply Chain Management 93 +* Smart Metering 93 93 * Smart Agriculture 95 +* Smart Cities 96 +* Smart Factory 94 94 95 95 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 96 96 97 97 101 + 102 + 98 98 == 1.5 Pin Definitions == 99 99 100 100 101 -[[image:16572 46476176-652.png]]106 +[[image:1657328609906-564.png]] 102 102 103 103 104 104 105 -= 2. Use NS E01to communicate with IoT Server =110 += 2. Use NDDS75 to communicate with IoT Server = 106 106 107 107 == 2.1 How it works == 108 108 109 - 110 110 ((( 111 -The NS E01is equipped with a NB-IoT module, the pre-loaded firmware in NSE01will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 112 112 ))) 113 113 114 114 115 115 ((( 116 -The diagram below shows the working flow in default firmware of NS E01:120 +The diagram below shows the working flow in default firmware of NDDS75: 117 117 ))) 118 118 119 -[[image:image-20220708101605-2.png]] 120 - 121 121 ((( 122 122 123 123 ))) 124 124 127 +[[image:1657328659945-416.png]] 125 125 129 +((( 130 + 131 +))) 126 126 127 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 128 128 129 - Followingisanexample for how to jointhe [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure;we usethe[[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWANgateway in this example.134 +== 2.2 Configure the NDDS75 == 130 130 131 131 132 - [[image:1654503992078-669.png]]137 +=== 2.2.1 Test Requirement === 133 133 139 +((( 140 +To use NDDS75 in your city, make sure meet below requirements: 141 +))) 134 134 135 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 143 +* Your local operator has already distributed a NB-IoT Network there. 144 +* The local NB-IoT network used the band that NSE01 supports. 145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 136 136 147 +((( 148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 149 +))) 137 137 138 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 139 139 140 - Each LSE01is shipped withasticker with the default device EUI as below:152 +[[image:1657328756309-230.png]] 141 141 142 -[[image:image-20220606163732-6.jpeg]] 143 143 144 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 145 145 146 - **AddAPPEUIintheapplication**156 +=== 2.2.2 Insert SIM card === 147 147 158 +((( 159 +Insert the NB-IoT Card get from your provider. 160 +))) 148 148 149 -[[image:1654504596150-405.png]] 162 +((( 163 +User need to take out the NB-IoT module and insert the SIM card like below: 164 +))) 150 150 151 151 167 +[[image:1657328884227-504.png]] 152 152 153 -**Add APP KEY and DEV EUI** 154 154 155 -[[image:1654504683289-357.png]] 156 156 171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 157 157 173 +((( 174 +((( 175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 176 +))) 177 +))) 158 158 159 - (% style="color:blue" %)**Step2**(%%): Power on LSE01179 +[[image:image-20220709092052-2.png]] 160 160 181 +**Connection:** 161 161 162 - PutaJumperJP2 topowernthedevice. (TheJumpermustbe in FLASH position).183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 163 163 164 - [[image:image-20220606163915-7.png]]185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 165 165 187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 166 166 167 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 168 168 169 - [[image:1654504778294-788.png]]190 +In the PC, use below serial tool settings: 170 170 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 171 171 172 - 173 -== 2.3 Uplink Payload == 174 - 175 - 176 -=== 2.3.1 MOD~=0(Default Mode) === 177 - 178 -LSE01 will uplink payload via LoRaWAN with below payload format: 179 - 180 180 ((( 181 - Uplinkpayloadincludes intotal11bytes.199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 182 182 ))) 183 183 184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 -|((( 186 -**Size** 202 +[[image:1657329814315-101.png]] 187 187 188 -**(bytes)** 189 -)))|**2**|**2**|**2**|**2**|**2**|**1** 190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 -Temperature 192 - 193 -(Reserve, Ignore now) 194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 195 -MOD & Digital Interrupt 196 - 197 -(Optional) 204 +((( 205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 198 198 ))) 199 199 200 -=== 2.3.2 MOD~=1(Original value) === 201 201 202 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 203 203 204 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 205 -|((( 206 -**Size** 210 +=== 2.2.4 Use CoAP protocol to uplink data === 207 207 208 -**(bytes)** 209 -)))|**2**|**2**|**2**|**2**|**2**|**1** 210 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 211 -Temperature 212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 212 212 213 -(Reserve, Ignore now) 214 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 215 -MOD & Digital Interrupt 216 216 217 -(Optional) 218 -))) 215 +**Use below commands:** 219 219 220 -=== 2.3.3 Battery Info === 217 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 221 221 222 -((( 223 -Check the battery voltage for LSE01. 224 -))) 221 +For parameter description, please refer to AT command set 225 225 226 -((( 227 -Ex1: 0x0B45 = 2885mV 228 -))) 223 +[[image:1657330452568-615.png]] 229 229 230 -((( 231 -Ex2: 0x0B49 = 2889mV 232 -))) 233 233 226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 234 234 228 +[[image:1657330472797-498.png]] 235 235 236 -=== 2.3.4 Soil Moisture === 237 237 238 -((( 239 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 240 -))) 241 241 242 -((( 243 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 244 -))) 232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 245 245 246 -((( 247 - 248 -))) 249 249 250 -(( (251 -(% style="color: #4f81bd" %)**05DC(H)=0(D) /100=15%.**252 -)) )235 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 253 253 239 +[[image:1657330501006-241.png]] 254 254 255 255 256 - === 2.3.5 Soil Temperature===242 +[[image:1657330533775-472.png]] 257 257 258 -((( 259 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 260 -))) 261 261 262 -((( 263 -**Example**: 264 -))) 265 265 266 -((( 267 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 268 -))) 246 +=== 2.2.6 Use MQTT protocol to uplink data === 269 269 270 -((( 271 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 272 -))) 273 273 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 274 274 257 +[[image:1657249978444-674.png]] 275 275 276 -=== 2.3.6 Soil Conductivity (EC) === 277 277 278 -((( 279 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 280 -))) 260 +[[image:1657330723006-866.png]] 281 281 282 -((( 283 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 284 -))) 285 285 286 286 ((( 287 - Generally,theECvalue ofirrigationwaterislessthan800uS/ cm.264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 288 288 ))) 289 289 290 -((( 291 - 292 -))) 293 293 294 -((( 295 - 296 -))) 297 297 298 -=== 2. 3.7MOD===269 +=== 2.2.7 Use TCP protocol to uplink data === 299 299 300 -Firmware version at least v2.1 supports changing mode. 301 301 302 -For example, bytes[10]=90 272 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 303 303 304 -m od=(bytes[10]>>7)&0x01=1.275 +[[image:image-20220709093918-1.png]] 305 305 306 306 307 - **Downlink Command:**278 +[[image:image-20220709093918-2.png]] 308 308 309 -If payload = 0x0A00, workmode=0 310 310 311 -If** **payload =** **0x0A01, workmode=1 312 312 282 +=== 2.2.8 Change Update Interval === 313 313 284 +User can use below command to change the (% style="color:green" %)**uplink interval**. 314 314 315 - ===2.3.8Decode payloadinTheThingsNetwork===286 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 316 316 317 -While using TTN network, you can add the payload format to decode the payload. 318 - 319 - 320 -[[image:1654505570700-128.png]] 321 - 322 322 ((( 323 - Thepayload decoder function forTTN is here:289 +(% style="color:red" %)**NOTE:** 324 324 ))) 325 325 326 326 ((( 327 - LSE01TTN Payload Decoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 328 328 ))) 329 329 330 330 331 -== 2.4 Uplink Interval == 332 332 333 - TheLSE01 by default uplink the sensor data every20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change UplinkInterval>>doc:Main.EndDevice AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]298 +== 2.3 Uplink Payload == 334 334 300 +In this mode, uplink payload includes in total 14 bytes 335 335 336 336 337 -== 2.5 Downlink Payload == 303 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 304 +|=(% style="width: 60px;" %)((( 305 +**Size(bytes)** 306 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 307 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 338 338 339 -By default, LSE50 prints the downlink payload to console port. 309 +((( 310 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 311 +))) 340 340 341 -[[image:image-20220606165544-8.png]] 342 342 314 +[[image:1657331036973-987.png]] 343 343 344 344 ((( 345 - (%style="color:blue"%)**Examples:**317 +The payload is ASCII string, representative same HEX: 346 346 ))) 347 347 348 348 ((( 349 - 321 +0x72403155615900640c6c19029200 where: 350 350 ))) 351 351 352 352 * ((( 353 - (% style="color:blue"%)**Set TDC**325 +Device ID: 0x724031556159 = 724031556159 354 354 ))) 355 - 356 -((( 357 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 +* ((( 328 +Version: 0x0064=100=1.0.0 358 358 ))) 359 359 360 -((( 361 - Payload:100001ETDC=30S331 +* ((( 332 +BAT: 0x0c6c = 3180 mV = 3.180V 362 362 ))) 363 - 364 -((( 365 -Payload: 01 00 00 3C TDC=60S 334 +* ((( 335 +Signal: 0x19 = 25 366 366 ))) 367 - 368 -((( 369 - 337 +* ((( 338 +Distance: 0x0292= 658 mm 370 370 ))) 371 - 372 372 * ((( 373 - (% style="color:blue" %)**Reset**341 +Interrupt: 0x00 = 0 374 374 ))) 375 375 376 -((( 377 -If payload = 0x04FF, it will reset the LSE01 378 -))) 379 379 380 380 381 -* (% style="color:blue" %)**CFM** 382 382 383 - DownlinkPayload:05000001, SetAT+CFM=1or05000000 , setAT+CFM=0347 +== 2.4 Payload Explanation and Sensor Interface == 384 384 385 385 350 +=== 2.4.1 Device ID === 386 386 387 -== 2.6 Show Data in DataCake IoT Server == 352 +((( 353 +By default, the Device ID equal to the last 6 bytes of IMEI. 354 +))) 388 388 389 389 ((( 390 - [[DATACAKE>>url:https://datacake.co/]] providesahumanfriendlyinterfacetoshowthesensor data,once we have data in TTN, we canuse[[DATACAKE>>url:https://datacake.co/]]toconnect to TTN andseethedata inDATACAKE. Below arethe steps:357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 391 391 ))) 392 392 393 393 ((( 394 - 361 +**Example:** 395 395 ))) 396 396 397 397 ((( 398 - (% style="color:blue" %)**Step1**(%%): Be sure that your device is programmed and properly connected to the network at this time.365 +AT+DEUI=A84041F15612 399 399 ))) 400 400 401 401 ((( 402 - (%style="color:blue"%)**Step2**(%%):ToconfiguretheApplicationtoforward data to DATACAKE you will needtoadd integration.To add the DATACAKEintegration, performthefollowing steps:369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 403 403 ))) 404 404 405 405 406 -[[image:1654505857935-743.png]] 407 407 374 +=== 2.4.2 Version Info === 408 408 409 -[[image:1654505874829-548.png]] 376 +((( 377 +Specify the software version: 0x64=100, means firmware version 1.00. 378 +))) 410 410 380 +((( 381 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 382 +))) 411 411 412 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 413 413 414 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 415 415 386 +=== 2.4.3 Battery Info === 416 416 417 -[[image:1654505905236-553.png]] 388 +((( 389 +Check the battery voltage for LSE01. 390 +))) 418 418 392 +((( 393 +Ex1: 0x0B45 = 2885mV 394 +))) 419 419 420 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 396 +((( 397 +Ex2: 0x0B49 = 2889mV 398 +))) 421 421 422 -[[image:1654505925508-181.png]] 423 423 424 424 402 +=== 2.4.4 Signal Strength === 425 425 426 -== 2.7 Frequency Plans == 404 +((( 405 +NB-IoT Network signal Strength. 406 +))) 427 427 428 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 408 +((( 409 +**Ex1: 0x1d = 29** 410 +))) 429 429 412 +((( 413 +(% style="color:blue" %)**0**(%%) -113dBm or less 414 +))) 430 430 431 -=== 2.7.1 EU863-870 (EU868) === 416 +((( 417 +(% style="color:blue" %)**1**(%%) -111dBm 418 +))) 432 432 433 -(% style="color:#037691" %)** Uplink:** 420 +((( 421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 +))) 434 434 435 -868.1 - SF7BW125 to SF12BW125 424 +((( 425 +(% style="color:blue" %)**31** (%%) -51dBm or greater 426 +))) 436 436 437 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 428 +((( 429 +(% style="color:blue" %)**99** (%%) Not known or not detectable 430 +))) 438 438 439 -868.5 - SF7BW125 to SF12BW125 440 440 441 -867.1 - SF7BW125 to SF12BW125 442 442 443 - 867.3- SF7BW125toSF12BW125434 +=== 2.4.5 Soil Moisture === 444 444 445 - 867.5-SF7BW125toSF12BW125436 +Get the distance. Flat object range 280mm - 7500mm. 446 446 447 - 867.7-SF7BW125toSF12BW125438 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 448 448 449 -867.9 - SF7BW125 to SF12BW125 440 +((( 441 +((( 442 +(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.** 443 +))) 444 +))) 450 450 451 -868.8 - FSK 446 +((( 447 + 448 +))) 452 452 450 +((( 451 + 452 +))) 453 453 454 - (% style="color:#037691"%)**Downlink:**454 +=== 2.4.6 Digital Interrupt === 455 455 456 -Uplink channels 1-9 (RX1) 456 +((( 457 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 458 +))) 457 457 458 -869.525 - SF9BW125 (RX2 downlink only) 460 +((( 461 +The command is: 462 +))) 459 459 464 +((( 465 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 466 +))) 460 460 461 461 462 -=== 2.7.2 US902-928(US915) === 469 +((( 470 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 471 +))) 463 463 464 -Used in USA, Canada and South America. Default use CHE=2 465 465 466 -(% style="color:#037691" %)**Uplink:** 474 +((( 475 +Example: 476 +))) 467 467 468 -903.9 - SF7BW125 to SF10BW125 478 +((( 479 +0x(00): Normal uplink packet. 480 +))) 469 469 470 -904.1 - SF7BW125 to SF10BW125 482 +((( 483 +0x(01): Interrupt Uplink Packet. 484 +))) 471 471 472 -904.3 - SF7BW125 to SF10BW125 473 473 474 -904.5 - SF7BW125 to SF10BW125 475 475 476 - 904.7- SF7BW125 toSF10BW125488 +=== 2.4.7 +5V Output === 477 477 478 -904.9 - SF7BW125 to SF10BW125 490 +((( 491 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 492 +))) 479 479 480 -905.1 - SF7BW125 to SF10BW125 481 481 482 -905.3 - SF7BW125 to SF10BW125 495 +((( 496 +The 5V output time can be controlled by AT Command. 497 +))) 483 483 499 +((( 500 +(% style="color:blue" %)**AT+5VT=1000** 501 +))) 484 484 485 -(% style="color:#037691" %)**Downlink:** 503 +((( 504 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 505 +))) 486 486 487 -923.3 - SF7BW500 to SF12BW500 488 488 489 -923.9 - SF7BW500 to SF12BW500 490 490 491 - 924.5-SF7BW500 toSF12BW500509 +== 2.5 Downlink Payload == 492 492 493 - 925.1-SF7BW500toSF12BW500511 +By default, NSE01 prints the downlink payload to console port. 494 494 495 - 925.7-SF7BW500 to SF12BW500513 +[[image:image-20220708133731-5.png]] 496 496 497 -926.3 - SF7BW500 to SF12BW500 498 498 499 -926.9 - SF7BW500 to SF12BW500 516 +((( 517 +(% style="color:blue" %)**Examples:** 518 +))) 500 500 501 -927.5 - SF7BW500 to SF12BW500 520 +((( 521 + 522 +))) 502 502 503 -923.3 - SF12BW500(RX2 downlink only) 524 +* ((( 525 +(% style="color:blue" %)**Set TDC** 526 +))) 504 504 528 +((( 529 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 530 +))) 505 505 532 +((( 533 +Payload: 01 00 00 1E TDC=30S 534 +))) 506 506 507 -=== 2.7.3 CN470-510 (CN470) === 536 +((( 537 +Payload: 01 00 00 3C TDC=60S 538 +))) 508 508 509 -Used in China, Default use CHE=1 540 +((( 541 + 542 +))) 510 510 511 -(% style="color:#037691" %)**Uplink:** 544 +* ((( 545 +(% style="color:blue" %)**Reset** 546 +))) 512 512 513 -486.3 - SF7BW125 to SF12BW125 548 +((( 549 +If payload = 0x04FF, it will reset the NSE01 550 +))) 514 514 515 -486.5 - SF7BW125 to SF12BW125 516 516 517 - 486.7-SF7BW125toSF12BW125553 +* (% style="color:blue" %)**INTMOD** 518 518 519 -486.9 - SF7BW125 to SF12BW125 555 +((( 556 +Downlink Payload: 06000003, Set AT+INTMOD=3 557 +))) 520 520 521 -487.1 - SF7BW125 to SF12BW125 522 522 523 -487.3 - SF7BW125 to SF12BW125 524 524 525 - 487.5- SF7BW125toSF12BW125561 +== 2.6 LED Indicator == 526 526 527 -487.7 - SF7BW125 to SF12BW125 563 +((( 564 +The NSE01 has an internal LED which is to show the status of different state. 528 528 529 529 530 -(% style="color:#037691" %)**Downlink:** 567 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 568 +* Then the LED will be on for 1 second means device is boot normally. 569 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 570 +* For each uplink probe, LED will be on for 500ms. 571 +))) 531 531 532 -506.7 - SF7BW125 to SF12BW125 533 533 534 -506.9 - SF7BW125 to SF12BW125 535 535 536 -507.1 - SF7BW125 to SF12BW125 537 537 538 - 507.3- SF7BW125to SF12BW125576 +== 2.7 Installation in Soil == 539 539 540 - 507.5- SF7BW125toSF12BW125578 +__**Measurement the soil surface**__ 541 541 542 -507.7 - SF7BW125 to SF12BW125 580 +((( 581 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 582 +))) 543 543 544 -5 07.9 - SF7BW125to SF12BW125584 +[[image:1657259653666-883.png]] 545 545 546 -508.1 - SF7BW125 to SF12BW125 547 547 548 -505.3 - SF12BW125 (RX2 downlink only) 587 +((( 588 + 549 549 590 +((( 591 +Dig a hole with diameter > 20CM. 592 +))) 550 550 594 +((( 595 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 596 +))) 597 +))) 551 551 552 - === 2.7.4 AU915-928(AU915) ===599 +[[image:1654506665940-119.png]] 553 553 554 -Default use CHE=2 601 +((( 602 + 603 +))) 555 555 556 -(% style="color:#037691" %)**Uplink:** 557 557 558 - 916.8- SF7BW125toSF12BW125606 +== 2.8 Firmware Change Log == 559 559 560 -917.0 - SF7BW125 to SF12BW125 561 561 562 - 917.2-SF7BW125toSF12BW125609 +Download URL & Firmware Change log 563 563 564 - 917.4-F7BW125toSF12BW125611 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 565 565 566 -917.6 - SF7BW125 to SF12BW125 567 567 568 - 917.8- SF7BW125toSF12BW125614 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 569 569 570 -918.0 - SF7BW125 to SF12BW125 571 571 572 -918.2 - SF7BW125 to SF12BW125 573 573 618 +== 2.9 Battery Analysis == 574 574 575 - (%style="color:#037691"%)**Downlink:**620 +=== 2.9.1 Battery Type === 576 576 577 -923.3 - SF7BW500 to SF12BW500 578 578 579 -923.9 - SF7BW500 to SF12BW500 580 - 581 -924.5 - SF7BW500 to SF12BW500 582 - 583 -925.1 - SF7BW500 to SF12BW500 584 - 585 -925.7 - SF7BW500 to SF12BW500 586 - 587 -926.3 - SF7BW500 to SF12BW500 588 - 589 -926.9 - SF7BW500 to SF12BW500 590 - 591 -927.5 - SF7BW500 to SF12BW500 592 - 593 -923.3 - SF12BW500(RX2 downlink only) 594 - 595 - 596 - 597 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 598 - 599 -(% style="color:#037691" %)**Default Uplink channel:** 600 - 601 -923.2 - SF7BW125 to SF10BW125 602 - 603 -923.4 - SF7BW125 to SF10BW125 604 - 605 - 606 -(% style="color:#037691" %)**Additional Uplink Channel**: 607 - 608 -(OTAA mode, channel added by JoinAccept message) 609 - 610 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 611 - 612 -922.2 - SF7BW125 to SF10BW125 613 - 614 -922.4 - SF7BW125 to SF10BW125 615 - 616 -922.6 - SF7BW125 to SF10BW125 617 - 618 -922.8 - SF7BW125 to SF10BW125 619 - 620 -923.0 - SF7BW125 to SF10BW125 621 - 622 -922.0 - SF7BW125 to SF10BW125 623 - 624 - 625 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 626 - 627 -923.6 - SF7BW125 to SF10BW125 628 - 629 -923.8 - SF7BW125 to SF10BW125 630 - 631 -924.0 - SF7BW125 to SF10BW125 632 - 633 -924.2 - SF7BW125 to SF10BW125 634 - 635 -924.4 - SF7BW125 to SF10BW125 636 - 637 -924.6 - SF7BW125 to SF10BW125 638 - 639 - 640 -(% style="color:#037691" %)** Downlink:** 641 - 642 -Uplink channels 1-8 (RX1) 643 - 644 -923.2 - SF10BW125 (RX2) 645 - 646 - 647 - 648 -=== 2.7.6 KR920-923 (KR920) === 649 - 650 -Default channel: 651 - 652 -922.1 - SF7BW125 to SF12BW125 653 - 654 -922.3 - SF7BW125 to SF12BW125 655 - 656 -922.5 - SF7BW125 to SF12BW125 657 - 658 - 659 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 660 - 661 -922.1 - SF7BW125 to SF12BW125 662 - 663 -922.3 - SF7BW125 to SF12BW125 664 - 665 -922.5 - SF7BW125 to SF12BW125 666 - 667 -922.7 - SF7BW125 to SF12BW125 668 - 669 -922.9 - SF7BW125 to SF12BW125 670 - 671 -923.1 - SF7BW125 to SF12BW125 672 - 673 -923.3 - SF7BW125 to SF12BW125 674 - 675 - 676 -(% style="color:#037691" %)**Downlink:** 677 - 678 -Uplink channels 1-7(RX1) 679 - 680 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 681 - 682 - 683 - 684 -=== 2.7.7 IN865-867 (IN865) === 685 - 686 -(% style="color:#037691" %)** Uplink:** 687 - 688 -865.0625 - SF7BW125 to SF12BW125 689 - 690 -865.4025 - SF7BW125 to SF12BW125 691 - 692 -865.9850 - SF7BW125 to SF12BW125 693 - 694 - 695 -(% style="color:#037691" %) **Downlink:** 696 - 697 -Uplink channels 1-3 (RX1) 698 - 699 -866.550 - SF10BW125 (RX2) 700 - 701 - 702 - 703 - 704 -== 2.8 LED Indicator == 705 - 706 -The LSE01 has an internal LED which is to show the status of different state. 707 - 708 -* Blink once when device power on. 709 -* Solid ON for 5 seconds once device successful Join the network. 710 -* Blink once when device transmit a packet. 711 - 712 -== 2.9 Installation in Soil == 713 - 714 -**Measurement the soil surface** 715 - 716 - 717 -[[image:1654506634463-199.png]] 718 - 719 719 ((( 720 -((( 721 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 624 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 722 722 ))) 723 -))) 724 724 725 725 726 - 727 -[[image:1654506665940-119.png]] 728 - 729 729 ((( 730 - Dig aholewithdiameter>20CM.629 +The battery is designed to last for several years depends on the actually use environment and update interval. 731 731 ))) 732 732 733 -((( 734 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 735 -))) 736 736 737 - 738 -== 2.10 Firmware Change Log == 739 - 740 740 ((( 741 - **Firmware downloadlink:**634 +The battery related documents as below: 742 742 ))) 743 743 744 - (((745 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]746 - )))637 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 638 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 639 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 747 747 748 748 ((( 749 - 642 +[[image:image-20220708140453-6.png]] 750 750 ))) 751 751 752 -((( 753 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 754 -))) 755 755 756 -((( 757 - 758 -))) 759 759 760 -((( 761 -**V1.0.** 762 -))) 647 +=== 2.9.2 Power consumption Analyze === 763 763 764 764 ((( 765 - Release650 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 766 766 ))) 767 767 768 768 769 -== 2.11 Battery Analysis == 770 - 771 -=== 2.11.1 Battery Type === 772 - 773 773 ((( 774 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.655 +Instruction to use as below: 775 775 ))) 776 776 777 777 ((( 778 - Thebatterys designedlastforrethan5 years fortheSN50.659 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 779 779 ))) 780 780 662 + 781 781 ((( 782 -((( 783 -The battery-related documents are as below: 664 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 784 784 ))) 785 -))) 786 786 787 787 * ((( 788 - [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],668 +Product Model 789 789 ))) 790 790 * ((( 791 - [[Lithium-ThionylChloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],671 +Uplink Interval 792 792 ))) 793 793 * ((( 794 - [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]674 +Working Mode 795 795 ))) 796 796 797 - [[image:image-20220610172436-1.png]] 677 +((( 678 +And the Life expectation in difference case will be shown on the right. 679 +))) 798 798 681 +[[image:image-20220708141352-7.jpeg]] 799 799 800 800 801 -=== 2.11.2 Battery Note === 802 802 685 +=== 2.9.3 Battery Note === 686 + 803 803 ((( 804 804 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 805 805 ))) ... ... @@ -806,302 +806,176 @@ 806 806 807 807 808 808 809 -=== 2. 11.3Replace the battery ===693 +=== 2.9.4 Replace the battery === 810 810 811 811 ((( 812 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.696 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 813 813 ))) 814 814 699 + 700 + 701 += 3. Access NB-IoT Module = 702 + 815 815 ((( 816 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.704 +Users can directly access the AT command set of the NB-IoT module. 817 817 ))) 818 818 819 819 ((( 820 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)708 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 821 821 ))) 822 822 711 +[[image:1657261278785-153.png]] 823 823 824 824 825 -= 3. Using the AT Commands = 826 826 827 -= =3.1AccessAT Commands ==715 += 4. Using the AT Commands = 828 828 717 +== 4.1 Access AT Commands == 829 829 830 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.719 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 831 831 832 -[[image:1654501986557-872.png||height="391" width="800"]] 833 833 722 +AT+<CMD>? : Help on <CMD> 834 834 835 - Orifyouhavebelowboard,usebelowconnection:724 +AT+<CMD> : Run <CMD> 836 836 726 +AT+<CMD>=<value> : Set the value 837 837 838 - [[image:1654502005655-729.png||height="503"width="801"]]728 +AT+<CMD>=? : Get the value 839 839 840 840 841 - 842 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 843 - 844 - 845 - [[image:1654502050864-459.png||height="564" width="806"]] 846 - 847 - 848 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 849 - 850 - 851 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 852 - 853 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 854 - 855 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 856 - 857 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 858 - 859 - 860 860 (% style="color:#037691" %)**General Commands**(%%) 861 861 862 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention733 +AT : Attention 863 863 864 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help735 +AT? : Short Help 865 865 866 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset737 +ATZ : MCU Reset 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval739 +AT+TDC : Application Data Transmission Interval 869 869 741 +AT+CFG : Print all configurations 870 870 871 - (%style="color:#037691"%)**Keys,IDsand EUIs management**743 +AT+CFGMOD : Working mode selection 872 872 873 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI745 +AT+INTMOD : Set the trigger interrupt mode 874 874 875 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey747 +AT+5VT : Set extend the time of 5V power 876 876 877 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key749 +AT+PRO : Choose agreement 878 878 879 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress751 +AT+WEIGRE : Get weight or set weight to 0 880 880 881 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI753 +AT+WEIGAP : Get or Set the GapValue of weight 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)755 +AT+RXDL : Extend the sending and receiving time 884 884 885 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network757 +AT+CNTFAC : Get or set counting parameters 886 886 887 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode759 +AT+SERVADDR : Server Address 888 888 889 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 890 890 891 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network762 +(% style="color:#037691" %)**COAP Management** 892 892 893 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode764 +AT+URI : Resource parameters 894 894 895 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 896 896 897 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format767 +(% style="color:#037691" %)**UDP Management** 898 898 899 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat769 +AT+CFM : Upload confirmation mode (only valid for UDP) 900 900 901 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 902 902 903 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data772 +(% style="color:#037691" %)**MQTT Management** 904 904 774 +AT+CLIENT : Get or Set MQTT client 905 905 906 - (%style="color:#037691"%)**LoRaNetworkManagement**776 +AT+UNAME : Get or Set MQTT Username 907 907 908 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate778 +AT+PWD : Get or Set MQTT password 909 909 910 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA780 +AT+PUBTOPIC : Get or Set MQTT publish topic 911 911 912 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting782 +AT+SUBTOPIC : Get or Set MQTT subscription topic 913 913 914 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 915 915 916 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink785 +(% style="color:#037691" %)**Information** 917 917 918 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink787 +AT+FDR : Factory Data Reset 919 919 920 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1789 +AT+PWORD : Serial Access Password 921 921 922 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 923 923 924 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 925 925 926 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1793 += 5. FAQ = 927 927 928 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2795 +== 5.1 How to Upgrade Firmware == 929 929 930 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 931 931 932 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 933 - 934 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 935 - 936 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 937 - 938 - 939 -(% style="color:#037691" %)**Information** 940 - 941 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 942 - 943 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 944 - 945 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 946 - 947 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 948 - 949 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 950 - 951 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 952 - 953 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 954 - 955 - 956 -= 4. FAQ = 957 - 958 -== 4.1 How to change the LoRa Frequency Bands/Region? == 959 - 960 960 ((( 961 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 962 -When downloading the images, choose the required image file for download. 799 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 963 963 ))) 964 964 965 965 ((( 966 - 803 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 967 967 ))) 968 968 969 969 ((( 970 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.807 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 971 971 ))) 972 972 973 -((( 974 - 975 -))) 976 976 977 -((( 978 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 979 -))) 980 980 981 -((( 982 - 983 -))) 812 +== 5.2 Can I calibrate NSE01 to different soil types? == 984 984 985 985 ((( 986 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.815 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 987 987 ))) 988 988 989 -[[image:image-20220606154726-3.png]] 990 990 819 += 6. Trouble Shooting = 991 991 992 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:821 +== 6.1 Connection problem when uploading firmware == 993 993 994 -* 903.9 - SF7BW125 to SF10BW125 995 -* 904.1 - SF7BW125 to SF10BW125 996 -* 904.3 - SF7BW125 to SF10BW125 997 -* 904.5 - SF7BW125 to SF10BW125 998 -* 904.7 - SF7BW125 to SF10BW125 999 -* 904.9 - SF7BW125 to SF10BW125 1000 -* 905.1 - SF7BW125 to SF10BW125 1001 -* 905.3 - SF7BW125 to SF10BW125 1002 -* 904.6 - SF8BW500 1003 1003 1004 1004 ((( 1005 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1006 - 1007 -* (% style="color:#037691" %)**AT+CHE=2** 1008 -* (% style="color:#037691" %)**ATZ** 825 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 1009 1009 ))) 1010 1010 828 +(% class="wikigeneratedid" %) 1011 1011 ((( 1012 1012 1013 - 1014 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1015 1015 ))) 1016 1016 1017 -((( 1018 - 1019 -))) 1020 1020 1021 -((( 1022 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1023 -))) 834 +== 6.2 AT Command input doesn't work == 1024 1024 1025 -[[image:image-20220606154825-4.png]] 1026 - 1027 - 1028 -== 4.2 Can I calibrate LSE01 to different soil types? == 1029 - 1030 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1031 - 1032 - 1033 -= 5. Trouble Shooting = 1034 - 1035 -== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1036 - 1037 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1038 - 1039 - 1040 -== 5.2 AT Command input doesn't work == 1041 - 1042 1042 ((( 1043 1043 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1044 -))) 1045 1045 1046 - 1047 -== 5.3 Device rejoin in at the second uplink packet == 1048 - 1049 -(% style="color:#4f81bd" %)**Issue describe as below:** 1050 - 1051 -[[image:1654500909990-784.png]] 1052 - 1053 - 1054 -(% style="color:#4f81bd" %)**Cause for this issue:** 1055 - 1056 -((( 1057 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 839 + 1058 1058 ))) 1059 1059 1060 1060 1061 - (% style="color:#4f81bd"%)**Solution:**843 += 7. Order Info = 1062 1062 1063 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1064 1064 1065 - [[image:1654500929571-736.png||height="458" width="832"]]846 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1066 1066 1067 1067 1068 -= 6. Order Info = 1069 - 1070 - 1071 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1072 - 1073 - 1074 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1075 - 1076 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1077 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1078 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1079 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1080 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1081 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1082 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1083 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1084 - 1085 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1086 - 1087 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1088 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1089 - 1090 1090 (% class="wikigeneratedid" %) 1091 1091 ((( 1092 1092 1093 1093 ))) 1094 1094 1095 -= 7. Packing Info =854 += 8. Packing Info = 1096 1096 1097 1097 ((( 1098 1098 1099 1099 1100 1100 (% style="color:#037691" %)**Package Includes**: 1101 -))) 1102 1102 1103 -* (((1104 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1861 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 862 +* External antenna x 1 1105 1105 ))) 1106 1106 1107 1107 ((( ... ... @@ -1108,24 +1108,19 @@ 1108 1108 1109 1109 1110 1110 (% style="color:#037691" %)**Dimension and weight**: 1111 -))) 1112 1112 1113 -* (((1114 - DeviceSize:cm870 +* Size: 195 x 125 x 55 mm 871 +* Weight: 420g 1115 1115 ))) 1116 -* ((( 1117 -Device Weight: g 1118 -))) 1119 -* ((( 1120 -Package Size / pcs : cm 1121 -))) 1122 -* ((( 1123 -Weight / pcs : g 1124 1124 874 +((( 1125 1125 876 + 877 + 878 + 1126 1126 ))) 1127 1127 1128 -= 8. Support =881 += 9. Support = 1129 1129 1130 1130 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1131 1131 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +83.8 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +61.9 KB - Content