Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,7 +3,9 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,85 +10,61 @@ 10 10 11 11 12 12 15 += 1. Introduction = 13 13 14 - **TableofContents:**17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 18 18 19 - 20 - 21 -= 1. Introduction = 22 - 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 - 25 25 ((( 26 - 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 - 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 39 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 61 61 61 +== 1.3 Specification == 62 62 63 - 64 -== 1.3 Specification == 65 - 66 - 67 -(% style="color:#037691" %)**Common DC Characteristics:** 68 - 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 71 - 72 - 73 -(% style="color:#037691" %)**NB-IoT Spec:** 74 - 75 -* - B1 @H-FDD: 2100MHz 76 -* - B3 @H-FDD: 1800MHz 77 -* - B8 @H-FDD: 900MHz 78 -* - B5 @H-FDD: 850MHz 79 -* - B20 @H-FDD: 800MHz 80 -* - B28 @H-FDD: 700MHz 81 - 82 - 83 -(% style="color:#037691" %)**Probe Specification:** 84 - 85 85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -[[image:image-20220 708101224-1.png]]65 +[[image:image-20220606162220-5.png]] 88 88 89 89 90 90 91 -== 1.4 69 +== 1.4 Applications == 92 92 93 93 * Smart Agriculture 94 94 ... ... @@ -95,35 +95,27 @@ 95 95 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 96 96 97 97 98 -== 1.5 Pin Definitions==76 +== 1.5 Firmware Change log == 99 99 100 100 101 - [[image:1657246476176-652.png]]79 +**LSE01 v1.0 :** Release 102 102 103 103 104 104 105 -= 2. UseNSE01 to communicatewithIoTServer=83 += 2. Configure LSE01 to connect to LoRaWAN network = 106 106 107 -== 2.1 85 +== 2.1 How it works == 108 108 109 - 110 110 ((( 111 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 112 112 ))) 113 113 114 - 115 115 ((( 116 - Thediagrambelowshows theworkingflowindefaultfirmwaref NSE01:92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 117 117 ))) 118 118 119 -[[image:image-20220708101605-2.png]] 120 120 121 -((( 122 - 123 -))) 124 124 125 - 126 - 127 127 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 128 128 129 129 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. ... ... @@ -135,7 +135,7 @@ 135 135 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 136 136 137 137 138 - (% style="color:blue" %)**Step 1**(%%):108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 139 139 140 140 Each LSE01 is shipped with a sticker with the default device EUI as below: 141 141 ... ... @@ -156,7 +156,7 @@ 156 156 157 157 158 158 159 - (% style="color:blue" %)**Step 2**(%%): Power on LSE01129 +**Step 2**: Power on LSE01 160 160 161 161 162 162 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). ... ... @@ -164,7 +164,7 @@ 164 164 [[image:image-20220606163915-7.png]] 165 165 166 166 167 - (% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 168 168 169 169 [[image:1654504778294-788.png]] 170 170 ... ... @@ -172,104 +172,88 @@ 172 172 173 173 == 2.3 Uplink Payload == 174 174 175 - 176 176 === 2.3.1 MOD~=0(Default Mode) === 177 177 178 178 LSE01 will uplink payload via LoRaWAN with below payload format: 179 179 180 - (((149 + 181 181 Uplink payload includes in total 11 bytes. 182 - )))151 + 183 183 184 -(% border="1" cellspacing="10" style="background-color:#ffff cc; width:500px" %)185 -|((( 153 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 +|=((( 186 186 **Size** 187 187 188 188 **(bytes)** 189 -)))|**2**|**2**|**2**|**2**|**2**|**1** 190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 158 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 159 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 191 191 Temperature 192 192 193 193 (Reserve, Ignore now) 194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 163 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 195 195 MOD & Digital Interrupt 196 196 197 197 (Optional) 198 198 ))) 199 199 169 +[[image:1654504881641-514.png]] 170 + 171 + 172 + 200 200 === 2.3.2 MOD~=1(Original value) === 201 201 202 202 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 203 203 204 -(% border="1" cellspacing="10" style="background-color:#ffff cc; width:500px" %)205 -|((( 177 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 178 +|=((( 206 206 **Size** 207 207 208 208 **(bytes)** 209 -)))|**2**|**2**|**2**|**2**|**2**|**1** 182 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 210 210 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 211 211 Temperature 212 212 213 213 (Reserve, Ignore now) 214 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]] (raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((187 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 215 215 MOD & Digital Interrupt 216 216 217 217 (Optional) 218 218 ))) 219 219 193 +[[image:1654504907647-967.png]] 194 + 195 + 196 + 220 220 === 2.3.3 Battery Info === 221 221 222 -((( 223 223 Check the battery voltage for LSE01. 224 -))) 225 225 226 -((( 227 227 Ex1: 0x0B45 = 2885mV 228 -))) 229 229 230 -((( 231 231 Ex2: 0x0B49 = 2889mV 232 -))) 233 233 234 234 235 235 236 236 === 2.3.4 Soil Moisture === 237 237 238 -((( 239 239 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 240 -))) 241 241 242 -((( 243 243 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 244 -))) 245 245 246 -((( 247 - 248 -))) 249 249 250 -((( 251 251 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 252 -))) 253 253 254 254 255 255 256 256 === 2.3.5 Soil Temperature === 257 257 258 -((( 259 259 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 260 -))) 261 261 262 -((( 263 263 **Example**: 264 -))) 265 265 266 -((( 267 267 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 268 -))) 269 269 270 -((( 271 271 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 272 -))) 273 273 274 274 275 275 ... ... @@ -319,15 +319,12 @@ 319 319 320 320 [[image:1654505570700-128.png]] 321 321 322 -((( 323 323 The payload decoder function for TTN is here: 324 -))) 325 325 326 -((( 327 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 328 -))) 278 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 329 329 330 330 281 + 331 331 == 2.4 Uplink Interval == 332 332 333 333 The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] ... ... @@ -341,44 +341,24 @@ 341 341 [[image:image-20220606165544-8.png]] 342 342 343 343 344 -((( 345 -(% style="color:blue" %)**Examples:** 346 -))) 295 +**Examples:** 347 347 348 -((( 349 - 350 -))) 351 351 352 -* ((( 353 -(% style="color:blue" %)**Set TDC** 354 -))) 298 +* **Set TDC** 355 355 356 -((( 357 357 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 358 -))) 359 359 360 -((( 361 361 Payload: 01 00 00 1E TDC=30S 362 -))) 363 363 364 -((( 365 365 Payload: 01 00 00 3C TDC=60S 366 -))) 367 367 368 -((( 369 - 370 -))) 371 371 372 -* ((( 373 -(% style="color:blue" %)**Reset** 374 -))) 307 +* **Reset** 375 375 376 -((( 377 377 If payload = 0x04FF, it will reset the LSE01 378 -))) 379 379 380 380 381 -* (% style="color:blue" %)**CFM**312 +* **CFM** 382 382 383 383 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 384 384 ... ... @@ -386,21 +386,12 @@ 386 386 387 387 == 2.6 Show Data in DataCake IoT Server == 388 388 389 -((( 390 390 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 391 -))) 392 392 393 -((( 394 - 395 -))) 396 396 397 -((( 398 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 399 -))) 323 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 400 400 401 -((( 402 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 403 -))) 325 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 404 404 405 405 406 406 [[image:1654505857935-743.png]] ... ... @@ -408,12 +408,11 @@ 408 408 409 409 [[image:1654505874829-548.png]] 410 410 333 +Step 3: Create an account or log in Datacake. 411 411 412 - (% style="color:blue" %)**Step3**(%%)**:**Create an accountor log inDatacake.335 +Step 4: Search the LSE01 and add DevEUI. 413 413 414 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 415 415 416 - 417 417 [[image:1654505905236-553.png]] 418 418 419 419 ... ... @@ -723,7 +723,6 @@ 723 723 ))) 724 724 725 725 726 - 727 727 [[image:1654506665940-119.png]] 728 728 729 729 ((( ... ... @@ -785,16 +785,16 @@ 785 785 ))) 786 786 787 787 * ((( 788 -[[Battery Dimension>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],708 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 789 789 ))) 790 790 * ((( 791 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/ index.php?dir=datasheet/Battery/]],711 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 792 792 ))) 793 793 * ((( 794 -[[Lithium-ion Battery-Capacitor datasheet>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]714 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 795 795 ))) 796 796 797 - [[image:image-202206 10172436-1.png]]717 + [[image:image-20220606171726-9.png]] 798 798 799 799 800 800 ... ... @@ -845,7 +845,7 @@ 845 845 [[image:1654502050864-459.png||height="564" width="806"]] 846 846 847 847 848 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>http s://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]768 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 849 849 850 850 851 851 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -957,38 +957,20 @@ 957 957 958 958 == 4.1 How to change the LoRa Frequency Bands/Region? == 959 959 960 -((( 961 961 You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 962 962 When downloading the images, choose the required image file for download. 963 -))) 964 964 965 -((( 966 - 967 -))) 968 968 969 -((( 970 970 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 971 -))) 972 972 973 -((( 974 - 975 -))) 976 976 977 -((( 978 978 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 979 -))) 980 980 981 -((( 982 - 983 -))) 984 984 985 -((( 986 986 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 987 -))) 988 988 989 989 [[image:image-20220606154726-3.png]] 990 990 991 - 992 992 When you use the TTN network, the US915 frequency bands use are: 993 993 994 994 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -1001,47 +1001,37 @@ 1001 1001 * 905.3 - SF7BW125 to SF10BW125 1002 1002 * 904.6 - SF8BW500 1003 1003 1004 -((( 1005 1005 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1006 1006 1007 -* (% style="color:#037691" %)**AT+CHE=2** 1008 -* (% style="color:#037691" %)**ATZ** 908 +(% class="box infomessage" %) 909 +((( 910 +**AT+CHE=2** 1009 1009 ))) 1010 1010 913 +(% class="box infomessage" %) 1011 1011 ((( 1012 - 915 +**ATZ** 916 +))) 1013 1013 1014 1014 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1015 -))) 1016 1016 1017 -((( 1018 - 1019 -))) 1020 1020 1021 -((( 1022 1022 The **AU915** band is similar. Below are the AU915 Uplink Channels. 1023 -))) 1024 1024 1025 1025 [[image:image-20220606154825-4.png]] 1026 1026 1027 1027 1028 -== 4.2 Can I calibrate LSE01 to different soil types? == 1029 1029 1030 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1031 - 1032 - 1033 1033 = 5. Trouble Shooting = 1034 1034 1035 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==929 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1036 1036 1037 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.931 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1038 1038 1039 1039 1040 -== 5.2 AT Command input doesn 't work ==934 +== 5.2 AT Command input doesn’t work == 1041 1041 1042 -((( 1043 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1044 -))) 936 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1045 1045 1046 1046 1047 1047 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -1053,9 +1053,7 @@ 1053 1053 1054 1054 (% style="color:#4f81bd" %)**Cause for this issue:** 1055 1055 1056 -((( 1057 1057 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1058 -))) 1059 1059 1060 1060 1061 1061 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -1062,7 +1062,7 @@ 1062 1062 1063 1063 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1064 1064 1065 -[[image:1654500929571-736.png ||height="458" width="832"]]955 +[[image:1654500929571-736.png]] 1066 1066 1067 1067 1068 1068 = 6. Order Info = ... ... @@ -1095,9 +1095,7 @@ 1095 1095 = 7. Packing Info = 1096 1096 1097 1097 ((( 1098 - 1099 - 1100 -(% style="color:#037691" %)**Package Includes**: 988 +**Package Includes**: 1101 1101 ))) 1102 1102 1103 1103 * ((( ... ... @@ -1106,8 +1106,10 @@ 1106 1106 1107 1107 ((( 1108 1108 997 +))) 1109 1109 1110 -(% style="color:#037691" %)**Dimension and weight**: 999 +((( 1000 +**Dimension and weight**: 1111 1111 ))) 1112 1112 1113 1113 * ((( ... ... @@ -1122,6 +1122,7 @@ 1122 1122 * ((( 1123 1123 Weight / pcs : g 1124 1124 1015 + 1125 1125 1126 1126 ))) 1127 1127 ... ... @@ -1129,3 +1129,5 @@ 1129 1129 1130 1130 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1131 1131 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1023 + 1024 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content