<
From version < 45.2 >
edited by Xiaoling
on 2022/07/08 10:16
To version < 31.22 >
edited by Xiaoling
on 2022/06/07 10:08
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,85 +10,62 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
61 61  
62 62  
62 +== 1.3 Specification ==
63 63  
64 -== 1.3  Specification ==
65 -
66 -
67 -(% style="color:#037691" %)**Common DC Characteristics:**
68 -
69 -* Supply Voltage: 2.1v ~~ 3.6v
70 -* Operating Temperature: -40 ~~ 85°C
71 -
72 -
73 -(% style="color:#037691" %)**NB-IoT Spec:**
74 -
75 -* - B1 @H-FDD: 2100MHz
76 -* - B3 @H-FDD: 1800MHz
77 -* - B8 @H-FDD: 900MHz
78 -* - B5 @H-FDD: 850MHz
79 -* - B20 @H-FDD: 800MHz
80 -* - B28 @H-FDD: 700MHz
81 -
82 -
83 -(% style="color:#037691" %)**Probe Specification:**
84 -
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -[[image:image-20220708101224-1.png]]
66 +[[image:image-20220606162220-5.png]]
88 88  
89 89  
90 90  
91 -== ​1.4  Applications ==
70 +== ​1.4 Applications ==
92 92  
93 93  * Smart Agriculture
94 94  
... ... @@ -95,35 +95,27 @@
95 95  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 96  ​
97 97  
98 -== 1.5  Pin Definitions ==
77 +== 1.5 Firmware Change log ==
99 99  
100 100  
101 -[[image:1657246476176-652.png]]
80 +**LSE01 v1.0 :**  Release
102 102  
103 103  
104 104  
105 -= 2.  Use NSE01 to communicate with IoT Server =
84 += 2. Configure LSE01 to connect to LoRaWAN network =
106 106  
107 -== 2.1  How it works ==
86 +== 2.1 How it works ==
108 108  
109 -
110 110  (((
111 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
89 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
112 112  )))
113 113  
114 -
115 115  (((
116 -The diagram below shows the working flow in default firmware of NSE01:
93 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.​UsingtheATCommands"]].
117 117  )))
118 118  
119 -[[image:image-20220708101605-2.png]]
120 120  
121 -(((
122 -
123 -)))
124 124  
125 -
126 -
127 127  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
128 128  
129 129  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
... ... @@ -135,7 +135,7 @@
135 135  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
136 136  
137 137  
138 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
109 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
139 139  
140 140  Each LSE01 is shipped with a sticker with the default device EUI as below:
141 141  
... ... @@ -156,7 +156,7 @@
156 156  
157 157  
158 158  
159 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
130 +**Step 2**: Power on LSE01
160 160  
161 161  
162 162  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
... ... @@ -164,7 +164,7 @@
164 164  [[image:image-20220606163915-7.png]]
165 165  
166 166  
167 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 168  
169 169  [[image:1654504778294-788.png]]
170 170  
... ... @@ -172,104 +172,88 @@
172 172  
173 173  == 2.3 Uplink Payload ==
174 174  
175 -
176 176  === 2.3.1 MOD~=0(Default Mode) ===
177 177  
178 178  LSE01 will uplink payload via LoRaWAN with below payload format: 
179 179  
180 -(((
150 +
181 181  Uplink payload includes in total 11 bytes.
182 -)))
152 +
183 183  
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
154 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
155 +|=(((
186 186  **Size**
187 187  
188 188  **(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
159 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1**
160 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)(((
191 191  Temperature
192 192  
193 193  (Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)(((
195 195  MOD & Digital Interrupt
196 196  
197 197  (Optional)
198 198  )))
199 199  
170 +[[image:1654504881641-514.png]]
171 +
172 +
173 +
200 200  === 2.3.2 MOD~=1(Original value) ===
201 201  
202 202  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
203 203  
204 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 -|(((
178 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %)
179 +|=(((
206 206  **Size**
207 207  
208 208  **(bytes)**
209 -)))|**2**|**2**|**2**|**2**|**2**|**1**
183 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1**
210 210  |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 211  Temperature
212 212  
213 213  (Reserve, Ignore now)
214 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 215  MOD & Digital Interrupt
216 216  
217 217  (Optional)
218 218  )))
219 219  
194 +[[image:1654504907647-967.png]]
195 +
196 +
197 +
220 220  === 2.3.3 Battery Info ===
221 221  
222 -(((
223 223  Check the battery voltage for LSE01.
224 -)))
225 225  
226 -(((
227 227  Ex1: 0x0B45 = 2885mV
228 -)))
229 229  
230 -(((
231 231  Ex2: 0x0B49 = 2889mV
232 -)))
233 233  
234 234  
235 235  
236 236  === 2.3.4 Soil Moisture ===
237 237  
238 -(((
239 239  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
240 -)))
241 241  
242 -(((
243 243  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 -)))
245 245  
246 -(((
247 -
248 -)))
249 249  
250 -(((
251 251  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 -)))
253 253  
254 254  
255 255  
256 256  === 2.3.5 Soil Temperature ===
257 257  
258 -(((
259 259   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 -)))
261 261  
262 -(((
263 263  **Example**:
264 -)))
265 265  
266 -(((
267 267  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 -)))
269 269  
270 -(((
271 271  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 -)))
273 273  
274 274  
275 275  
... ... @@ -304,7 +304,7 @@
304 304  mod=(bytes[10]>>7)&0x01=1.
305 305  
306 306  
307 -**Downlink Command:**
262 +Downlink Command:
308 308  
309 309  If payload = 0x0A00, workmode=0
310 310  
... ... @@ -319,21 +319,19 @@
319 319  
320 320  [[image:1654505570700-128.png]]
321 321  
322 -(((
323 323  The payload decoder function for TTN is here:
324 -)))
325 325  
326 -(((
327 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 -)))
279 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
329 329  
330 330  
331 331  == 2.4 Uplink Interval ==
332 332  
333 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
284 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
334 334  
286 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
335 335  
336 336  
289 +
337 337  == 2.5 Downlink Payload ==
338 338  
339 339  By default, LSE50 prints the downlink payload to console port.
... ... @@ -341,44 +341,24 @@
341 341  [[image:image-20220606165544-8.png]]
342 342  
343 343  
344 -(((
345 -(% style="color:blue" %)**Examples:**
346 -)))
297 +**Examples:**
347 347  
348 -(((
349 -
350 -)))
351 351  
352 -* (((
353 -(% style="color:blue" %)**Set TDC**
354 -)))
300 +* **Set TDC**
355 355  
356 -(((
357 357  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 -)))
359 359  
360 -(((
361 361  Payload:    01 00 00 1E    TDC=30S
362 -)))
363 363  
364 -(((
365 365  Payload:    01 00 00 3C    TDC=60S
366 -)))
367 367  
368 -(((
369 -
370 -)))
371 371  
372 -* (((
373 -(% style="color:blue" %)**Reset**
374 -)))
309 +* **Reset**
375 375  
376 -(((
377 377  If payload = 0x04FF, it will reset the LSE01
378 -)))
379 379  
380 380  
381 -* (% style="color:blue" %)**CFM**
314 +* **CFM**
382 382  
383 383  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
384 384  
... ... @@ -386,21 +386,12 @@
386 386  
387 387  == 2.6 ​Show Data in DataCake IoT Server ==
388 388  
389 -(((
390 390  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
391 -)))
392 392  
393 -(((
394 -
395 -)))
396 396  
397 -(((
398 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
399 -)))
325 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
400 400  
401 -(((
402 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
403 -)))
327 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
404 404  
405 405  
406 406  [[image:1654505857935-743.png]]
... ... @@ -408,12 +408,11 @@
408 408  
409 409  [[image:1654505874829-548.png]]
410 410  
335 +Step 3: Create an account or log in Datacake.
411 411  
412 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
337 +Step 4: Search the LSE01 and add DevEUI.
413 413  
414 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
415 415  
416 -
417 417  [[image:1654505905236-553.png]]
418 418  
419 419  
... ... @@ -723,7 +723,6 @@
723 723  )))
724 724  
725 725  
726 -
727 727  [[image:1654506665940-119.png]]
728 728  
729 729  (((
... ... @@ -785,16 +785,16 @@
785 785  )))
786 786  
787 787  * (((
788 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
710 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
789 789  )))
790 790  * (((
791 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
713 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
792 792  )))
793 793  * (((
794 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
716 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
795 795  )))
796 796  
797 - [[image:image-20220610172436-1.png]]
719 + [[image:image-20220606171726-9.png]]
798 798  
799 799  
800 800  
... ... @@ -829,13 +829,13 @@
829 829  
830 830  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
831 831  
832 -[[image:1654501986557-872.png||height="391" width="800"]]
754 +[[image:1654501986557-872.png]]
833 833  
834 834  
835 835  Or if you have below board, use below connection:
836 836  
837 837  
838 -[[image:1654502005655-729.png||height="503" width="801"]]
760 +[[image:1654502005655-729.png]]
839 839  
840 840  
841 841  
... ... @@ -842,10 +842,10 @@
842 842  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
843 843  
844 844  
845 - [[image:1654502050864-459.png||height="564" width="806"]]
767 + [[image:1654502050864-459.png]]
846 846  
847 847  
848 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
770 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
849 849  
850 850  
851 851  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -957,38 +957,20 @@
957 957  
958 958  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 959  
960 -(((
961 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
962 962  When downloading the images, choose the required image file for download. ​
963 -)))
964 964  
965 -(((
966 -
967 -)))
968 968  
969 -(((
970 970  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
971 -)))
972 972  
973 -(((
974 -
975 -)))
976 976  
977 -(((
978 978  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 -)))
980 980  
981 -(((
982 -
983 -)))
984 984  
985 -(((
986 986  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 -)))
988 988  
989 989  [[image:image-20220606154726-3.png]]
990 990  
991 -
992 992  When you use the TTN network, the US915 frequency bands use are:
993 993  
994 994  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -1001,47 +1001,37 @@
1001 1001  * 905.3 - SF7BW125 to SF10BW125
1002 1002  * 904.6 - SF8BW500
1003 1003  
1004 -(((
1005 1005  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 1006  
1007 -* (% style="color:#037691" %)**AT+CHE=2**
1008 -* (% style="color:#037691" %)**ATZ**
910 +(% class="box infomessage" %)
911 +(((
912 +**AT+CHE=2**
1009 1009  )))
1010 1010  
915 +(% class="box infomessage" %)
1011 1011  (((
1012 -
917 +**ATZ**
918 +)))
1013 1013  
1014 1014  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1015 -)))
1016 1016  
1017 -(((
1018 -
1019 -)))
1020 1020  
1021 -(((
1022 1022  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 -)))
1024 1024  
1025 1025  [[image:image-20220606154825-4.png]]
1026 1026  
1027 1027  
1028 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 1029  
1030 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 -
1032 -
1033 1033  = 5. Trouble Shooting =
1034 1034  
1035 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
931 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1036 1036  
1037 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
933 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1038 1038  
1039 1039  
1040 -== 5.2 AT Command input doesn't work ==
936 +== 5.2 AT Command input doesnt work ==
1041 1041  
1042 -(((
1043 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 -)))
938 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1045 1045  
1046 1046  
1047 1047  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1053,9 +1053,7 @@
1053 1053  
1054 1054  (% style="color:#4f81bd" %)**Cause for this issue:**
1055 1055  
1056 -(((
1057 1057  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1058 -)))
1059 1059  
1060 1060  
1061 1061  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1062,7 +1062,7 @@
1062 1062  
1063 1063  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1064 1064  
1065 -[[image:1654500929571-736.png||height="458" width="832"]]
957 +[[image:1654500929571-736.png]]
1066 1066  
1067 1067  
1068 1068  = 6. ​Order Info =
... ... @@ -1095,9 +1095,7 @@
1095 1095  = 7. Packing Info =
1096 1096  
1097 1097  (((
1098 -
1099 -
1100 -(% style="color:#037691" %)**Package Includes**:
990 +**Package Includes**:
1101 1101  )))
1102 1102  
1103 1103  * (((
... ... @@ -1106,8 +1106,10 @@
1106 1106  
1107 1107  (((
1108 1108  
999 +)))
1109 1109  
1110 -(% style="color:#037691" %)**Dimension and weight**:
1001 +(((
1002 +**Dimension and weight**:
1111 1111  )))
1112 1112  
1113 1113  * (((
... ... @@ -1122,6 +1122,7 @@
1122 1122  * (((
1123 1123  Weight / pcs : g
1124 1124  
1017 +
1125 1125  
1126 1126  )))
1127 1127  
... ... @@ -1129,3 +1129,5 @@
1129 1129  
1130 1130  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1131 1131  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1025 +
1026 +
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0