Last modified by Mengting Qiu on 2024/04/02 16:44

From version 45.1
edited by Xiaoling
on 2022/07/08 10:16
Change comment: Uploaded new attachment "image-20220708101605-2.png", version {1}
To version 77.1
edited by Xiaoling
on 2022/07/09 09:04
Change comment: Uploaded new attachment "1657328659945-416.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,16 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
15 +
21 21  = 1.  Introduction =
22 22  
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 +)))
29 29  
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 36  
37 37  )))
38 38  
... ... @@ -39,23 +39,23 @@
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
38 +[[image:1657327959271-447.png]]
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
47 47  
48 48  
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 -* Monitor Soil Moisture
51 -* Monitor Soil Temperature
52 -* Monitor Soil Conductivity
46 +* Ultra low power consumption
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
... ... @@ -69,7 +69,6 @@
69 69  * Supply Voltage: 2.1v ~~ 3.6v
70 70  * Operating Temperature: -40 ~~ 85°C
71 71  
72 -
73 73  (% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 75  * - B1 @H-FDD: 2100MHz
... ... @@ -80,718 +80,655 @@
80 80  * - B28 @H-FDD: 700MHz
81 81  
82 82  
83 -(% style="color:#037691" %)**Probe Specification:**
78 +(% style="color:#037691" %)**Battery:**
84 84  
85 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
86 86  
87 -[[image:image-20220708101224-1.png]]
88 88  
87 +(% style="color:#037691" %)**Power Consumption**
89 89  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
90 90  
92 +
93 +
94 +
91 91  == ​1.4  Applications ==
92 92  
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
93 93  * Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
94 94  
95 95  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 96  ​
97 97  
98 -== 1.5  Pin Definitions ==
99 99  
100 100  
101 -[[image:1657246476176-652.png]]
109 +== 1.5  Pin Definitions ==
102 102  
103 103  
112 +[[image:1657328609906-564.png]]
104 104  
105 -= 2. Configure LSE01 to connect to LoRaWAN network =
106 106  
107 -== 2.1 How it works ==
108 108  
109 -(((
110 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 -)))
112 112  
113 -(((
114 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
115 -)))
117 += 2.  Use NSE01 to communicate with IoT Server =
116 116  
119 +== 2.1  How it works ==
117 117  
118 118  
119 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 -
121 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 -
123 -
124 -[[image:1654503992078-669.png]]
125 -
126 -
127 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 -
129 -
130 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 -
132 -Each LSE01 is shipped with a sticker with the default device EUI as below:
133 -
134 -[[image:image-20220606163732-6.jpeg]]
135 -
136 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
137 -
138 -**Add APP EUI in the application**
139 -
140 -
141 -[[image:1654504596150-405.png]]
142 -
143 -
144 -
145 -**Add APP KEY and DEV EUI**
146 -
147 -[[image:1654504683289-357.png]]
148 -
149 -
150 -
151 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
152 -
153 -
154 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 -
156 -[[image:image-20220606163915-7.png]]
157 -
158 -
159 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 -
161 -[[image:1654504778294-788.png]]
162 -
163 -
164 -
165 -== 2.3 Uplink Payload ==
166 -
167 -
168 -=== 2.3.1 MOD~=0(Default Mode) ===
169 -
170 -LSE01 will uplink payload via LoRaWAN with below payload format: 
171 -
172 172  (((
173 -Uplink payload includes in total 11 bytes.
123 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
174 174  )))
175 175  
176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 -|(((
178 -**Size**
179 179  
180 -**(bytes)**
181 -)))|**2**|**2**|**2**|**2**|**2**|**1**
182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 -Temperature
184 -
185 -(Reserve, Ignore now)
186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 -MOD & Digital Interrupt
188 -
189 -(Optional)
190 -)))
191 -
192 -=== 2.3.2 MOD~=1(Original value) ===
193 -
194 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
195 -
196 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 -|(((
198 -**Size**
199 -
200 -**(bytes)**
201 -)))|**2**|**2**|**2**|**2**|**2**|**1**
202 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 -Temperature
204 -
205 -(Reserve, Ignore now)
206 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 -MOD & Digital Interrupt
208 -
209 -(Optional)
210 -)))
211 -
212 -=== 2.3.3 Battery Info ===
213 -
214 214  (((
215 -Check the battery voltage for LSE01.
128 +The diagram below shows the working flow in default firmware of NSE01:
216 216  )))
217 217  
218 -(((
219 -Ex1: 0x0B45 = 2885mV
220 -)))
131 +[[image:image-20220708101605-2.png]]
221 221  
222 222  (((
223 -Ex2: 0x0B49 = 2889mV
224 -)))
225 -
226 -
227 -
228 -=== 2.3.4 Soil Moisture ===
229 -
230 -(((
231 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 -)))
233 -
234 -(((
235 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 -)))
237 -
238 -(((
239 239  
240 240  )))
241 241  
242 -(((
243 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 -)))
245 245  
246 246  
139 +== 2.2 ​ Configure the NSE01 ==
247 247  
248 -=== 2.3.5 Soil Temperature ===
249 249  
250 -(((
251 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 -)))
142 +=== 2.2.1 Test Requirement ===
253 253  
254 -(((
255 -**Example**:
256 -)))
257 257  
258 258  (((
259 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
146 +To use NSE01 in your city, make sure meet below requirements:
260 260  )))
261 261  
262 -(((
263 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 -)))
149 +* Your local operator has already distributed a NB-IoT Network there.
150 +* The local NB-IoT network used the band that NSE01 supports.
151 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
265 265  
266 -
267 -
268 -=== 2.3.6 Soil Conductivity (EC) ===
269 -
270 270  (((
271 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
154 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
272 272  )))
273 273  
274 -(((
275 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 -)))
277 277  
278 -(((
279 -Generally, the EC value of irrigation water is less than 800uS / cm.
280 -)))
158 +[[image:1657249419225-449.png]]
281 281  
282 -(((
283 -
284 -)))
285 285  
286 -(((
287 -
288 -)))
289 289  
290 -=== 2.3.7 MOD ===
162 +=== 2.2.2 Insert SIM card ===
291 291  
292 -Firmware version at least v2.1 supports changing mode.
293 -
294 -For example, bytes[10]=90
295 -
296 -mod=(bytes[10]>>7)&0x01=1.
297 -
298 -
299 -**Downlink Command:**
300 -
301 -If payload = 0x0A00, workmode=0
302 -
303 -If** **payload =** **0x0A01, workmode=1
304 -
305 -
306 -
307 -=== 2.3.8 ​Decode payload in The Things Network ===
308 -
309 -While using TTN network, you can add the payload format to decode the payload.
310 -
311 -
312 -[[image:1654505570700-128.png]]
313 -
314 314  (((
315 -The payload decoder function for TTN is here:
165 +Insert the NB-IoT Card get from your provider.
316 316  )))
317 317  
318 318  (((
319 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
169 +User need to take out the NB-IoT module and insert the SIM card like below:
320 320  )))
321 321  
322 322  
323 -== 2.4 Uplink Interval ==
173 +[[image:1657249468462-536.png]]
324 324  
325 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
326 326  
327 327  
177 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
328 328  
329 -== 2.5 Downlink Payload ==
330 -
331 -By default, LSE50 prints the downlink payload to console port.
332 -
333 -[[image:image-20220606165544-8.png]]
334 -
335 -
336 336  (((
337 -(% style="color:blue" %)**Examples:**
338 -)))
339 -
340 340  (((
341 -
181 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
342 342  )))
343 -
344 -* (((
345 -(% style="color:blue" %)**Set TDC**
346 346  )))
347 347  
348 -(((
349 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 -)))
351 351  
352 -(((
353 -Payload:    01 00 00 1E    TDC=30S
354 -)))
186 +**Connection:**
355 355  
356 -(((
357 -Payload:    01 00 00 3C    TDC=60S
358 -)))
188 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
359 359  
360 -(((
361 -
362 -)))
190 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
363 363  
364 -* (((
365 -(% style="color:blue" %)**Reset**
366 -)))
192 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
367 367  
368 -(((
369 -If payload = 0x04FF, it will reset the LSE01
370 -)))
371 371  
195 +In the PC, use below serial tool settings:
372 372  
373 -* (% style="color:blue" %)**CFM**
197 +* Baud:  (% style="color:green" %)**9600**
198 +* Data bits:** (% style="color:green" %)8(%%)**
199 +* Stop bits: (% style="color:green" %)**1**
200 +* Parity:  (% style="color:green" %)**None**
201 +* Flow Control: (% style="color:green" %)**None**
374 374  
375 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
376 -
377 -
378 -
379 -== 2.6 ​Show Data in DataCake IoT Server ==
380 -
381 381  (((
382 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
204 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
383 383  )))
384 384  
385 -(((
386 -
387 -)))
207 +[[image:image-20220708110657-3.png]]
388 388  
389 389  (((
390 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
210 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
391 391  )))
392 392  
393 -(((
394 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 -)))
396 396  
397 397  
398 -[[image:1654505857935-743.png]]
215 +=== 2.2.4 Use CoAP protocol to uplink data ===
399 399  
217 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
400 400  
401 -[[image:1654505874829-548.png]]
402 402  
220 +**Use below commands:**
403 403  
404 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
222 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
223 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
224 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
405 405  
406 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
226 +For parameter description, please refer to AT command set
407 407  
228 +[[image:1657249793983-486.png]]
408 408  
409 -[[image:1654505905236-553.png]]
410 410  
231 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
411 411  
412 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
233 +[[image:1657249831934-534.png]]
413 413  
414 -[[image:1654505925508-181.png]]
415 415  
416 416  
237 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
417 417  
418 -== 2.7 Frequency Plans ==
239 +This feature is supported since firmware version v1.0.1
419 419  
420 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
421 421  
242 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
244 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
422 422  
423 -=== 2.7.1 EU863-870 (EU868) ===
246 +[[image:1657249864775-321.png]]
424 424  
425 -(% style="color:#037691" %)** Uplink:**
426 426  
427 -868.1 - SF7BW125 to SF12BW125
249 +[[image:1657249930215-289.png]]
428 428  
429 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
430 430  
431 -868.5 - SF7BW125 to SF12BW125
432 432  
433 -867.1 - SF7BW125 to SF12BW125
253 +=== 2.2.6 Use MQTT protocol to uplink data ===
434 434  
435 -867.3 - SF7BW125 to SF12BW125
255 +This feature is supported since firmware version v110
436 436  
437 -867.5 - SF7BW125 to SF12BW125
438 438  
439 -867.7 - SF7BW125 to SF12BW125
258 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
259 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
260 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
261 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
262 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
263 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
264 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
440 440  
441 -867.9 - SF7BW125 to SF12BW125
266 +[[image:1657249978444-674.png]]
442 442  
443 -868.8 - FSK
444 444  
269 +[[image:1657249990869-686.png]]
445 445  
446 -(% style="color:#037691" %)** Downlink:**
447 447  
448 -Uplink channels 1-9 (RX1)
272 +(((
273 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
274 +)))
449 449  
450 -869.525 - SF9BW125 (RX2 downlink only)
451 451  
452 452  
278 +=== 2.2.7 Use TCP protocol to uplink data ===
453 453  
454 -=== 2.7.2 US902-928(US915) ===
280 +This feature is supported since firmware version v110
455 455  
456 -Used in USA, Canada and South America. Default use CHE=2
457 457  
458 -(% style="color:#037691" %)**Uplink:**
283 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
284 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
459 459  
460 -903.9 - SF7BW125 to SF10BW125
286 +[[image:1657250217799-140.png]]
461 461  
462 -904.1 - SF7BW125 to SF10BW125
463 463  
464 -904.3 - SF7BW125 to SF10BW125
289 +[[image:1657250255956-604.png]]
465 465  
466 -904.5 - SF7BW125 to SF10BW125
467 467  
468 -904.7 - SF7BW125 to SF10BW125
469 469  
470 -904.9 - SF7BW125 to SF10BW125
293 +=== 2.2.8 Change Update Interval ===
471 471  
472 -905.1 - SF7BW125 to SF10BW125
295 +User can use below command to change the (% style="color:green" %)**uplink interval**.
473 473  
474 -905.3 - SF7BW125 to SF10BW125
297 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
475 475  
299 +(((
300 +(% style="color:red" %)**NOTE:**
301 +)))
476 476  
477 -(% style="color:#037691" %)**Downlink:**
303 +(((
304 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
305 +)))
478 478  
479 -923.3 - SF7BW500 to SF12BW500
480 480  
481 -923.9 - SF7BW500 to SF12BW500
482 482  
483 -924.5 - SF7BW500 to SF12BW500
309 +== 2. Uplink Payload ==
484 484  
485 -925.1 - SF7BW500 to SF12BW500
311 +In this mode, uplink payload includes in total 18 bytes
486 486  
487 -925.7 - SF7BW500 to SF12BW500
313 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
314 +|=(% style="width: 60px;" %)(((
315 +**Size(bytes)**
316 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
317 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
488 488  
489 -926.3 - SF7BW500 to SF12BW500
319 +(((
320 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
321 +)))
490 490  
491 -926.9 - SF7BW500 to SF12BW500
492 492  
493 -927.5 - SF7BW500 to SF12BW500
324 +[[image:image-20220708111918-4.png]]
494 494  
495 -923.3 - SF12BW500(RX2 downlink only)
496 496  
327 +The payload is ASCII string, representative same HEX:
497 497  
329 +0x72403155615900640c7817075e0a8c02f900 where:
498 498  
499 -=== 2.7.3 CN470-510 (CN470) ===
331 +* Device ID: 0x 724031556159 = 724031556159
332 +* Version: 0x0064=100=1.0.0
500 500  
501 -Used in China, Default use CHE=1
334 +* BAT: 0x0c78 = 3192 mV = 3.192V
335 +* Singal: 0x17 = 23
336 +* Soil Moisture: 0x075e= 1886 = 18.86  %
337 +* Soil Temperature:0x0a8c =2700=27 °C
338 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
339 +* Interrupt: 0x00 = 0
502 502  
503 -(% style="color:#037691" %)**Uplink:**
341 +== 2.4  Payload Explanation and Sensor Interface ==
504 504  
505 -486.3 - SF7BW125 to SF12BW125
506 506  
507 -486.5 - SF7BW125 to SF12BW125
344 +=== 2.4.1  Device ID ===
508 508  
509 -486.7 - SF7BW125 to SF12BW125
346 +(((
347 +By default, the Device ID equal to the last 6 bytes of IMEI.
348 +)))
510 510  
511 -486.9 - SF7BW125 to SF12BW125
350 +(((
351 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
352 +)))
512 512  
513 -487.1 - SF7BW125 to SF12BW125
354 +(((
355 +**Example:**
356 +)))
514 514  
515 -487.3 - SF7BW125 to SF12BW125
358 +(((
359 +AT+DEUI=A84041F15612
360 +)))
516 516  
517 -487.5 - SF7BW125 to SF12BW125
362 +(((
363 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
364 +)))
518 518  
519 -487.7 - SF7BW125 to SF12BW125
520 520  
521 521  
522 -(% style="color:#037691" %)**Downlink:**
368 +=== 2.4.2  Version Info ===
523 523  
524 -506.7 - SF7BW125 to SF12BW125
370 +(((
371 +Specify the software version: 0x64=100, means firmware version 1.00.
372 +)))
525 525  
526 -506.9 - SF7BW125 to SF12BW125
374 +(((
375 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
376 +)))
527 527  
528 -507.1 - SF7BW125 to SF12BW125
529 529  
530 -507.3 - SF7BW125 to SF12BW125
531 531  
532 -507.5 - SF7BW125 to SF12BW125
380 +=== 2.4.3  Battery Info ===
533 533  
534 -507.7 - SF7BW125 to SF12BW125
382 +(((
383 +Check the battery voltage for LSE01.
384 +)))
535 535  
536 -507.9 - SF7BW125 to SF12BW125
386 +(((
387 +Ex1: 0x0B45 = 2885mV
388 +)))
537 537  
538 -508.1 - SF7BW125 to SF12BW125
390 +(((
391 +Ex2: 0x0B49 = 2889mV
392 +)))
539 539  
540 -505.3 - SF12BW125 (RX2 downlink only)
541 541  
542 542  
396 +=== 2.4.4  Signal Strength ===
543 543  
544 -=== 2.7.4 AU915-928(AU915) ===
398 +(((
399 +NB-IoT Network signal Strength.
400 +)))
545 545  
546 -Default use CHE=2
402 +(((
403 +**Ex1: 0x1d = 29**
404 +)))
547 547  
548 -(% style="color:#037691" %)**Uplink:**
406 +(((
407 +(% style="color:blue" %)**0**(%%)  -113dBm or less
408 +)))
549 549  
550 -916.8 - SF7BW125 to SF12BW125
410 +(((
411 +(% style="color:blue" %)**1**(%%)  -111dBm
412 +)))
551 551  
552 -917.0 - SF7BW125 to SF12BW125
414 +(((
415 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
416 +)))
553 553  
554 -917.2 - SF7BW125 to SF12BW125
418 +(((
419 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
420 +)))
555 555  
556 -917.4 - SF7BW125 to SF12BW125
422 +(((
423 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
424 +)))
557 557  
558 -917.6 - SF7BW125 to SF12BW125
559 559  
560 -917.8 - SF7BW125 to SF12BW125
561 561  
562 -918.0 - SF7BW125 to SF12BW125
428 +=== 2.4.5  Soil Moisture ===
563 563  
564 -918.2 - SF7BW125 to SF12BW125
430 +(((
431 +(((
432 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
433 +)))
434 +)))
565 565  
436 +(((
437 +(((
438 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
439 +)))
440 +)))
566 566  
567 -(% style="color:#037691" %)**Downlink:**
442 +(((
443 +
444 +)))
568 568  
569 -923.3 - SF7BW500 to SF12BW500
446 +(((
447 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
448 +)))
570 570  
571 -923.9 - SF7BW500 to SF12BW500
572 572  
573 -924.5 - SF7BW500 to SF12BW500
574 574  
575 -925.1 - SF7BW500 to SF12BW500
452 +=== 2.4.6  Soil Temperature ===
576 576  
577 -925.7 - SF7BW500 to SF12BW500
454 +(((
455 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
456 +)))
578 578  
579 -926.3 - SF7BW500 to SF12BW500
458 +(((
459 +**Example**:
460 +)))
580 580  
581 -926.9 - SF7BW500 to SF12BW500
462 +(((
463 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
464 +)))
582 582  
583 -927.5 - SF7BW500 to SF12BW500
466 +(((
467 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
468 +)))
584 584  
585 -923.3 - SF12BW500(RX2 downlink only)
586 586  
587 587  
472 +=== 2.4.7  Soil Conductivity (EC) ===
588 588  
589 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
474 +(((
475 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
476 +)))
590 590  
591 -(% style="color:#037691" %)**Default Uplink channel:**
478 +(((
479 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
480 +)))
592 592  
593 -923.2 - SF7BW125 to SF10BW125
482 +(((
483 +Generally, the EC value of irrigation water is less than 800uS / cm.
484 +)))
594 594  
595 -923.4 - SF7BW125 to SF10BW125
486 +(((
487 +
488 +)))
596 596  
490 +(((
491 +
492 +)))
597 597  
598 -(% style="color:#037691" %)**Additional Uplink Channel**:
494 +=== 2.4.8  Digital Interrupt ===
599 599  
600 -(OTAA mode, channel added by JoinAccept message)
496 +(((
497 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
498 +)))
601 601  
602 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
500 +(((
501 +The command is:
502 +)))
603 603  
604 -922.2 - SF7BW125 to SF10BW125
504 +(((
505 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
506 +)))
605 605  
606 -922.4 - SF7BW125 to SF10BW125
607 607  
608 -922.6 - SF7BW125 to SF10BW125
509 +(((
510 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
511 +)))
609 609  
610 -922.8 - SF7BW125 to SF10BW125
611 611  
612 -923.0 - SF7BW125 to SF10BW125
514 +(((
515 +Example:
516 +)))
613 613  
614 -922.0 - SF7BW125 to SF10BW125
518 +(((
519 +0x(00): Normal uplink packet.
520 +)))
615 615  
522 +(((
523 +0x(01): Interrupt Uplink Packet.
524 +)))
616 616  
617 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
618 618  
619 -923.6 - SF7BW125 to SF10BW125
620 620  
621 -923.8 - SF7BW125 to SF10BW125
528 +=== 2.4.9  ​+5V Output ===
622 622  
623 -924.0 - SF7BW125 to SF10BW125
530 +(((
531 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
532 +)))
624 624  
625 -924.2 - SF7BW125 to SF10BW125
626 626  
627 -924.4 - SF7BW125 to SF10BW125
535 +(((
536 +The 5V output time can be controlled by AT Command.
537 +)))
628 628  
629 -924.6 - SF7BW125 to SF10BW125
539 +(((
540 +(% style="color:blue" %)**AT+5VT=1000**
541 +)))
630 630  
543 +(((
544 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
545 +)))
631 631  
632 -(% style="color:#037691" %)** Downlink:**
633 633  
634 -Uplink channels 1-8 (RX1)
635 635  
636 -923.2 - SF10BW125 (RX2)
549 +== 2. Downlink Payload ==
637 637  
551 +By default, NSE01 prints the downlink payload to console port.
638 638  
553 +[[image:image-20220708133731-5.png]]
639 639  
640 -=== 2.7.6 KR920-923 (KR920) ===
641 641  
642 -Default channel:
556 +(((
557 +(% style="color:blue" %)**Examples:**
558 +)))
643 643  
644 -922.1 - SF7BW125 to SF12BW125
560 +(((
561 +
562 +)))
645 645  
646 -922.3 - SF7BW125 to SF12BW125
564 +* (((
565 +(% style="color:blue" %)**Set TDC**
566 +)))
647 647  
648 -922.5 - SF7BW125 to SF12BW125
568 +(((
569 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
570 +)))
649 649  
572 +(((
573 +Payload:    01 00 00 1E    TDC=30S
574 +)))
650 650  
651 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
576 +(((
577 +Payload:    01 00 00 3C    TDC=60S
578 +)))
652 652  
653 -922.1 - SF7BW125 to SF12BW125
580 +(((
581 +
582 +)))
654 654  
655 -922.3 - SF7BW125 to SF12BW125
584 +* (((
585 +(% style="color:blue" %)**Reset**
586 +)))
656 656  
657 -922.5 - SF7BW125 to SF12BW125
588 +(((
589 +If payload = 0x04FF, it will reset the NSE01
590 +)))
658 658  
659 -922.7 - SF7BW125 to SF12BW125
660 660  
661 -922.9 - SF7BW125 to SF12BW125
593 +* (% style="color:blue" %)**INTMOD**
662 662  
663 -923.1 - SF7BW125 to SF12BW125
595 +(((
596 +Downlink Payload: 06000003, Set AT+INTMOD=3
597 +)))
664 664  
665 -923.3 - SF7BW125 to SF12BW125
666 666  
667 667  
668 -(% style="color:#037691" %)**Downlink:**
601 +== 2.6  ​LED Indicator ==
669 669  
670 -Uplink channels 1-7(RX1)
603 +(((
604 +The NSE01 has an internal LED which is to show the status of different state.
671 671  
672 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 673  
607 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
608 +* Then the LED will be on for 1 second means device is boot normally.
609 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
610 +* For each uplink probe, LED will be on for 500ms.
611 +)))
674 674  
675 675  
676 -=== 2.7.7 IN865-867 (IN865) ===
677 677  
678 -(% style="color:#037691" %)** Uplink:**
679 679  
680 -865.0625 - SF7BW125 to SF12BW125
616 +== 2.7  Installation in Soil ==
681 681  
682 -865.4025 - SF7BW125 to SF12BW125
618 +__**Measurement the soil surface**__
683 683  
684 -865.9850 - SF7BW125 to SF12BW125
620 +(((
621 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
622 +)))
685 685  
624 +[[image:1657259653666-883.png]] ​
686 686  
687 -(% style="color:#037691" %) **Downlink:**
688 688  
689 -Uplink channels 1-3 (RX1)
627 +(((
628 +
690 690  
691 -866.550 - SF10BW125 (RX2)
630 +(((
631 +Dig a hole with diameter > 20CM.
632 +)))
692 692  
634 +(((
635 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
636 +)))
637 +)))
693 693  
639 +[[image:1654506665940-119.png]]
694 694  
641 +(((
642 +
643 +)))
695 695  
696 -== 2.8 LED Indicator ==
697 697  
698 -The LSE01 has an internal LED which is to show the status of different state.
646 +== 2.8  ​Firmware Change Log ==
699 699  
700 -* Blink once when device power on.
701 -* Solid ON for 5 seconds once device successful Join the network.
702 -* Blink once when device transmit a packet.
703 703  
704 -== 2.9 Installation in Soil ==
649 +Download URL & Firmware Change log
705 705  
706 -**Measurement the soil surface**
651 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
707 707  
708 708  
709 -[[image:1654506634463-199.png]]
654 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
710 710  
711 -(((
712 -(((
713 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
714 -)))
715 -)))
716 716  
717 717  
658 +== 2.9  ​Battery Analysis ==
718 718  
719 -[[image:1654506665940-119.png]]
660 +=== 2.9.1  ​Battery Type ===
720 720  
721 -(((
722 -Dig a hole with diameter > 20CM.
723 -)))
724 724  
725 725  (((
726 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
664 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
727 727  )))
728 728  
729 729  
730 -== 2.10 ​Firmware Change Log ==
731 -
732 732  (((
733 -**Firmware download link:**
669 +The battery is designed to last for several years depends on the actually use environment and update interval. 
734 734  )))
735 735  
736 -(((
737 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 -)))
739 739  
740 740  (((
741 -
674 +The battery related documents as below:
742 742  )))
743 743  
744 -(((
745 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 -)))
677 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
678 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
679 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
747 747  
748 748  (((
749 -
682 +[[image:image-20220708140453-6.png]]
750 750  )))
751 751  
752 -(((
753 -**V1.0.**
754 -)))
755 755  
686 +
687 +=== 2.9.2  Power consumption Analyze ===
688 +
756 756  (((
757 -Release
690 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
758 758  )))
759 759  
760 760  
761 -== 2.11 ​Battery Analysis ==
762 -
763 -=== 2.11.1 ​Battery Type ===
764 -
765 765  (((
766 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
695 +Instruction to use as below:
767 767  )))
768 768  
769 769  (((
770 -The battery is designed to last for more than 5 years for the LSN50.
699 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
771 771  )))
772 772  
702 +
773 773  (((
774 -(((
775 -The battery-related documents are as below:
704 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
776 776  )))
777 -)))
778 778  
779 779  * (((
780 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
708 +Product Model
781 781  )))
782 782  * (((
783 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
711 +Uplink Interval
784 784  )))
785 785  * (((
786 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
714 +Working Mode
787 787  )))
788 788  
789 - [[image:image-20220610172436-1.png]]
717 +(((
718 +And the Life expectation in difference case will be shown on the right.
719 +)))
790 790  
721 +[[image:image-20220708141352-7.jpeg]]
791 791  
792 792  
793 -=== 2.11.2 ​Battery Note ===
794 794  
725 +=== 2.9.3  ​Battery Note ===
726 +
795 795  (((
796 796  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
797 797  )))
... ... @@ -798,302 +798,176 @@
798 798  
799 799  
800 800  
801 -=== 2.11.3 Replace the battery ===
733 +=== 2.9. Replace the battery ===
802 802  
803 803  (((
804 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
736 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
805 805  )))
806 806  
739 +
740 +
741 += 3. ​ Access NB-IoT Module =
742 +
807 807  (((
808 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
744 +Users can directly access the AT command set of the NB-IoT module.
809 809  )))
810 810  
811 811  (((
812 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
748 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
813 813  )))
814 814  
751 +[[image:1657261278785-153.png]]
815 815  
816 816  
817 -= 3. ​Using the AT Commands =
818 818  
819 -== 3.1 Access AT Commands ==
755 += 4.  Using the AT Commands =
820 820  
757 +== 4.1  Access AT Commands ==
821 821  
822 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
759 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
823 823  
824 -[[image:1654501986557-872.png||height="391" width="800"]]
825 825  
762 +AT+<CMD>?  : Help on <CMD>
826 826  
827 -Or if you have below board, use below connection:
764 +AT+<CMD>         : Run <CMD>
828 828  
766 +AT+<CMD>=<value> : Set the value
829 829  
830 -[[image:1654502005655-729.png||height="503" width="801"]]
768 +AT+<CMD>=?  : Get the value
831 831  
832 832  
833 -
834 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 -
836 -
837 - [[image:1654502050864-459.png||height="564" width="806"]]
838 -
839 -
840 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 -
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 -
845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 -
847 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 -
849 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 -
851 -
852 852  (% style="color:#037691" %)**General Commands**(%%)      
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
773 +AT  : Attention       
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
775 +AT?  : Short Help     
857 857  
858 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
777 +ATZ  : MCU Reset    
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
779 +AT+TDC  : Application Data Transmission Interval
861 861  
781 +AT+CFG  : Print all configurations
862 862  
863 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
783 +AT+CFGMOD           : Working mode selection
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
785 +AT+INTMOD            : Set the trigger interrupt mode
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
787 +AT+5VT  : Set extend the time of 5V power  
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
789 +AT+PRO  : Choose agreement
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
791 +AT+WEIGRE  : Get weight or set weight to 0
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
793 +AT+WEIGAP  : Get or Set the GapValue of weight
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
795 +AT+RXDL  : Extend the sending and receiving time
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
797 +AT+CNTFAC  : Get or set counting parameters
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
799 +AT+SERVADDR  : Server Address
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
802 +(% style="color:#037691" %)**COAP Management**      
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
804 +AT+URI            : Resource parameters
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
807 +(% style="color:#037691" %)**UDP Management**
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
809 +AT+CFM          : Upload confirmation mode (only valid for UDP)
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
812 +(% style="color:#037691" %)**MQTT Management**
896 896  
814 +AT+CLIENT               : Get or Set MQTT client
897 897  
898 -(% style="color:#037691" %)**LoRa Network Management**
816 +AT+UNAME  : Get or Set MQTT Username
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
818 +AT+PWD                  : Get or Set MQTT password
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
820 +AT+PUBTOPI : Get or Set MQTT publish topic
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
822 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
825 +(% style="color:#037691" %)**Information**          
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
827 +AT+FDR  : Factory Data Reset
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
829 +AT+PWOR : Serial Access Password
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
833 += ​5.  FAQ =
919 919  
920 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
835 +== 5.1 How to Upgrade Firmware ==
921 921  
922 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
923 923  
924 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 -
930 -
931 -(% style="color:#037691" %)**Information** 
932 -
933 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 -
935 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 -
937 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 -
939 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 -
941 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 -
943 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 -
945 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 -
947 -
948 -= ​4. FAQ =
949 -
950 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 -
952 952  (((
953 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 -When downloading the images, choose the required image file for download. ​
839 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
955 955  )))
956 956  
957 957  (((
958 -
843 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
959 959  )))
960 960  
961 961  (((
962 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
847 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
963 963  )))
964 964  
965 -(((
966 -
967 -)))
968 968  
969 -(((
970 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 -)))
972 972  
973 -(((
974 -
975 -)))
852 +== 5.2  Can I calibrate NSE01 to different soil types? ==
976 976  
977 977  (((
978 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
855 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
979 979  )))
980 980  
981 -[[image:image-20220606154726-3.png]]
982 982  
859 += 6.  Trouble Shooting =
983 983  
984 -When you use the TTN network, the US915 frequency bands use are:
861 +== 6.1  ​Connection problem when uploading firmware ==
985 985  
986 -* 903.9 - SF7BW125 to SF10BW125
987 -* 904.1 - SF7BW125 to SF10BW125
988 -* 904.3 - SF7BW125 to SF10BW125
989 -* 904.5 - SF7BW125 to SF10BW125
990 -* 904.7 - SF7BW125 to SF10BW125
991 -* 904.9 - SF7BW125 to SF10BW125
992 -* 905.1 - SF7BW125 to SF10BW125
993 -* 905.3 - SF7BW125 to SF10BW125
994 -* 904.6 - SF8BW500
995 995  
996 996  (((
997 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 -
999 -* (% style="color:#037691" %)**AT+CHE=2**
1000 -* (% style="color:#037691" %)**ATZ**
865 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1001 1001  )))
1002 1002  
868 +(% class="wikigeneratedid" %)
1003 1003  (((
1004 1004  
1005 -
1006 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1007 1007  )))
1008 1008  
1009 -(((
1010 -
1011 -)))
1012 1012  
1013 -(((
1014 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 -)))
874 +== 6.2  AT Command input doesn't work ==
1016 1016  
1017 -[[image:image-20220606154825-4.png]]
1018 -
1019 -
1020 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 -
1022 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 -
1024 -
1025 -= 5. Trouble Shooting =
1026 -
1027 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 -
1029 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 -
1031 -
1032 -== 5.2 AT Command input doesn't work ==
1033 -
1034 1034  (((
1035 1035  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 -)))
1037 1037  
1038 -
1039 -== 5.3 Device rejoin in at the second uplink packet ==
1040 -
1041 -(% style="color:#4f81bd" %)**Issue describe as below:**
1042 -
1043 -[[image:1654500909990-784.png]]
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**Cause for this issue:**
1047 -
1048 -(((
1049 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
879 +
1050 1050  )))
1051 1051  
1052 1052  
1053 -(% style="color:#4f81bd" %)**Solution: **
883 += 7. ​ Order Info =
1054 1054  
1055 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1056 1056  
1057 -[[image:1654500929571-736.png||height="458" width="832"]]
886 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1058 1058  
1059 1059  
1060 -= 6. ​Order Info =
1061 -
1062 -
1063 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 -
1065 -
1066 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 -
1068 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 -
1077 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 -
1079 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 -
1082 1082  (% class="wikigeneratedid" %)
1083 1083  (((
1084 1084  
1085 1085  )))
1086 1086  
1087 -= 7. Packing Info =
894 += 8.  Packing Info =
1088 1088  
1089 1089  (((
1090 1090  
1091 1091  
1092 1092  (% style="color:#037691" %)**Package Includes**:
1093 -)))
1094 1094  
1095 -* (((
1096 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
901 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
902 +* External antenna x 1
1097 1097  )))
1098 1098  
1099 1099  (((
... ... @@ -1100,24 +1100,19 @@
1100 1100  
1101 1101  
1102 1102  (% style="color:#037691" %)**Dimension and weight**:
1103 -)))
1104 1104  
1105 -* (((
1106 -Device Size: cm
910 +* Size: 195 x 125 x 55 mm
911 +* Weight:   420g
1107 1107  )))
1108 -* (((
1109 -Device Weight: g
1110 -)))
1111 -* (((
1112 -Package Size / pcs : cm
1113 -)))
1114 -* (((
1115 -Weight / pcs : g
1116 1116  
914 +(((
1117 1117  
916 +
917 +
918 +
1118 1118  )))
1119 1119  
1120 -= 8. Support =
921 += 9.  Support =
1121 1121  
1122 1122  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1123 1123  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content