<
From version < 45.1 >
edited by Xiaoling
on 2022/07/08 10:16
To version < 72.1 >
edited by Xiaoling
on 2022/07/09 08:45
>
Change comment: Uploaded new attachment "image-20220709084458-4.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
1 +[[image:image-20220709084207-3.jpeg||height="548" width="548"]]
3 3  
4 4  
5 5  
... ... @@ -7,10 +7,6 @@
7 7  
8 8  
9 9  
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
16 +
21 21  = 1.  Introduction =
22 22  
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 +(((
25 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
31 +)))
29 29  
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 36  
37 37  )))
38 38  
... ... @@ -43,9 +43,8 @@
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
43 +== 1.2 ​ Features ==
47 47  
48 -
49 49  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
... ... @@ -59,8 +59,6 @@
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
62 -
63 -
64 64  == 1.3  Specification ==
65 65  
66 66  
... ... @@ -69,7 +69,6 @@
69 69  * Supply Voltage: 2.1v ~~ 3.6v
70 70  * Operating Temperature: -40 ~~ 85°C
71 71  
72 -
73 73  (% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 75  * - B1 @H-FDD: 2100MHz
... ... @@ -79,9 +79,8 @@
79 79  * - B20 @H-FDD: 800MHz
80 80  * - B28 @H-FDD: 700MHz
81 81  
75 +Probe(% style="color:#037691" %)** Specification:**
82 82  
83 -(% style="color:#037691" %)**Probe Specification:**
84 -
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 87  [[image:image-20220708101224-1.png]]
... ... @@ -102,696 +102,616 @@
102 102  
103 103  
104 104  
105 -= 2. Configure LSE01 to connect to LoRaWAN network =
97 += 2.  Use NSE01 to communicate with IoT Server =
106 106  
107 -== 2.1 How it works ==
99 +== 2.1  How it works ==
108 108  
101 +
109 109  (((
110 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
103 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
111 111  )))
112 112  
106 +
113 113  (((
114 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
108 +The diagram below shows the working flow in default firmware of NSE01:
115 115  )))
116 116  
111 +[[image:image-20220708101605-2.png]]
117 117  
113 +(((
114 +
115 +)))
118 118  
119 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 120  
121 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 122  
119 +== 2.2 ​ Configure the NSE01 ==
123 123  
124 -[[image:1654503992078-669.png]]
125 125  
122 +=== 2.2.1 Test Requirement ===
126 126  
127 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 128  
125 +(((
126 +To use NSE01 in your city, make sure meet below requirements:
127 +)))
129 129  
130 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
129 +* Your local operator has already distributed a NB-IoT Network there.
130 +* The local NB-IoT network used the band that NSE01 supports.
131 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
131 131  
132 -Each LSE01 is shipped with a sticker with the default device EUI as below:
133 +(((
134 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
135 +)))
133 133  
134 -[[image:image-20220606163732-6.jpeg]]
135 135  
136 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
138 +[[image:1657249419225-449.png]]
137 137  
138 -**Add APP EUI in the application**
139 139  
140 140  
141 -[[image:1654504596150-405.png]]
142 +=== 2.2.2 Insert SIM card ===
142 142  
144 +(((
145 +Insert the NB-IoT Card get from your provider.
146 +)))
143 143  
148 +(((
149 +User need to take out the NB-IoT module and insert the SIM card like below:
150 +)))
144 144  
145 -**Add APP KEY and DEV EUI**
146 146  
147 -[[image:1654504683289-357.png]]
153 +[[image:1657249468462-536.png]]
148 148  
149 149  
150 150  
151 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
157 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
152 152  
159 +(((
160 +(((
161 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
162 +)))
163 +)))
153 153  
154 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 155  
156 -[[image:image-20220606163915-7.png]]
166 +**Connection:**
157 157  
168 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
158 158  
159 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
170 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
160 160  
161 -[[image:1654504778294-788.png]]
172 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
162 162  
163 163  
175 +In the PC, use below serial tool settings:
164 164  
165 -== 2.3 Uplink Payload ==
177 +* Baud:  (% style="color:green" %)**9600**
178 +* Data bits:** (% style="color:green" %)8(%%)**
179 +* Stop bits: (% style="color:green" %)**1**
180 +* Parity:  (% style="color:green" %)**None**
181 +* Flow Control: (% style="color:green" %)**None**
166 166  
183 +(((
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
185 +)))
167 167  
168 -=== 2.3.1 MOD~=0(Default Mode) ===
187 +[[image:image-20220708110657-3.png]]
169 169  
170 -LSE01 will uplink payload via LoRaWAN with below payload format: 
171 -
172 172  (((
173 -Uplink payload includes in total 11 bytes.
190 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
174 174  )))
175 175  
176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 -|(((
178 -**Size**
179 179  
180 -**(bytes)**
181 -)))|**2**|**2**|**2**|**2**|**2**|**1**
182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 -Temperature
184 184  
185 -(Reserve, Ignore now)
186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 -MOD & Digital Interrupt
195 +=== 2.2.4 Use CoAP protocol to uplink data ===
188 188  
189 -(Optional)
190 -)))
197 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
191 191  
192 -=== 2.3.2 MOD~=1(Original value) ===
193 193  
194 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
200 +**Use below commands:**
195 195  
196 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 -|(((
198 -**Size**
202 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
203 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
204 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
199 199  
200 -**(bytes)**
201 -)))|**2**|**2**|**2**|**2**|**2**|**1**
202 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 -Temperature
206 +For parameter description, please refer to AT command set
204 204  
205 -(Reserve, Ignore now)
206 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 -MOD & Digital Interrupt
208 +[[image:1657249793983-486.png]]
208 208  
209 -(Optional)
210 -)))
211 211  
212 -=== 2.3.3 Battery Info ===
211 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
213 213  
214 -(((
215 -Check the battery voltage for LSE01.
216 -)))
213 +[[image:1657249831934-534.png]]
217 217  
218 -(((
219 -Ex1: 0x0B45 = 2885mV
220 -)))
221 221  
222 -(((
223 -Ex2: 0x0B49 = 2889mV
224 -)))
225 225  
217 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
226 226  
219 +This feature is supported since firmware version v1.0.1
227 227  
228 -=== 2.3.4 Soil Moisture ===
229 229  
230 -(((
231 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 -)))
222 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
223 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
224 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
233 233  
234 -(((
235 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 -)))
226 +[[image:1657249864775-321.png]]
237 237  
238 -(((
239 -
240 -)))
241 241  
242 -(((
243 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 -)))
229 +[[image:1657249930215-289.png]]
245 245  
246 246  
247 247  
248 -=== 2.3.5 Soil Temperature ===
233 +=== 2.2.6 Use MQTT protocol to uplink data ===
249 249  
250 -(((
251 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 -)))
235 +This feature is supported since firmware version v110
253 253  
254 -(((
255 -**Example**:
256 -)))
257 257  
258 -(((
259 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 -)))
238 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
239 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
240 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
241 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
242 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
243 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
244 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
261 261  
262 -(((
263 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 -)))
246 +[[image:1657249978444-674.png]]
265 265  
266 266  
249 +[[image:1657249990869-686.png]]
267 267  
268 -=== 2.3.6 Soil Conductivity (EC) ===
269 269  
270 270  (((
271 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
253 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
272 272  )))
273 273  
274 -(((
275 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 -)))
277 277  
278 -(((
279 -Generally, the EC value of irrigation water is less than 800uS / cm.
280 -)))
281 281  
282 -(((
283 -
284 -)))
258 +=== 2.2.7 Use TCP protocol to uplink data ===
285 285  
286 -(((
287 -
288 -)))
260 +This feature is supported since firmware version v110
289 289  
290 -=== 2.3.7 MOD ===
291 291  
292 -Firmware version at least v2.1 supports changing mode.
263 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
264 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
293 293  
294 -For example, bytes[10]=90
266 +[[image:1657250217799-140.png]]
295 295  
296 -mod=(bytes[10]>>7)&0x01=1.
297 297  
269 +[[image:1657250255956-604.png]]
298 298  
299 -**Downlink Command:**
300 300  
301 -If payload = 0x0A00, workmode=0
302 302  
303 -If** **payload =** **0x0A01, workmode=1
273 +=== 2.2.8 Change Update Interval ===
304 304  
275 +User can use below command to change the (% style="color:green" %)**uplink interval**.
305 305  
277 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
306 306  
307 -=== 2.3.8 ​Decode payload in The Things Network ===
279 +(((
280 +(% style="color:red" %)**NOTE:**
281 +)))
308 308  
309 -While using TTN network, you can add the payload format to decode the payload.
283 +(((
284 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
285 +)))
310 310  
311 311  
312 -[[image:1654505570700-128.png]]
313 313  
314 -(((
315 -The payload decoder function for TTN is here:
316 -)))
289 +== 2.3  Uplink Payload ==
317 317  
291 +In this mode, uplink payload includes in total 18 bytes
292 +
293 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
294 +|=(% style="width: 60px;" %)(((
295 +**Size(bytes)**
296 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
297 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
298 +
318 318  (((
319 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
320 320  )))
321 321  
322 322  
323 -== 2.4 Uplink Interval ==
304 +[[image:image-20220708111918-4.png]]
324 324  
325 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
326 326  
307 +The payload is ASCII string, representative same HEX:
327 327  
309 +0x72403155615900640c7817075e0a8c02f900 where:
328 328  
329 -== 2.5 Downlink Payload ==
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
330 330  
331 -By default, LSE50 prints the downlink payload to console port.
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
332 332  
333 -[[image:image-20220606165544-8.png]]
321 +== 2.4  Payload Explanation and Sensor Interface ==
334 334  
335 335  
324 +=== 2.4.1  Device ID ===
325 +
336 336  (((
337 -(% style="color:blue" %)**Examples:**
327 +By default, the Device ID equal to the last 6 bytes of IMEI.
338 338  )))
339 339  
340 340  (((
341 -
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
342 342  )))
343 343  
344 -* (((
345 -(% style="color:blue" %)**Set TDC**
334 +(((
335 +**Example:**
346 346  )))
347 347  
348 348  (((
349 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
339 +AT+DEUI=A84041F15612
350 350  )))
351 351  
352 352  (((
353 -Payload:    01 00 00 1E    TDC=30S
343 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
354 354  )))
355 355  
346 +
347 +
348 +=== 2.4.2  Version Info ===
349 +
356 356  (((
357 -Payload:    01 00 00 3C    TDC=60S
351 +Specify the software version: 0x64=100, means firmware version 1.00.
358 358  )))
359 359  
360 360  (((
361 -
355 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
362 362  )))
363 363  
364 -* (((
365 -(% style="color:blue" %)**Reset**
358 +
359 +
360 +=== 2.4.3  Battery Info ===
361 +
362 +(((
363 +Check the battery voltage for LSE01.
366 366  )))
367 367  
368 368  (((
369 -If payload = 0x04FF, it will reset the LSE01
367 +Ex1: 0x0B45 = 2885mV
370 370  )))
371 371  
370 +(((
371 +Ex2: 0x0B49 = 2889mV
372 +)))
372 372  
373 -* (% style="color:blue" %)**CFM**
374 374  
375 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
376 376  
376 +=== 2.4.4  Signal Strength ===
377 377  
378 +(((
379 +NB-IoT Network signal Strength.
380 +)))
378 378  
379 -== 2.6 ​Show Data in DataCake IoT Server ==
382 +(((
383 +**Ex1: 0x1d = 29**
384 +)))
380 380  
381 381  (((
382 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
387 +(% style="color:blue" %)**0**(%%)  -113dBm or less
383 383  )))
384 384  
385 385  (((
386 -
391 +(% style="color:blue" %)**1**(%%)  -111dBm
387 387  )))
388 388  
389 389  (((
390 -(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
395 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
391 391  )))
392 392  
393 393  (((
394 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
399 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
395 395  )))
396 396  
402 +(((
403 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
404 +)))
397 397  
398 -[[image:1654505857935-743.png]]
399 399  
400 400  
401 -[[image:1654505874829-548.png]]
408 +=== 2.4.5  Soil Moisture ===
402 402  
410 +(((
411 +(((
412 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
413 +)))
414 +)))
403 403  
404 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
416 +(((
417 +(((
418 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
419 +)))
420 +)))
405 405  
406 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
422 +(((
423 +
424 +)))
407 407  
426 +(((
427 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
428 +)))
408 408  
409 -[[image:1654505905236-553.png]]
410 410  
411 411  
412 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
432 +=== 2.4.6  Soil Temperature ===
413 413  
414 -[[image:1654505925508-181.png]]
434 +(((
435 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
436 +)))
415 415  
438 +(((
439 +**Example**:
440 +)))
416 416  
442 +(((
443 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
444 +)))
417 417  
418 -== 2.7 Frequency Plans ==
446 +(((
447 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
448 +)))
419 419  
420 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
421 421  
422 422  
423 -=== 2.7.1 EU863-870 (EU868) ===
452 +=== 2.4.7  Soil Conductivity (EC) ===
424 424  
425 -(% style="color:#037691" %)** Uplink:**
454 +(((
455 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
456 +)))
426 426  
427 -868.1 - SF7BW125 to SF12BW125
458 +(((
459 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
460 +)))
428 428  
429 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
462 +(((
463 +Generally, the EC value of irrigation water is less than 800uS / cm.
464 +)))
430 430  
431 -868.5 - SF7BW125 to SF12BW125
466 +(((
467 +
468 +)))
432 432  
433 -867.1 - SF7BW125 to SF12BW125
470 +(((
471 +
472 +)))
434 434  
435 -867.3 - SF7BW125 to SF12BW125
474 +=== 2.4.8  Digital Interrupt ===
436 436  
437 -867.5 - SF7BW125 to SF12BW125
476 +(((
477 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
478 +)))
438 438  
439 -867.7 - SF7BW125 to SF12BW125
480 +(((
481 +The command is:
482 +)))
440 440  
441 -867.9 - SF7BW125 to SF12BW125
484 +(((
485 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
486 +)))
442 442  
443 -868.8 - FSK
444 444  
489 +(((
490 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
491 +)))
445 445  
446 -(% style="color:#037691" %)** Downlink:**
447 447  
448 -Uplink channels 1-9 (RX1)
494 +(((
495 +Example:
496 +)))
449 449  
450 -869.525 - SF9BW125 (RX2 downlink only)
498 +(((
499 +0x(00): Normal uplink packet.
500 +)))
451 451  
502 +(((
503 +0x(01): Interrupt Uplink Packet.
504 +)))
452 452  
453 453  
454 -=== 2.7.2 US902-928(US915) ===
455 455  
456 -Used in USA, Canada and South America. Default use CHE=2
508 +=== 2.4.9  ​+5V Output ===
457 457  
458 -(% style="color:#037691" %)**Uplink:**
510 +(((
511 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
512 +)))
459 459  
460 -903.9 - SF7BW125 to SF10BW125
461 461  
462 -904.1 - SF7BW125 to SF10BW125
515 +(((
516 +The 5V output time can be controlled by AT Command.
517 +)))
463 463  
464 -904.3 - SF7BW125 to SF10BW125
519 +(((
520 +(% style="color:blue" %)**AT+5VT=1000**
521 +)))
465 465  
466 -904.5 - SF7BW125 to SF10BW125
523 +(((
524 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
525 +)))
467 467  
468 -904.7 - SF7BW125 to SF10BW125
469 469  
470 -904.9 - SF7BW125 to SF10BW125
471 471  
472 -905.1 - SF7BW125 to SF10BW125
529 +== 2.5  Downlink Payload ==
473 473  
474 -905.3 - SF7BW125 to SF10BW125
531 +By default, NSE01 prints the downlink payload to console port.
475 475  
533 +[[image:image-20220708133731-5.png]]
476 476  
477 -(% style="color:#037691" %)**Downlink:**
478 478  
479 -923.3 - SF7BW500 to SF12BW500
536 +(((
537 +(% style="color:blue" %)**Examples:**
538 +)))
480 480  
481 -923.9 - SF7BW500 to SF12BW500
540 +(((
541 +
542 +)))
482 482  
483 -924.5 - SF7BW500 to SF12BW500
544 +* (((
545 +(% style="color:blue" %)**Set TDC**
546 +)))
484 484  
485 -925.1 - SF7BW500 to SF12BW500
548 +(((
549 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
550 +)))
486 486  
487 -925.7 - SF7BW500 to SF12BW500
552 +(((
553 +Payload:    01 00 00 1E    TDC=30S
554 +)))
488 488  
489 -926.3 - SF7BW500 to SF12BW500
556 +(((
557 +Payload:    01 00 00 3C    TDC=60S
558 +)))
490 490  
491 -926.9 - SF7BW500 to SF12BW500
560 +(((
561 +
562 +)))
492 492  
493 -927.5 - SF7BW500 to SF12BW500
564 +* (((
565 +(% style="color:blue" %)**Reset**
566 +)))
494 494  
495 -923.3 - SF12BW500(RX2 downlink only)
568 +(((
569 +If payload = 0x04FF, it will reset the NSE01
570 +)))
496 496  
497 497  
573 +* (% style="color:blue" %)**INTMOD**
498 498  
499 -=== 2.7.3 CN470-510 (CN470) ===
575 +(((
576 +Downlink Payload: 06000003, Set AT+INTMOD=3
577 +)))
500 500  
501 -Used in China, Default use CHE=1
502 502  
503 -(% style="color:#037691" %)**Uplink:**
504 504  
505 -486.3 - SF7BW125 to SF12BW125
581 +== 2.6  ​LED Indicator ==
506 506  
507 -486.5 - SF7BW125 to SF12BW125
583 +(((
584 +The NSE01 has an internal LED which is to show the status of different state.
508 508  
509 -486.7 - SF7BW125 to SF12BW125
510 510  
511 -486.9 - SF7BW125 to SF12BW125
587 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
588 +* Then the LED will be on for 1 second means device is boot normally.
589 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
590 +* For each uplink probe, LED will be on for 500ms.
591 +)))
512 512  
513 -487.1 - SF7BW125 to SF12BW125
514 514  
515 -487.3 - SF7BW125 to SF12BW125
516 516  
517 -487.5 - SF7BW125 to SF12BW125
518 518  
519 -487.7 - SF7BW125 to SF12BW125
596 +== 2.7  Installation in Soil ==
520 520  
598 +__**Measurement the soil surface**__
521 521  
522 -(% style="color:#037691" %)**Downlink:**
600 +(((
601 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
602 +)))
523 523  
524 -506.7 - SF7BW125 to SF12BW125
604 +[[image:1657259653666-883.png]] ​
525 525  
526 -506.9 - SF7BW125 to SF12BW125
527 527  
528 -507.1 - SF7BW125 to SF12BW125
607 +(((
608 +
529 529  
530 -507.3 - SF7BW125 to SF12BW125
610 +(((
611 +Dig a hole with diameter > 20CM.
612 +)))
531 531  
532 -507.5 - SF7BW125 to SF12BW125
614 +(((
615 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
616 +)))
617 +)))
533 533  
534 -507.7 - SF7BW125 to SF12BW125
619 +[[image:1654506665940-119.png]]
535 535  
536 -507.9 - SF7BW125 to SF12BW125
621 +(((
622 +
623 +)))
537 537  
538 -508.1 - SF7BW125 to SF12BW125
539 539  
540 -505.3 - SF12BW125 (RX2 downlink only)
626 +== 2.8  ​Firmware Change Log ==
541 541  
542 542  
629 +Download URL & Firmware Change log
543 543  
544 -=== 2.7.4 AU915-928(AU915) ===
631 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
545 545  
546 -Default use CHE=2
547 547  
548 -(% style="color:#037691" %)**Uplink:**
634 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
549 549  
550 -916.8 - SF7BW125 to SF12BW125
551 551  
552 -917.0 - SF7BW125 to SF12BW125
553 553  
554 -917.2 - SF7BW125 to SF12BW125
638 +== 2.9  ​Battery Analysis ==
555 555  
556 -917.4 - SF7BW125 to SF12BW125
640 +=== 2.9.1  ​Battery Type ===
557 557  
558 -917.6 - SF7BW125 to SF12BW125
559 559  
560 -917.8 - SF7BW125 to SF12BW125
561 -
562 -918.0 - SF7BW125 to SF12BW125
563 -
564 -918.2 - SF7BW125 to SF12BW125
565 -
566 -
567 -(% style="color:#037691" %)**Downlink:**
568 -
569 -923.3 - SF7BW500 to SF12BW500
570 -
571 -923.9 - SF7BW500 to SF12BW500
572 -
573 -924.5 - SF7BW500 to SF12BW500
574 -
575 -925.1 - SF7BW500 to SF12BW500
576 -
577 -925.7 - SF7BW500 to SF12BW500
578 -
579 -926.3 - SF7BW500 to SF12BW500
580 -
581 -926.9 - SF7BW500 to SF12BW500
582 -
583 -927.5 - SF7BW500 to SF12BW500
584 -
585 -923.3 - SF12BW500(RX2 downlink only)
586 -
587 -
588 -
589 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
590 -
591 -(% style="color:#037691" %)**Default Uplink channel:**
592 -
593 -923.2 - SF7BW125 to SF10BW125
594 -
595 -923.4 - SF7BW125 to SF10BW125
596 -
597 -
598 -(% style="color:#037691" %)**Additional Uplink Channel**:
599 -
600 -(OTAA mode, channel added by JoinAccept message)
601 -
602 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
603 -
604 -922.2 - SF7BW125 to SF10BW125
605 -
606 -922.4 - SF7BW125 to SF10BW125
607 -
608 -922.6 - SF7BW125 to SF10BW125
609 -
610 -922.8 - SF7BW125 to SF10BW125
611 -
612 -923.0 - SF7BW125 to SF10BW125
613 -
614 -922.0 - SF7BW125 to SF10BW125
615 -
616 -
617 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
618 -
619 -923.6 - SF7BW125 to SF10BW125
620 -
621 -923.8 - SF7BW125 to SF10BW125
622 -
623 -924.0 - SF7BW125 to SF10BW125
624 -
625 -924.2 - SF7BW125 to SF10BW125
626 -
627 -924.4 - SF7BW125 to SF10BW125
628 -
629 -924.6 - SF7BW125 to SF10BW125
630 -
631 -
632 -(% style="color:#037691" %)** Downlink:**
633 -
634 -Uplink channels 1-8 (RX1)
635 -
636 -923.2 - SF10BW125 (RX2)
637 -
638 -
639 -
640 -=== 2.7.6 KR920-923 (KR920) ===
641 -
642 -Default channel:
643 -
644 -922.1 - SF7BW125 to SF12BW125
645 -
646 -922.3 - SF7BW125 to SF12BW125
647 -
648 -922.5 - SF7BW125 to SF12BW125
649 -
650 -
651 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 -
653 -922.1 - SF7BW125 to SF12BW125
654 -
655 -922.3 - SF7BW125 to SF12BW125
656 -
657 -922.5 - SF7BW125 to SF12BW125
658 -
659 -922.7 - SF7BW125 to SF12BW125
660 -
661 -922.9 - SF7BW125 to SF12BW125
662 -
663 -923.1 - SF7BW125 to SF12BW125
664 -
665 -923.3 - SF7BW125 to SF12BW125
666 -
667 -
668 -(% style="color:#037691" %)**Downlink:**
669 -
670 -Uplink channels 1-7(RX1)
671 -
672 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 -
674 -
675 -
676 -=== 2.7.7 IN865-867 (IN865) ===
677 -
678 -(% style="color:#037691" %)** Uplink:**
679 -
680 -865.0625 - SF7BW125 to SF12BW125
681 -
682 -865.4025 - SF7BW125 to SF12BW125
683 -
684 -865.9850 - SF7BW125 to SF12BW125
685 -
686 -
687 -(% style="color:#037691" %) **Downlink:**
688 -
689 -Uplink channels 1-3 (RX1)
690 -
691 -866.550 - SF10BW125 (RX2)
692 -
693 -
694 -
695 -
696 -== 2.8 LED Indicator ==
697 -
698 -The LSE01 has an internal LED which is to show the status of different state.
699 -
700 -* Blink once when device power on.
701 -* Solid ON for 5 seconds once device successful Join the network.
702 -* Blink once when device transmit a packet.
703 -
704 -== 2.9 Installation in Soil ==
705 -
706 -**Measurement the soil surface**
707 -
708 -
709 -[[image:1654506634463-199.png]] ​
710 -
711 711  (((
712 -(((
713 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
644 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
714 714  )))
715 -)))
716 716  
717 717  
718 -
719 -[[image:1654506665940-119.png]]
720 -
721 721  (((
722 -Dig a hole with diameter > 20CM.
649 +The battery is designed to last for several years depends on the actually use environment and update interval. 
723 723  )))
724 724  
725 -(((
726 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 -)))
728 728  
729 -
730 -== 2.10 ​Firmware Change Log ==
731 -
732 732  (((
733 -**Firmware download link:**
654 +The battery related documents as below:
734 734  )))
735 735  
736 -(((
737 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 -)))
657 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
659 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
739 739  
740 740  (((
741 -
662 +[[image:image-20220708140453-6.png]]
742 742  )))
743 743  
744 -(((
745 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 -)))
747 747  
748 -(((
749 -
750 -)))
751 751  
752 -(((
753 -**V1.0.**
754 -)))
667 +=== 2.9.2  Power consumption Analyze ===
755 755  
756 756  (((
757 -Release
670 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
758 758  )))
759 759  
760 760  
761 -== 2.11 ​Battery Analysis ==
762 -
763 -=== 2.11.1 ​Battery Type ===
764 -
765 765  (((
766 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
675 +Instruction to use as below:
767 767  )))
768 768  
769 769  (((
770 -The battery is designed to last for more than 5 years for the LSN50.
679 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
771 771  )))
772 772  
682 +
773 773  (((
774 -(((
775 -The battery-related documents are as below:
684 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
776 776  )))
777 -)))
778 778  
779 779  * (((
780 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
688 +Product Model
781 781  )))
782 782  * (((
783 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
691 +Uplink Interval
784 784  )))
785 785  * (((
786 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
694 +Working Mode
787 787  )))
788 788  
789 - [[image:image-20220610172436-1.png]]
697 +(((
698 +And the Life expectation in difference case will be shown on the right.
699 +)))
790 790  
701 +[[image:image-20220708141352-7.jpeg]]
791 791  
792 792  
793 -=== 2.11.2 ​Battery Note ===
794 794  
705 +=== 2.9.3  ​Battery Note ===
706 +
795 795  (((
796 796  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
797 797  )))
... ... @@ -798,302 +798,176 @@
798 798  
799 799  
800 800  
801 -=== 2.11.3 Replace the battery ===
713 +=== 2.9. Replace the battery ===
802 802  
803 803  (((
804 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
716 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
805 805  )))
806 806  
719 +
720 +
721 += 3. ​ Access NB-IoT Module =
722 +
807 807  (((
808 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
724 +Users can directly access the AT command set of the NB-IoT module.
809 809  )))
810 810  
811 811  (((
812 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
728 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
813 813  )))
814 814  
731 +[[image:1657261278785-153.png]]
815 815  
816 816  
817 -= 3. ​Using the AT Commands =
818 818  
819 -== 3.1 Access AT Commands ==
735 += 4.  Using the AT Commands =
820 820  
737 +== 4.1  Access AT Commands ==
821 821  
822 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
739 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
823 823  
824 -[[image:1654501986557-872.png||height="391" width="800"]]
825 825  
742 +AT+<CMD>?  : Help on <CMD>
826 826  
827 -Or if you have below board, use below connection:
744 +AT+<CMD>         : Run <CMD>
828 828  
746 +AT+<CMD>=<value> : Set the value
829 829  
830 -[[image:1654502005655-729.png||height="503" width="801"]]
748 +AT+<CMD>=?  : Get the value
831 831  
832 832  
833 -
834 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 -
836 -
837 - [[image:1654502050864-459.png||height="564" width="806"]]
838 -
839 -
840 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 -
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 -
845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 -
847 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 -
849 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 -
851 -
852 852  (% style="color:#037691" %)**General Commands**(%%)      
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
753 +AT  : Attention       
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
755 +AT?  : Short Help     
857 857  
858 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
757 +ATZ  : MCU Reset    
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
759 +AT+TDC  : Application Data Transmission Interval
861 861  
761 +AT+CFG  : Print all configurations
862 862  
863 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
763 +AT+CFGMOD           : Working mode selection
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
765 +AT+INTMOD            : Set the trigger interrupt mode
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
767 +AT+5VT  : Set extend the time of 5V power  
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
769 +AT+PRO  : Choose agreement
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
771 +AT+WEIGRE  : Get weight or set weight to 0
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
773 +AT+WEIGAP  : Get or Set the GapValue of weight
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
775 +AT+RXDL  : Extend the sending and receiving time
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
777 +AT+CNTFAC  : Get or set counting parameters
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
779 +AT+SERVADDR  : Server Address
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
782 +(% style="color:#037691" %)**COAP Management**      
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
784 +AT+URI            : Resource parameters
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
787 +(% style="color:#037691" %)**UDP Management**
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
789 +AT+CFM          : Upload confirmation mode (only valid for UDP)
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
792 +(% style="color:#037691" %)**MQTT Management**
896 896  
794 +AT+CLIENT               : Get or Set MQTT client
897 897  
898 -(% style="color:#037691" %)**LoRa Network Management**
796 +AT+UNAME  : Get or Set MQTT Username
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
798 +AT+PWD                  : Get or Set MQTT password
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
800 +AT+PUBTOPI : Get or Set MQTT publish topic
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
802 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
805 +(% style="color:#037691" %)**Information**          
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
807 +AT+FDR  : Factory Data Reset
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
809 +AT+PWOR : Serial Access Password
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
813 += ​5.  FAQ =
919 919  
920 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
815 +== 5.1 How to Upgrade Firmware ==
921 921  
922 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
923 923  
924 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 -
930 -
931 -(% style="color:#037691" %)**Information** 
932 -
933 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 -
935 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 -
937 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 -
939 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 -
941 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 -
943 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 -
945 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 -
947 -
948 -= ​4. FAQ =
949 -
950 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 -
952 952  (((
953 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 -When downloading the images, choose the required image file for download. ​
819 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
955 955  )))
956 956  
957 957  (((
958 -
823 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
959 959  )))
960 960  
961 961  (((
962 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
827 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
963 963  )))
964 964  
965 -(((
966 -
967 -)))
968 968  
969 -(((
970 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 -)))
972 972  
973 -(((
974 -
975 -)))
832 +== 5.2  Can I calibrate NSE01 to different soil types? ==
976 976  
977 977  (((
978 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
835 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
979 979  )))
980 980  
981 -[[image:image-20220606154726-3.png]]
982 982  
839 += 6.  Trouble Shooting =
983 983  
984 -When you use the TTN network, the US915 frequency bands use are:
841 +== 6.1  ​Connection problem when uploading firmware ==
985 985  
986 -* 903.9 - SF7BW125 to SF10BW125
987 -* 904.1 - SF7BW125 to SF10BW125
988 -* 904.3 - SF7BW125 to SF10BW125
989 -* 904.5 - SF7BW125 to SF10BW125
990 -* 904.7 - SF7BW125 to SF10BW125
991 -* 904.9 - SF7BW125 to SF10BW125
992 -* 905.1 - SF7BW125 to SF10BW125
993 -* 905.3 - SF7BW125 to SF10BW125
994 -* 904.6 - SF8BW500
995 995  
996 996  (((
997 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 -
999 -* (% style="color:#037691" %)**AT+CHE=2**
1000 -* (% style="color:#037691" %)**ATZ**
845 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1001 1001  )))
1002 1002  
848 +(% class="wikigeneratedid" %)
1003 1003  (((
1004 1004  
1005 -
1006 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1007 1007  )))
1008 1008  
1009 -(((
1010 -
1011 -)))
1012 1012  
1013 -(((
1014 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 -)))
854 +== 6.2  AT Command input doesn't work ==
1016 1016  
1017 -[[image:image-20220606154825-4.png]]
1018 -
1019 -
1020 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 -
1022 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 -
1024 -
1025 -= 5. Trouble Shooting =
1026 -
1027 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 -
1029 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 -
1031 -
1032 -== 5.2 AT Command input doesn't work ==
1033 -
1034 1034  (((
1035 1035  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 -)))
1037 1037  
1038 -
1039 -== 5.3 Device rejoin in at the second uplink packet ==
1040 -
1041 -(% style="color:#4f81bd" %)**Issue describe as below:**
1042 -
1043 -[[image:1654500909990-784.png]]
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**Cause for this issue:**
1047 -
1048 -(((
1049 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
859 +
1050 1050  )))
1051 1051  
1052 1052  
1053 -(% style="color:#4f81bd" %)**Solution: **
863 += 7. ​ Order Info =
1054 1054  
1055 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1056 1056  
1057 -[[image:1654500929571-736.png||height="458" width="832"]]
866 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1058 1058  
1059 1059  
1060 -= 6. ​Order Info =
1061 -
1062 -
1063 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 -
1065 -
1066 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 -
1068 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 -
1077 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 -
1079 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 -
1082 1082  (% class="wikigeneratedid" %)
1083 1083  (((
1084 1084  
1085 1085  )))
1086 1086  
1087 -= 7. Packing Info =
874 += 8.  Packing Info =
1088 1088  
1089 1089  (((
1090 1090  
1091 1091  
1092 1092  (% style="color:#037691" %)**Package Includes**:
1093 -)))
1094 1094  
1095 -* (((
1096 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
881 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
882 +* External antenna x 1
1097 1097  )))
1098 1098  
1099 1099  (((
... ... @@ -1100,24 +1100,19 @@
1100 1100  
1101 1101  
1102 1102  (% style="color:#037691" %)**Dimension and weight**:
1103 -)))
1104 1104  
1105 -* (((
1106 -Device Size: cm
890 +* Size: 195 x 125 x 55 mm
891 +* Weight:   420g
1107 1107  )))
1108 -* (((
1109 -Device Weight: g
1110 -)))
1111 -* (((
1112 -Package Size / pcs : cm
1113 -)))
1114 -* (((
1115 -Weight / pcs : g
1116 1116  
894 +(((
1117 1117  
896 +
897 +
898 +
1118 1118  )))
1119 1119  
1120 -= 8. Support =
901 += 9.  Support =
1121 1121  
1122 1122  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1123 1123  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0