<
From version < 45.1 >
edited by Xiaoling
on 2022/07/08 10:16
To version < 62.3 >
edited by Xiaoling
on 2022/07/08 14:16
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -59,8 +59,6 @@
59 59  * Micro SIM card slot for NB-IoT SIM
60 60  * 8500mAh Battery for long term use
61 61  
62 -
63 -
64 64  == 1.3  Specification ==
65 65  
66 66  
... ... @@ -69,7 +69,6 @@
69 69  * Supply Voltage: 2.1v ~~ 3.6v
70 70  * Operating Temperature: -40 ~~ 85°C
71 71  
72 -
73 73  (% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 75  * - B1 @H-FDD: 2100MHz
... ... @@ -79,7 +79,6 @@
79 79  * - B20 @H-FDD: 800MHz
80 80  * - B28 @H-FDD: 700MHz
81 81  
82 -
83 83  (% style="color:#037691" %)**Probe Specification:**
84 84  
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
... ... @@ -102,696 +102,543 @@
102 102  
103 103  
104 104  
105 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
106 106  
107 -== 2.1 How it works ==
103 +== 2.1  How it works ==
108 108  
105 +
109 109  (((
110 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
111 111  )))
112 112  
110 +
113 113  (((
114 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
115 115  )))
116 116  
115 +[[image:image-20220708101605-2.png]]
117 117  
117 +(((
118 +
119 +)))
118 118  
119 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 120  
121 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 122  
123 +== 2.2 ​ Configure the NSE01 ==
123 123  
124 -[[image:1654503992078-669.png]]
125 125  
126 +=== 2.2.1 Test Requirement ===
126 126  
127 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 128  
129 +To use NSE01 in your city, make sure meet below requirements:
129 129  
130 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
131 131  
132 -Each LSE01 is shipped with a sticker with the default device EUI as below:
133 -
134 -[[image:image-20220606163732-6.jpeg]]
135 -
136 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
137 -
138 -**Add APP EUI in the application**
139 -
140 -
141 -[[image:1654504596150-405.png]]
142 -
143 -
144 -
145 -**Add APP KEY and DEV EUI**
146 -
147 -[[image:1654504683289-357.png]]
148 -
149 -
150 -
151 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
152 -
153 -
154 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 -
156 -[[image:image-20220606163915-7.png]]
157 -
158 -
159 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 -
161 -[[image:1654504778294-788.png]]
162 -
163 -
164 -
165 -== 2.3 Uplink Payload ==
166 -
167 -
168 -=== 2.3.1 MOD~=0(Default Mode) ===
169 -
170 -LSE01 will uplink payload via LoRaWAN with below payload format: 
171 -
172 172  (((
173 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
174 174  )))
175 175  
176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 -|(((
178 -**Size**
179 179  
180 -**(bytes)**
181 -)))|**2**|**2**|**2**|**2**|**2**|**1**
182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 -Temperature
140 +[[image:1657249419225-449.png]]
184 184  
185 -(Reserve, Ignore now)
186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 -MOD & Digital Interrupt
188 188  
189 -(Optional)
190 -)))
191 191  
192 -=== 2.3.2 MOD~=1(Original value) ===
144 +=== 2.2.2 Insert SIM card ===
193 193  
194 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
146 +Insert the NB-IoT Card get from your provider.
195 195  
196 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 -|(((
198 -**Size**
148 +User need to take out the NB-IoT module and insert the SIM card like below:
199 199  
200 -**(bytes)**
201 -)))|**2**|**2**|**2**|**2**|**2**|**1**
202 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 -Temperature
204 204  
205 -(Reserve, Ignore now)
206 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 -MOD & Digital Interrupt
151 +[[image:1657249468462-536.png]]
208 208  
209 -(Optional)
210 -)))
211 211  
212 -=== 2.3.3 Battery Info ===
213 213  
214 -(((
215 -Check the battery voltage for LSE01.
216 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
217 217  
218 218  (((
219 -Ex1: 0x0B45 = 2885mV
220 -)))
221 -
222 222  (((
223 -Ex2: 0x0B49 = 2889mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
224 224  )))
225 -
226 -
227 -
228 -=== 2.3.4 Soil Moisture ===
229 -
230 -(((
231 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 232  )))
233 233  
234 -(((
235 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 -)))
237 237  
238 -(((
239 -
240 -)))
164 +**Connection:**
241 241  
242 -(((
243 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 -)))
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
245 245  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
246 246  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
247 247  
248 -=== 2.3.5 Soil Temperature ===
249 249  
250 -(((
251 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 -)))
173 +In the PC, use below serial tool settings:
253 253  
254 -(((
255 -**Example**:
256 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
257 257  
258 258  (((
259 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
260 260  )))
261 261  
262 -(((
263 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 -)))
185 +[[image:image-20220708110657-3.png]]
265 265  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
266 266  
267 267  
268 -=== 2.3.6 Soil Conductivity (EC) ===
269 269  
270 -(((
271 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 -)))
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
273 273  
274 -(((
275 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 -)))
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
277 277  
278 -(((
279 -Generally, the EC value of irrigation water is less than 800uS / cm.
280 -)))
281 281  
282 -(((
283 -
284 -)))
196 +**Use below commands:**
285 285  
286 -(((
287 -
288 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
289 289  
290 -=== 2.3.7 MOD ===
202 +For parameter description, please refer to AT command set
291 291  
292 -Firmware version at least v2.1 supports changing mode.
204 +[[image:1657249793983-486.png]]
293 293  
294 -For example, bytes[10]=90
295 295  
296 -mod=(bytes[10]>>7)&0x01=1.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
297 297  
209 +[[image:1657249831934-534.png]]
298 298  
299 -**Downlink Command:**
300 300  
301 -If payload = 0x0A00, workmode=0
302 302  
303 -If** **payload =** **0x0A01, workmode=1
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
304 304  
215 +This feature is supported since firmware version v1.0.1
305 305  
306 306  
307 -=== 2.3.8 ​Decode payload in The Things Network ===
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
308 308  
309 -While using TTN network, you can add the payload format to decode the payload.
222 +[[image:1657249864775-321.png]]
310 310  
311 311  
312 -[[image:1654505570700-128.png]]
225 +[[image:1657249930215-289.png]]
313 313  
314 -(((
315 -The payload decoder function for TTN is here:
316 -)))
317 317  
318 -(((
319 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 -)))
321 321  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
322 322  
323 -== 2.4 Uplink Interval ==
231 +This feature is supported since firmware version v110
324 324  
325 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
326 326  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
327 327  
242 +[[image:1657249978444-674.png]]
328 328  
329 -== 2.5 Downlink Payload ==
330 330  
331 -By default, LSE50 prints the downlink payload to console port.
245 +[[image:1657249990869-686.png]]
332 332  
333 -[[image:image-20220606165544-8.png]]
334 334  
335 -
336 336  (((
337 -(% style="color:blue" %)**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
338 338  )))
339 339  
340 -(((
341 -
342 -)))
343 343  
344 -* (((
345 -(% style="color:blue" %)**Set TDC**
346 -)))
347 347  
348 -(((
349 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
351 351  
352 -(((
353 -Payload:    01 00 00 1E    TDC=30S
354 -)))
256 +This feature is supported since firmware version v110
355 355  
356 -(((
357 -Payload:    01 00 00 3C    TDC=60S
358 -)))
359 359  
360 -(((
361 -
362 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
363 363  
364 -* (((
365 -(% style="color:blue" %)**Reset**
366 -)))
262 +[[image:1657250217799-140.png]]
367 367  
368 -(((
369 -If payload = 0x04FF, it will reset the LSE01
370 -)))
371 371  
265 +[[image:1657250255956-604.png]]
372 372  
373 -* (% style="color:blue" %)**CFM**
374 374  
375 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
376 376  
269 +=== 2.2.8 Change Update Interval ===
377 377  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
378 378  
379 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
380 380  
381 381  (((
382 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
383 383  )))
384 384  
385 385  (((
386 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
387 387  )))
388 388  
389 -(((
390 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 -)))
392 392  
393 -(((
394 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 -)))
396 396  
285 +== 2.3  Uplink Payload ==
397 397  
398 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
399 399  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
400 400  
401 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
402 402  
403 403  
404 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
298 +[[image:image-20220708111918-4.png]]
405 405  
406 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
407 407  
301 +The payload is ASCII string, representative same HEX:
408 408  
409 -[[image:1654505905236-553.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
410 410  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
411 411  
412 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
413 413  
414 -[[image:1654505925508-181.png]]
315 +== 2.4  Payload Explanation and Sensor Interface ==
415 415  
416 416  
318 +=== 2.4.1  Device ID ===
417 417  
418 -== 2.7 Frequency Plans ==
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
419 419  
420 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
421 421  
324 +**Example:**
422 422  
423 -=== 2.7.1 EU863-870 (EU868) ===
326 +AT+DEUI=A84041F15612
424 424  
425 -(% style="color:#037691" %)** Uplink:**
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
426 426  
427 -868.1 - SF7BW125 to SF12BW125
428 428  
429 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
430 430  
431 -868.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
432 432  
433 -867.1 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
434 434  
435 -867.3 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
436 436  
437 -867.5 - SF7BW125 to SF12BW125
438 438  
439 -867.7 - SF7BW125 to SF12BW125
440 440  
441 -867.9 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
442 442  
443 -868.8 - FSK
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
444 444  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
445 445  
446 -(% style="color:#037691" %)** Downlink:**
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
447 447  
448 -Uplink channels 1-9 (RX1)
449 449  
450 -869.525 - SF9BW125 (RX2 downlink only)
451 451  
356 +=== 2.4.4  Signal Strength ===
452 452  
358 +NB-IoT Network signal Strength.
453 453  
454 -=== 2.7.2 US902-928(US915) ===
360 +**Ex1: 0x1d = 29**
455 455  
456 -Used in USA, Canada and South America. Default use CHE=2
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
457 457  
458 -(% style="color:#037691" %)**Uplink:**
364 +(% style="color:blue" %)**1**(%%)  -111dBm
459 459  
460 -903.9 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
461 461  
462 -904.1 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
463 463  
464 -904.3 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
465 465  
466 -904.5 - SF7BW125 to SF10BW125
467 467  
468 -904.7 - SF7BW125 to SF10BW125
469 469  
470 -904.9 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
471 471  
472 -905.1 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
473 473  
474 -905.3 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
475 475  
384 +(((
385 +
386 +)))
476 476  
477 -(% style="color:#037691" %)**Downlink:**
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
478 478  
479 -923.3 - SF7BW500 to SF12BW500
480 480  
481 -923.9 - SF7BW500 to SF12BW500
482 482  
483 -924.5 - SF7BW500 to SF12BW500
394 +=== 2.4. Soil Temperature ===
484 484  
485 -925.1 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
486 486  
487 -925.7 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
488 488  
489 -926.3 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
490 490  
491 -926.9 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
492 492  
493 -927.5 - SF7BW500 to SF12BW500
494 494  
495 -923.3 - SF12BW500(RX2 downlink only)
496 496  
414 +=== 2.4.7  Soil Conductivity (EC) ===
497 497  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
498 498  
499 -=== 2.7.3 CN470-510 (CN470) ===
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
500 500  
501 -Used in China, Default use CHE=1
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
502 502  
503 -(% style="color:#037691" %)**Uplink:**
428 +(((
429 +
430 +)))
504 504  
505 -486.3 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
506 506  
507 -486.5 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
508 508  
509 -486.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
510 510  
511 -486.9 - SF7BW125 to SF12BW125
440 +The command is:
512 512  
513 -487.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
514 514  
515 -487.3 - SF7BW125 to SF12BW125
516 516  
517 -487.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
518 518  
519 -487.7 - SF7BW125 to SF12BW125
520 520  
448 +Example:
521 521  
522 -(% style="color:#037691" %)**Downlink:**
450 +0x(00): Normal uplink packet.
523 523  
524 -506.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
525 525  
526 -506.9 - SF7BW125 to SF12BW125
527 527  
528 -507.1 - SF7BW125 to SF12BW125
529 529  
530 -507.3 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
531 531  
532 -507.5 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
533 533  
534 -507.7 - SF7BW125 to SF12BW125
535 535  
536 -507.9 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
537 537  
538 -508.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
539 539  
540 -505.3 - SF12BW125 (RX2 downlink only)
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
541 541  
542 542  
543 543  
544 -=== 2.7.4 AU915-928(AU915) ===
469 +== 2.5  Downlink Payload ==
545 545  
546 -Default use CHE=2
471 +By default, NSE01 prints the downlink payload to console port.
547 547  
548 -(% style="color:#037691" %)**Uplink:**
473 +[[image:image-20220708133731-5.png]]
549 549  
550 -916.8 - SF7BW125 to SF12BW125
551 551  
552 -917.0 - SF7BW125 to SF12BW125
553 553  
554 -917.2 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
555 555  
556 -917.4 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
557 557  
558 -917.6 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
559 559  
560 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
561 561  
562 -918.0 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
563 563  
564 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
565 565  
501 +(((
502 +
503 +)))
566 566  
567 -(% style="color:#037691" %)**Downlink:**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
568 568  
569 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
570 570  
571 -923.9 - SF7BW500 to SF12BW500
572 572  
573 -924.5 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
574 574  
575 -925.1 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
576 576  
577 -925.7 - SF7BW500 to SF12BW500
578 578  
579 -926.3 - SF7BW500 to SF12BW500
580 580  
581 -926.9 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
582 582  
583 -927.5 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
584 584  
585 -923.3 - SF12BW500(RX2 downlink only)
586 586  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
587 587  
588 588  
589 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
590 590  
591 -(% style="color:#037691" %)**Default Uplink channel:**
592 592  
593 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
594 594  
595 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
596 596  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
597 597  
598 -(% style="color:#037691" %)**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
599 599  
600 -(OTAA mode, channel added by JoinAccept message)
601 601  
602 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
603 603  
604 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
605 605  
606 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
607 607  
608 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
609 609  
610 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
611 611  
612 -923.0 - SF7BW125 to SF10BW125
613 613  
614 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
615 615  
616 616  
617 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
618 618  
619 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
620 620  
621 -923.8 - SF7BW125 to SF10BW125
622 622  
623 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
624 624  
625 -924.2 - SF7BW125 to SF10BW125
626 626  
627 -924.4 - SF7BW125 to SF10BW125
628 628  
629 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
630 630  
577 +=== 2.9.1  ​Battery Type ===
631 631  
632 -(% style="color:#037691" %)** Downlink:**
633 633  
634 -Uplink channels 1-8 (RX1)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
635 635  
636 -923.2 - SF10BW125 (RX2)
637 637  
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
638 638  
639 639  
640 -=== 2.7.6 KR920-923 (KR920) ===
586 +The battery related documents as below:
641 641  
642 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
643 643  
644 -922.1 - SF7BW125 to SF12BW125
645 -
646 -922.3 - SF7BW125 to SF12BW125
647 -
648 -922.5 - SF7BW125 to SF12BW125
649 -
650 -
651 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 -
653 -922.1 - SF7BW125 to SF12BW125
654 -
655 -922.3 - SF7BW125 to SF12BW125
656 -
657 -922.5 - SF7BW125 to SF12BW125
658 -
659 -922.7 - SF7BW125 to SF12BW125
660 -
661 -922.9 - SF7BW125 to SF12BW125
662 -
663 -923.1 - SF7BW125 to SF12BW125
664 -
665 -923.3 - SF7BW125 to SF12BW125
666 -
667 -
668 -(% style="color:#037691" %)**Downlink:**
669 -
670 -Uplink channels 1-7(RX1)
671 -
672 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 -
674 -
675 -
676 -=== 2.7.7 IN865-867 (IN865) ===
677 -
678 -(% style="color:#037691" %)** Uplink:**
679 -
680 -865.0625 - SF7BW125 to SF12BW125
681 -
682 -865.4025 - SF7BW125 to SF12BW125
683 -
684 -865.9850 - SF7BW125 to SF12BW125
685 -
686 -
687 -(% style="color:#037691" %) **Downlink:**
688 -
689 -Uplink channels 1-3 (RX1)
690 -
691 -866.550 - SF10BW125 (RX2)
692 -
693 -
694 -
695 -
696 -== 2.8 LED Indicator ==
697 -
698 -The LSE01 has an internal LED which is to show the status of different state.
699 -
700 -* Blink once when device power on.
701 -* Solid ON for 5 seconds once device successful Join the network.
702 -* Blink once when device transmit a packet.
703 -
704 -== 2.9 Installation in Soil ==
705 -
706 -**Measurement the soil surface**
707 -
708 -
709 -[[image:1654506634463-199.png]] ​
710 -
711 711  (((
712 -(((
713 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
714 714  )))
715 -)))
716 716  
717 717  
718 718  
719 -[[image:1654506665940-119.png]]
598 +=== 2.9.2  Power consumption Analyze ===
720 720  
721 721  (((
722 -Dig a hole with diameter > 20CM.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
723 723  )))
724 724  
725 -(((
726 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 -)))
728 728  
729 -
730 -== 2.10 ​Firmware Change Log ==
731 -
732 732  (((
733 -**Firmware download link:**
606 +Instruction to use as below:
734 734  )))
735 735  
736 736  (((
737 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
738 738  )))
739 739  
740 -(((
741 -
742 -)))
743 743  
744 744  (((
745 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
746 746  )))
747 747  
748 -(((
749 -
750 -)))
751 -
752 -(((
753 -**V1.0.**
754 -)))
755 -
756 -(((
757 -Release
758 -)))
759 -
760 -
761 -== 2.11 ​Battery Analysis ==
762 -
763 -=== 2.11.1 ​Battery Type ===
764 -
765 -(((
766 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
767 -)))
768 -
769 -(((
770 -The battery is designed to last for more than 5 years for the LSN50.
771 -)))
772 -
773 -(((
774 -(((
775 -The battery-related documents are as below:
776 -)))
777 -)))
778 -
779 779  * (((
780 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
619 +Product Model
781 781  )))
782 782  * (((
783 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
622 +Uplink Interval
784 784  )))
785 785  * (((
786 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
625 +Working Mode
787 787  )))
788 788  
789 - [[image:image-20220610172436-1.png]]
628 +(((
629 +And the Life expectation in difference case will be shown on the right.
630 +)))
790 790  
632 +[[image:image-20220708141352-7.jpeg]]
791 791  
792 792  
793 -=== 2.11.2 ​Battery Note ===
794 794  
636 +=== 2.9.3  ​Battery Note ===
637 +
795 795  (((
796 796  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
797 797  )))
... ... @@ -798,22 +798,14 @@
798 798  
799 799  
800 800  
801 -=== 2.11.3 Replace the battery ===
644 +=== 2.9. Replace the battery ===
802 802  
803 803  (((
804 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
805 805  )))
806 806  
807 -(((
808 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
809 -)))
810 810  
811 -(((
812 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
813 -)))
814 814  
815 -
816 -
817 817  = 3. ​Using the AT Commands =
818 818  
819 819  == 3.1 Access AT Commands ==
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0