Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 5 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -8,87 +8,63 @@ 8 8 9 9 10 10 11 += 1. Introduction = 11 11 13 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 12 12 15 +((( 16 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 17 +))) 13 13 14 -**Table of Contents:** 19 +((( 20 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 21 +))) 15 15 23 +((( 24 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 25 +))) 16 16 17 - 18 - 19 - 20 - 21 -= 1. Introduction = 22 - 23 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 - 25 25 ((( 26 - 28 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 29 +))) 27 27 28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 - 30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 - 36 - 31 +((( 32 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 35 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]39 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 46 46 == 1.2 Features == 47 47 48 - 49 -* NB-IoTBands: B1/B3/B8/B5/B20/B28 @H-FDD45 +* LoRaWAN 1.0.3 Class A 46 +* Ultra low power consumption 50 50 * Monitor Soil Moisture 51 51 * Monitor Soil Temperature 52 52 * Monitor Soil Conductivity 50 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 53 53 * AT Commands to change parameters 54 54 * Uplink on periodically 55 55 * Downlink to change configure 56 56 * IP66 Waterproof Enclosure 57 -* Ultra-Low Power consumption 58 -* AT Commands to change parameters 59 -* Micro SIM card slot for NB-IoT SIM 60 -* 8500mAh Battery for long term use 55 +* 4000mAh or 8500mAh Battery for long term use 61 61 62 62 63 63 64 -== 1.3 59 +== 1.3 Specification == 65 65 66 - 67 -(% style="color:#037691" %)**Common DC Characteristics:** 68 - 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 71 - 72 - 73 -(% style="color:#037691" %)**NB-IoT Spec:** 74 - 75 -* - B1 @H-FDD: 2100MHz 76 -* - B3 @H-FDD: 1800MHz 77 -* - B8 @H-FDD: 900MHz 78 -* - B5 @H-FDD: 850MHz 79 -* - B20 @H-FDD: 800MHz 80 -* - B28 @H-FDD: 700MHz 81 - 82 - 83 -(% style="color:#037691" %)**Probe Specification:** 84 - 85 85 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -[[image:image-20220 708101224-1.png]]63 +[[image:image-20220606162220-5.png]] 88 88 89 89 90 90 91 -== 1.4 67 +== 1.4 Applications == 92 92 93 93 * Smart Agriculture 94 94 ... ... @@ -95,10 +95,10 @@ 95 95 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 96 96 97 97 98 -== 1.5 Pin Definitions==74 +== 1.5 Firmware Change log == 99 99 100 100 101 - [[image:1657246476176-652.png]]77 +**LSE01 v1.0 :** Release 102 102 103 103 104 104 ... ... @@ -111,7 +111,7 @@ 111 111 ))) 112 112 113 113 ((( 114 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3. 200BUsingtheATCommands"]].90 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 115 115 ))) 116 116 117 117 ... ... @@ -127,7 +127,7 @@ 127 127 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 128 128 129 129 130 - (% style="color:blue" %)**Step 1**(%%):106 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 131 131 132 132 Each LSE01 is shipped with a sticker with the default device EUI as below: 133 133 ... ... @@ -148,7 +148,7 @@ 148 148 149 149 150 150 151 - (% style="color:blue" %)**Step 2**(%%): Power on LSE01127 +**Step 2**: Power on LSE01 152 152 153 153 154 154 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). ... ... @@ -156,7 +156,7 @@ 156 156 [[image:image-20220606163915-7.png]] 157 157 158 158 159 - (% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.135 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 160 160 161 161 [[image:1654504778294-788.png]] 162 162 ... ... @@ -164,104 +164,86 @@ 164 164 165 165 == 2.3 Uplink Payload == 166 166 167 - 168 168 === 2.3.1 MOD~=0(Default Mode) === 169 169 170 170 LSE01 will uplink payload via LoRaWAN with below payload format: 171 171 172 - (((147 + 173 173 Uplink payload includes in total 11 bytes. 174 - )))149 + 175 175 176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 177 177 |((( 178 178 **Size** 179 179 180 180 **(bytes)** 181 181 )))|**2**|**2**|**2**|**2**|**2**|**1** 182 -|**Value**|[[BAT>> ||anchor="H2.3.3BatteryInfo"]]|(((156 +|**Value**|[[BAT>>path:#bat]]|((( 183 183 Temperature 184 184 185 185 (Reserve, Ignore now) 186 -)))|[[Soil Moisture>> ||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((160 +)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|((( 187 187 MOD & Digital Interrupt 188 188 189 189 (Optional) 190 190 ))) 191 191 166 +[[image:1654504881641-514.png]] 167 + 168 + 169 + 192 192 === 2.3.2 MOD~=1(Original value) === 193 193 194 194 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 195 195 196 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 197 197 |((( 198 198 **Size** 199 199 200 200 **(bytes)** 201 201 )))|**2**|**2**|**2**|**2**|**2**|**1** 202 -|**Value**|[[BAT>> ||anchor="H2.3.3BatteryInfo"]]|(((179 +|**Value**|[[BAT>>path:#bat]]|((( 203 203 Temperature 204 204 205 205 (Reserve, Ignore now) 206 -)))|[[Soil Moisture>> ||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((183 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|((( 207 207 MOD & Digital Interrupt 208 208 209 209 (Optional) 210 210 ))) 211 211 189 +[[image:1654504907647-967.png]] 190 + 191 + 192 + 212 212 === 2.3.3 Battery Info === 213 213 214 -((( 215 215 Check the battery voltage for LSE01. 216 -))) 217 217 218 -((( 219 219 Ex1: 0x0B45 = 2885mV 220 -))) 221 221 222 -((( 223 223 Ex2: 0x0B49 = 2889mV 224 -))) 225 225 226 226 227 227 228 228 === 2.3.4 Soil Moisture === 229 229 230 -((( 231 231 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 232 -))) 233 233 234 -((( 235 235 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 236 -))) 237 237 238 -((( 239 - 240 -))) 241 241 242 -((( 243 243 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 244 -))) 245 245 246 246 247 247 248 248 === 2.3.5 Soil Temperature === 249 249 250 -((( 251 251 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 252 -))) 253 253 254 -((( 255 255 **Example**: 256 -))) 257 257 258 -((( 259 259 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 260 -))) 261 261 262 -((( 263 263 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 264 -))) 265 265 266 266 267 267 ... ... @@ -296,7 +296,7 @@ 296 296 mod=(bytes[10]>>7)&0x01=1. 297 297 298 298 299 - **Downlink Command:**257 +Downlink Command: 300 300 301 301 If payload = 0x0A00, workmode=0 302 302 ... ... @@ -311,21 +311,19 @@ 311 311 312 312 [[image:1654505570700-128.png]] 313 313 314 -((( 315 315 The payload decoder function for TTN is here: 316 -))) 317 317 318 -((( 319 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 320 -))) 274 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 321 321 322 322 323 323 == 2.4 Uplink Interval == 324 324 325 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]279 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 326 326 281 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 327 327 328 328 284 + 329 329 == 2.5 Downlink Payload == 330 330 331 331 By default, LSE50 prints the downlink payload to console port. ... ... @@ -333,44 +333,24 @@ 333 333 [[image:image-20220606165544-8.png]] 334 334 335 335 336 -((( 337 -(% style="color:blue" %)**Examples:** 338 -))) 292 +**Examples:** 339 339 340 -((( 341 - 342 -))) 343 343 344 -* ((( 345 -(% style="color:blue" %)**Set TDC** 346 -))) 295 +* **Set TDC** 347 347 348 -((( 349 349 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 350 -))) 351 351 352 -((( 353 353 Payload: 01 00 00 1E TDC=30S 354 -))) 355 355 356 -((( 357 357 Payload: 01 00 00 3C TDC=60S 358 -))) 359 359 360 -((( 361 - 362 -))) 363 363 364 -* ((( 365 -(% style="color:blue" %)**Reset** 366 -))) 304 +* **Reset** 367 367 368 -((( 369 369 If payload = 0x04FF, it will reset the LSE01 370 -))) 371 371 372 372 373 -* (% style="color:blue" %)**CFM**309 +* **CFM** 374 374 375 375 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 376 376 ... ... @@ -378,21 +378,12 @@ 378 378 379 379 == 2.6 Show Data in DataCake IoT Server == 380 380 381 -((( 382 382 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 383 -))) 384 384 385 -((( 386 - 387 -))) 388 388 389 -((( 390 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 391 -))) 320 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 392 392 393 -((( 394 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 395 -))) 322 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 396 396 397 397 398 398 [[image:1654505857935-743.png]] ... ... @@ -400,12 +400,11 @@ 400 400 401 401 [[image:1654505874829-548.png]] 402 402 330 +Step 3: Create an account or log in Datacake. 403 403 404 - (% style="color:blue" %)**Step3**(%%)**:**Create an accountor log inDatacake.332 +Step 4: Search the LSE01 and add DevEUI. 405 405 406 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 407 407 408 - 409 409 [[image:1654505905236-553.png]] 410 410 411 411 ... ... @@ -715,7 +715,6 @@ 715 715 ))) 716 716 717 717 718 - 719 719 [[image:1654506665940-119.png]] 720 720 721 721 ((( ... ... @@ -777,16 +777,16 @@ 777 777 ))) 778 778 779 779 * ((( 780 -[[Battery Dimension>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],705 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 781 781 ))) 782 782 * ((( 783 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/ index.php?dir=datasheet/Battery/]],708 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 784 784 ))) 785 785 * ((( 786 -[[Lithium-ion Battery-Capacitor datasheet>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]711 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 787 787 ))) 788 788 789 - [[image:image-202206 10172436-1.png]]714 + [[image:image-20220606171726-9.png]] 790 790 791 791 792 792 ... ... @@ -821,13 +821,13 @@ 821 821 822 822 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 823 823 824 -[[image:1654501986557-872.png ||height="391" width="800"]]749 +[[image:1654501986557-872.png]] 825 825 826 826 827 827 Or if you have below board, use below connection: 828 828 829 829 830 -[[image:1654502005655-729.png ||height="503" width="801"]]755 +[[image:1654502005655-729.png]] 831 831 832 832 833 833 ... ... @@ -834,10 +834,10 @@ 834 834 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 835 835 836 836 837 - [[image:1654502050864-459.png ||height="564" width="806"]]762 + [[image:1654502050864-459.png]] 838 838 839 839 840 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>http s://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]765 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 841 841 842 842 843 843 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -949,38 +949,20 @@ 949 949 950 950 == 4.1 How to change the LoRa Frequency Bands/Region? == 951 951 952 -((( 953 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 877 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 954 954 When downloading the images, choose the required image file for download. 955 -))) 956 956 957 -((( 958 - 959 -))) 960 960 961 -((( 962 962 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 963 -))) 964 964 965 -((( 966 - 967 -))) 968 968 969 -((( 970 970 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 971 -))) 972 972 973 -((( 974 - 975 -))) 976 976 977 -((( 978 978 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 979 -))) 980 980 981 981 [[image:image-20220606154726-3.png]] 982 982 983 - 984 984 When you use the TTN network, the US915 frequency bands use are: 985 985 986 986 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -993,47 +993,37 @@ 993 993 * 905.3 - SF7BW125 to SF10BW125 994 994 * 904.6 - SF8BW500 995 995 996 -((( 997 997 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 998 998 999 -* (% style="color:#037691" %)**AT+CHE=2** 1000 -* (% style="color:#037691" %)**ATZ** 905 +(% class="box infomessage" %) 906 +((( 907 +**AT+CHE=2** 1001 1001 ))) 1002 1002 910 +(% class="box infomessage" %) 1003 1003 ((( 1004 - 912 +**ATZ** 913 +))) 1005 1005 1006 1006 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1007 -))) 1008 1008 1009 -((( 1010 - 1011 -))) 1012 1012 1013 -((( 1014 1014 The **AU915** band is similar. Below are the AU915 Uplink Channels. 1015 -))) 1016 1016 1017 1017 [[image:image-20220606154825-4.png]] 1018 1018 1019 1019 1020 -== 4.2 Can I calibrate LSE01 to different soil types? == 1021 1021 1022 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1023 - 1024 - 1025 1025 = 5. Trouble Shooting = 1026 1026 1027 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==926 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1028 1028 1029 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.928 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1030 1030 1031 1031 1032 -== 5.2 AT Command input doesn 't work ==931 +== 5.2 AT Command input doesn’t work == 1033 1033 1034 -((( 1035 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1036 -))) 933 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1037 1037 1038 1038 1039 1039 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -1045,9 +1045,7 @@ 1045 1045 1046 1046 (% style="color:#4f81bd" %)**Cause for this issue:** 1047 1047 1048 -((( 1049 1049 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1050 -))) 1051 1051 1052 1052 1053 1053 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -1054,7 +1054,7 @@ 1054 1054 1055 1055 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1056 1056 1057 -[[image:1654500929571-736.png ||height="458" width="832"]]952 +[[image:1654500929571-736.png]] 1058 1058 1059 1059 1060 1060 = 6. Order Info = ... ... @@ -1087,9 +1087,7 @@ 1087 1087 = 7. Packing Info = 1088 1088 1089 1089 ((( 1090 - 1091 - 1092 -(% style="color:#037691" %)**Package Includes**: 985 +**Package Includes**: 1093 1093 ))) 1094 1094 1095 1095 * ((( ... ... @@ -1098,8 +1098,10 @@ 1098 1098 1099 1099 ((( 1100 1100 994 +))) 1101 1101 1102 -(% style="color:#037691" %)**Dimension and weight**: 996 +((( 997 +**Dimension and weight**: 1103 1103 ))) 1104 1104 1105 1105 * ((( ... ... @@ -1114,6 +1114,7 @@ 1114 1114 * ((( 1115 1115 Weight / pcs : g 1116 1116 1012 + 1117 1117 1118 1118 ))) 1119 1119 ... ... @@ -1121,3 +1121,5 @@ 1121 1121 1122 1122 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1123 1123 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1020 + 1021 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content