<
From version < 44.2 >
edited by Xiaoling
on 2022/07/08 10:15
To version < 32.9 >
edited by Xiaoling
on 2022/06/07 11:38
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,7 +3,9 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
... ... @@ -10,85 +10,61 @@
10 10  
11 11  
12 12  
15 += 1. Introduction =
13 13  
14 -**Table of Contents:**
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
27 +(((
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
18 18  
19 -
20 -
21 -= 1.  Introduction =
22 -
23 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 -
25 25  (((
26 -
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 +)))
27 27  
28 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 -
30 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 -
36 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 37  )))
38 38  
39 +
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -
49 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
53 53  * AT Commands to change parameters
54 54  * Uplink on periodically
55 55  * Downlink to change configure
56 56  * IP66 Waterproof Enclosure
57 -* Ultra-Low Power consumption
58 -* AT Commands to change parameters
59 -* Micro SIM card slot for NB-IoT SIM
60 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
61 61  
61 +== 1.3 Specification ==
62 62  
63 -
64 -== 1.3  Specification ==
65 -
66 -
67 -(% style="color:#037691" %)**Common DC Characteristics:**
68 -
69 -* Supply Voltage: 2.1v ~~ 3.6v
70 -* Operating Temperature: -40 ~~ 85°C
71 -
72 -
73 -(% style="color:#037691" %)**NB-IoT Spec:**
74 -
75 -* - B1 @H-FDD: 2100MHz
76 -* - B3 @H-FDD: 1800MHz
77 -* - B8 @H-FDD: 900MHz
78 -* - B5 @H-FDD: 850MHz
79 -* - B20 @H-FDD: 800MHz
80 -* - B28 @H-FDD: 700MHz
81 -
82 -
83 -(% style="color:#037691" %)**Probe Specification:**
84 -
85 85  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
86 86  
87 -[[image:image-20220708101224-1.png]]
65 +[[image:image-20220606162220-5.png]]
88 88  
89 89  
90 90  
91 -== ​1.4  Applications ==
69 +== ​1.4 Applications ==
92 92  
93 93  * Smart Agriculture
94 94  
... ... @@ -95,10 +95,10 @@
95 95  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
96 96  ​
97 97  
98 -== 1.5  Pin Definitions ==
76 +== 1.5 Firmware Change log ==
99 99  
100 100  
101 -[[image:1657246476176-652.png]]
79 +**LSE01 v1.0 :**  Release
102 102  
103 103  
104 104  
... ... @@ -127,7 +127,7 @@
127 127  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 128  
129 129  
130 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
131 131  
132 132  Each LSE01 is shipped with a sticker with the default device EUI as below:
133 133  
... ... @@ -148,7 +148,7 @@
148 148  
149 149  
150 150  
151 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
129 +**Step 2**: Power on LSE01
152 152  
153 153  
154 154  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
... ... @@ -156,7 +156,7 @@
156 156  [[image:image-20220606163915-7.png]]
157 157  
158 158  
159 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 160  
161 161  [[image:1654504778294-788.png]]
162 162  
... ... @@ -164,6 +164,8 @@
164 164  
165 165  == 2.3 Uplink Payload ==
166 166  
145 +(% class="wikigeneratedid" %)
146 +=== ===
167 167  
168 168  === 2.3.1 MOD~=0(Default Mode) ===
169 169  
... ... @@ -189,6 +189,8 @@
189 189  (Optional)
190 190  )))
191 191  
172 +
173 +
192 192  === 2.3.2 MOD~=1(Original value) ===
193 193  
194 194  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
... ... @@ -209,59 +209,38 @@
209 209  (Optional)
210 210  )))
211 211  
194 +
195 +
212 212  === 2.3.3 Battery Info ===
213 213  
214 -(((
215 215  Check the battery voltage for LSE01.
216 -)))
217 217  
218 -(((
219 219  Ex1: 0x0B45 = 2885mV
220 -)))
221 221  
222 -(((
223 223  Ex2: 0x0B49 = 2889mV
224 -)))
225 225  
226 226  
227 227  
228 228  === 2.3.4 Soil Moisture ===
229 229  
230 -(((
231 231  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 -)))
233 233  
234 -(((
235 235  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 -)))
237 237  
238 -(((
239 -
240 -)))
241 241  
242 -(((
243 243  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 -)))
245 245  
246 246  
247 247  
248 248  === 2.3.5 Soil Temperature ===
249 249  
250 -(((
251 251   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 -)))
253 253  
254 -(((
255 255  **Example**:
256 -)))
257 257  
258 -(((
259 259  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 -)))
261 261  
262 -(((
263 263  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 -)))
265 265  
266 266  
267 267  
... ... @@ -311,15 +311,12 @@
311 311  
312 312  [[image:1654505570700-128.png]]
313 313  
314 -(((
315 315  The payload decoder function for TTN is here:
316 -)))
317 317  
318 -(((
319 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 -)))
277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
321 321  
322 322  
280 +
323 323  == 2.4 Uplink Interval ==
324 324  
325 325  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
... ... @@ -333,44 +333,24 @@
333 333  [[image:image-20220606165544-8.png]]
334 334  
335 335  
336 -(((
337 -(% style="color:blue" %)**Examples:**
338 -)))
294 +**Examples:**
339 339  
340 -(((
341 -
342 -)))
343 343  
344 -* (((
345 -(% style="color:blue" %)**Set TDC**
346 -)))
297 +* **Set TDC**
347 347  
348 -(((
349 349  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 -)))
351 351  
352 -(((
353 353  Payload:    01 00 00 1E    TDC=30S
354 -)))
355 355  
356 -(((
357 357  Payload:    01 00 00 3C    TDC=60S
358 -)))
359 359  
360 -(((
361 -
362 -)))
363 363  
364 -* (((
365 -(% style="color:blue" %)**Reset**
366 -)))
306 +* **Reset**
367 367  
368 -(((
369 369  If payload = 0x04FF, it will reset the LSE01
370 -)))
371 371  
372 372  
373 -* (% style="color:blue" %)**CFM**
311 +* **CFM**
374 374  
375 375  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
376 376  
... ... @@ -378,21 +378,12 @@
378 378  
379 379  == 2.6 ​Show Data in DataCake IoT Server ==
380 380  
381 -(((
382 382  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
383 -)))
384 384  
385 -(((
386 -
387 -)))
388 388  
389 -(((
390 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 -)))
322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
392 392  
393 -(((
394 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 -)))
324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
396 396  
397 397  
398 398  [[image:1654505857935-743.png]]
... ... @@ -400,12 +400,11 @@
400 400  
401 401  [[image:1654505874829-548.png]]
402 402  
332 +Step 3: Create an account or log in Datacake.
403 403  
404 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
334 +Step 4: Search the LSE01 and add DevEUI.
405 405  
406 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
407 407  
408 -
409 409  [[image:1654505905236-553.png]]
410 410  
411 411  
... ... @@ -701,6 +701,8 @@
701 701  * Solid ON for 5 seconds once device successful Join the network.
702 702  * Blink once when device transmit a packet.
703 703  
632 +
633 +
704 704  == 2.9 Installation in Soil ==
705 705  
706 706  **Measurement the soil surface**
... ... @@ -715,7 +715,6 @@
715 715  )))
716 716  
717 717  
718 -
719 719  [[image:1654506665940-119.png]]
720 720  
721 721  (((
... ... @@ -777,16 +777,16 @@
777 777  )))
778 778  
779 779  * (((
780 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
781 781  )))
782 782  * (((
783 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
784 784  )))
785 785  * (((
786 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
787 787  )))
788 788  
789 - [[image:image-20220610172436-1.png]]
718 + [[image:image-20220606171726-9.png]]
790 790  
791 791  
792 792  
... ... @@ -837,7 +837,7 @@
837 837   [[image:1654502050864-459.png||height="564" width="806"]]
838 838  
839 839  
840 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
841 841  
842 842  
843 843  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -995,14 +995,19 @@
995 995  
996 996  (((
997 997  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
927 +)))
998 998  
999 -* (% style="color:#037691" %)**AT+CHE=2**
1000 -* (% style="color:#037691" %)**ATZ**
929 +(% class="box infomessage" %)
930 +(((
931 +**AT+CHE=2**
1001 1001  )))
1002 1002  
934 +(% class="box infomessage" %)
1003 1003  (((
1004 -
936 +**ATZ**
937 +)))
1005 1005  
939 +(((
1006 1006  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1007 1007  )))
1008 1008  
... ... @@ -1017,22 +1017,18 @@
1017 1017  [[image:image-20220606154825-4.png]]
1018 1018  
1019 1019  
1020 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 1021  
1022 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 -
1024 -
1025 1025  = 5. Trouble Shooting =
1026 1026  
1027 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
957 +== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1028 1028  
1029 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1030 1030  
1031 1031  
1032 -== 5.2 AT Command input doesn't work ==
962 +== 5.2 AT Command input doesnt work ==
1033 1033  
1034 1034  (((
1035 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
965 +In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 1036  )))
1037 1037  
1038 1038  
... ... @@ -1114,6 +1114,7 @@
1114 1114  * (((
1115 1115  Weight / pcs : g
1116 1116  
1047 +
1117 1117  
1118 1118  )))
1119 1119  
... ... @@ -1121,3 +1121,8 @@
1121 1121  
1122 1122  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1123 1123  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1055 +
1056 +
1057 +~)~)~)
1058 +~)~)~)
1059 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0