Last modified by Mengting Qiu on 2024/04/02 16:44

From version 44.1
edited by Xiaoling
on 2022/07/08 10:14
Change comment: Uploaded new attachment "1657246476176-652.png", version {1}
To version 91.3
edited by Xiaoling
on 2022/07/09 09:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,16 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
21 -= 1. Introduction =
22 22  
23 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
16 += 1.  Introduction =
24 24  
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
19 +
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 +(((
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 +)))
29 29  
30 -It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years.
35 -
36 36  
37 37  )))
38 38  
... ... @@ -39,736 +39,658 @@
39 39  [[image:1654503236291-817.png]]
40 40  
41 41  
42 -[[image:1657245163077-232.png]]
38 +[[image:1657327959271-447.png]]
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
47 47  
48 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 49  * Ultra low power consumption
50 -* Monitor Soil Moisture
51 -* Monitor Soil Temperature
52 -* Monitor Soil Conductivity
53 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 57  * IP66 Waterproof Enclosure
58 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
59 59  
60 -== 1.3 Specification ==
61 61  
62 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
63 63  
64 -[[image:image-20220606162220-5.png]]
60 +== 1.3  Specification ==
65 65  
66 66  
63 +(% style="color:#037691" %)**Common DC Characteristics:**
67 67  
68 -== ​1.4 Applications ==
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
69 69  
70 -* Smart Agriculture
68 +(% style="color:#037691" %)**NB-IoT Spec:**
71 71  
72 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
73 -​
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
74 74  
75 -== 1.5 Firmware Change log ==
77 +(% style="color:#037691" %)**Battery:**
76 76  
79 +* Li/SOCI2 un-chargeable battery
80 +* Capacity: 8500mAh
81 +* Self Discharge: <1% / Year @ 25°C
82 +* Max continuously current: 130mA
83 +* Max boost current: 2A, 1 second
77 77  
78 -**LSE01 v1.0 :**  Release
85 +(% style="color:#037691" %)**Power Consumption**
79 79  
87 +* STOP Mode: 10uA @ 3.3v
88 +* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
80 80  
81 81  
82 -= 2. Configure LSE01 to connect to LoRaWAN network =
83 83  
84 -== 2.1 How it works ==
85 85  
86 -(((
87 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
88 -)))
93 +== ​1.4  Applications ==
89 89  
90 -(((
91 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
92 -)))
95 +* Smart Buildings & Home Automation
96 +* Logistics and Supply Chain Management
97 +* Smart Metering
98 +* Smart Agriculture
99 +* Smart Cities
100 +* Smart Factory
93 93  
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
94 94  
95 95  
96 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
97 97  
98 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
107 +== 1.5  Pin Definitions ==
99 99  
100 100  
101 -[[image:1654503992078-669.png]]
110 +[[image:1657328609906-564.png]]
102 102  
103 103  
104 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
105 105  
114 += 2.  Use NDDS75 to communicate with IoT Server =
106 106  
107 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
116 +== 2.How it works ==
108 108  
109 -Each LSE01 is shipped with a sticker with the default device EUI as below:
118 +(((
119 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
120 +)))
110 110  
111 -[[image:image-20220606163732-6.jpeg]]
112 112  
113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
123 +(((
124 +The diagram below shows the working flow in default firmware of NDDS75:
125 +)))
114 114  
115 -**Add APP EUI in the application**
127 +(((
128 +
129 +)))
116 116  
131 +[[image:1657328659945-416.png]]
117 117  
118 -[[image:1654504596150-405.png]]
133 +(((
134 +
135 +)))
119 119  
120 120  
138 +== 2.2 ​ Configure the NDDS75 ==
121 121  
122 -**Add APP KEY and DEV EUI**
123 123  
124 -[[image:1654504683289-357.png]]
141 +=== 2.2.1 Test Requirement ===
125 125  
143 +(((
144 +To use NDDS75 in your city, make sure meet below requirements:
145 +)))
126 126  
147 +* Your local operator has already distributed a NB-IoT Network there.
148 +* The local NB-IoT network used the band that NSE01 supports.
149 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
127 127  
128 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
151 +(((
152 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
153 +)))
129 129  
130 130  
131 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
156 +[[image:1657328756309-230.png]]
132 132  
133 -[[image:image-20220606163915-7.png]]
134 134  
135 135  
136 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 +=== 2.2.2 Insert SIM card ===
137 137  
138 -[[image:1654504778294-788.png]]
162 +(((
163 +Insert the NB-IoT Card get from your provider.
164 +)))
139 139  
166 +(((
167 +User need to take out the NB-IoT module and insert the SIM card like below:
168 +)))
140 140  
141 141  
142 -== 2.3 Uplink Payload ==
171 +[[image:1657328884227-504.png]]
143 143  
144 144  
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 146  
147 -LSE01 will uplink payload via LoRaWAN with below payload format
175 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
148 148  
149 149  (((
150 -Uplink payload includes in total 11 bytes.
178 +(((
179 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
151 151  )))
181 +)))
152 152  
153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 -|(((
155 -**Size**
183 +[[image:image-20220709092052-2.png]]
156 156  
157 -**(bytes)**
158 -)))|**2**|**2**|**2**|**2**|**2**|**1**
159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 -Temperature
185 +**Connection:**
161 161  
162 -(Reserve, Ignore now)
163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 -MOD & Digital Interrupt
187 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
165 165  
166 -(Optional)
167 -)))
189 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
168 168  
169 -=== 2.3.2 MOD~=1(Original value) ===
191 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
170 170  
171 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 172  
173 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 -|(((
175 -**Size**
194 +In the PC, use below serial tool settings:
176 176  
177 -**(bytes)**
178 -)))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 -Temperature
196 +* Baud:  (% style="color:green" %)**9600**
197 +* Data bits:** (% style="color:green" %)8(%%)**
198 +* Stop bits: (% style="color:green" %)**1**
199 +* Parity:  (% style="color:green" %)**None**
200 +* Flow Control: (% style="color:green" %)**None**
181 181  
182 -(Reserve, Ignore now)
183 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 -MOD & Digital Interrupt
185 -
186 -(Optional)
202 +(((
203 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
187 187  )))
188 188  
189 -=== 2.3.3 Battery Info ===
206 +[[image:1657329814315-101.png]]
190 190  
191 191  (((
192 -Check the battery voltage for LSE01.
209 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
193 193  )))
194 194  
195 -(((
196 -Ex1: 0x0B45 = 2885mV
197 -)))
198 198  
199 -(((
200 -Ex2: 0x0B49 = 2889mV
201 -)))
202 202  
214 +=== 2.2.4 Use CoAP protocol to uplink data ===
203 203  
216 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
204 204  
205 -=== 2.3.4 Soil Moisture ===
206 206  
207 -(((
208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 -)))
219 +**Use below commands:**
210 210  
211 -(((
212 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
213 -)))
221 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
223 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
214 214  
215 -(((
216 -
217 -)))
225 +For parameter description, please refer to AT command set
218 218  
219 -(((
220 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
221 -)))
227 +[[image:1657330452568-615.png]]
222 222  
223 223  
230 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
224 224  
225 -=== 2.3.5 Soil Temperature ===
232 +[[image:1657330472797-498.png]]
226 226  
227 -(((
228 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
229 -)))
230 230  
231 -(((
232 -**Example**:
233 -)))
234 234  
235 -(((
236 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
237 -)))
236 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
238 238  
239 -(((
240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
241 -)))
242 242  
239 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
241 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
243 243  
243 +[[image:1657330501006-241.png]]
244 244  
245 -=== 2.3.6 Soil Conductivity (EC) ===
246 246  
247 -(((
248 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
249 -)))
246 +[[image:1657330533775-472.png]]
250 250  
251 -(((
252 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
253 -)))
254 254  
255 -(((
256 -Generally, the EC value of irrigation water is less than 800uS / cm.
257 -)))
258 258  
259 -(((
260 -
261 -)))
250 +=== 2.2.6 Use MQTT protocol to uplink data ===
262 262  
252 +
253 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
259 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
260 +
261 +[[image:1657249978444-674.png]]
262 +
263 +
264 +[[image:1657330723006-866.png]]
265 +
266 +
263 263  (((
264 -
268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 265  )))
266 266  
267 -=== 2.3.7 MOD ===
268 268  
269 -Firmware version at least v2.1 supports changing mode.
270 270  
271 -For example, bytes[10]=90
273 +=== 2.2.7 Use TCP protocol to uplink data ===
272 272  
273 -mod=(bytes[10]>>7)&0x01=1.
274 274  
276 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
275 275  
276 -**Downlink Command:**
279 +[[image:image-20220709093918-1.png]]
277 277  
278 -If payload = 0x0A00, workmode=0
279 279  
280 -If** **payload =** **0x0A01, workmode=1
282 +[[image:image-20220709093918-2.png]]
281 281  
282 282  
283 283  
284 -=== 2.3.8 ​Decode payload in The Things Network ===
286 +=== 2.2.8 Change Update Interval ===
285 285  
286 -While using TTN network, you can add the payload format to decode the payload.
288 +User can use below command to change the (% style="color:green" %)**uplink interval**.
287 287  
290 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
288 288  
289 -[[image:1654505570700-128.png]]
290 -
291 291  (((
292 -The payload decoder function for TTN is here:
293 +(% style="color:red" %)**NOTE:**
293 293  )))
294 294  
295 295  (((
296 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
297 297  )))
298 298  
299 299  
300 -== 2.4 Uplink Interval ==
301 301  
302 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
302 +== 2. Uplink Payload ==
303 303  
304 +In this mode, uplink payload includes in total 14 bytes
304 304  
305 305  
306 -== 2.5 Downlink Payload ==
307 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
308 +|=(% style="width: 60px;" %)(((
309 +**Size(bytes)**
310 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
311 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
307 307  
308 -By default, LSE50 prints the downlink payload to console port.
313 +(((
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
315 +)))
309 309  
310 -[[image:image-20220606165544-8.png]]
311 311  
318 +[[image:1657331036973-987.png]]
312 312  
313 313  (((
314 -(% style="color:blue" %)**Examples:**
321 +The payload is ASCII string, representative same HEX:
315 315  )))
316 316  
317 317  (((
318 -
325 +0x72403155615900640c6c19029200 where:
319 319  )))
320 320  
321 321  * (((
322 -(% style="color:blue" %)**Set TDC**
329 +Device ID: 0x724031556159 = 724031556159
323 323  )))
324 -
325 -(((
326 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
331 +* (((
332 +Version: 0x0064=100=1.0.0
327 327  )))
328 328  
329 -(((
330 -Payload:    01 00 00 1E    TDC=30S
335 +* (((
336 +BAT: 0x0c6c = 3180 mV = 3.180V
331 331  )))
332 -
333 -(((
334 -Payload:    01 00 00 3C    TDC=60S
338 +* (((
339 +Signal: 0x19 = 25
335 335  )))
336 -
337 -(((
338 -
341 +* (((
342 +Distance: 0x0292= 658 mm
339 339  )))
340 -
341 341  * (((
342 -(% style="color:blue" %)**Reset**
345 +Interrupt: 0x00 = 0
343 343  )))
344 344  
345 -(((
346 -If payload = 0x04FF, it will reset the LSE01
347 -)))
348 348  
349 349  
350 -* (% style="color:blue" %)**CFM**
350 +== 2.4  Payload Explanation and Sensor Interface ==
351 351  
352 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
353 353  
353 +=== 2.4.1  Device ID ===
354 354  
355 +(((
356 +By default, the Device ID equal to the last 6 bytes of IMEI.
357 +)))
355 355  
356 -== 2.6 ​Show Data in DataCake IoT Server ==
357 -
358 358  (((
359 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
360 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
360 360  )))
361 361  
362 362  (((
363 -
364 +**Example:**
364 364  )))
365 365  
366 366  (((
367 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
368 +AT+DEUI=A84041F15612
368 368  )))
369 369  
370 370  (((
371 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
372 372  )))
373 373  
374 374  
375 -[[image:1654505857935-743.png]]
376 376  
377 +=== 2.4.2  Version Info ===
377 377  
378 -[[image:1654505874829-548.png]]
379 +(((
380 +Specify the software version: 0x64=100, means firmware version 1.00.
381 +)))
379 379  
383 +(((
384 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
385 +)))
380 380  
381 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
382 382  
383 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
384 384  
389 +=== 2.4.3  Battery Info ===
385 385  
386 -[[image:1654505905236-553.png]]
391 +(((
392 +Check the battery voltage for LSE01.
393 +)))
387 387  
395 +(((
396 +Ex1: 0x0B45 = 2885mV
397 +)))
388 388  
389 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
399 +(((
400 +Ex2: 0x0B49 = 2889mV
401 +)))
390 390  
391 -[[image:1654505925508-181.png]]
392 392  
393 393  
405 +=== 2.4.4  Signal Strength ===
394 394  
395 -== 2.7 Frequency Plans ==
407 +(((
408 +NB-IoT Network signal Strength.
409 +)))
396 396  
397 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
411 +(((
412 +**Ex1: 0x1d = 29**
413 +)))
398 398  
415 +(((
416 +(% style="color:blue" %)**0**(%%)  -113dBm or less
417 +)))
399 399  
400 -=== 2.7.1 EU863-870 (EU868) ===
419 +(((
420 +(% style="color:blue" %)**1**(%%)  -111dBm
421 +)))
401 401  
402 -(% style="color:#037691" %)** Uplink:**
423 +(((
424 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
425 +)))
403 403  
404 -868.1 - SF7BW125 to SF12BW125
427 +(((
428 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
429 +)))
405 405  
406 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
431 +(((
432 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
433 +)))
407 407  
408 -868.5 - SF7BW125 to SF12BW125
409 409  
410 -867.1 - SF7BW125 to SF12BW125
411 411  
412 -867.3 - SF7BW125 to SF12BW125
437 +=== 2.4.5  Soil Moisture ===
413 413  
414 -867.5 - SF7BW125 to SF12BW125
439 +Get the distance. Flat object range 280mm - 7500mm.
415 415  
416 -867.7 - SF7BW125 to SF12BW125
441 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
417 417  
418 -867.9 - SF7BW125 to SF12BW125
443 +(((
444 +(((
445 +(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.**
446 +)))
447 +)))
419 419  
420 -868.8 - FSK
449 +(((
450 +
451 +)))
421 421  
453 +(((
454 +
455 +)))
422 422  
423 -(% style="color:#037691" %)** Downlink:**
457 +=== 2.4.6  Digital Interrupt ===
424 424  
425 -Uplink channels 1-9 (RX1)
459 +(((
460 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
461 +)))
426 426  
427 -869.525 - SF9BW125 (RX2 downlink only)
463 +(((
464 +The command is:
465 +)))
428 428  
467 +(((
468 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
469 +)))
429 429  
430 430  
431 -=== 2.7.2 US902-928(US915) ===
472 +(((
473 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
474 +)))
432 432  
433 -Used in USA, Canada and South America. Default use CHE=2
434 434  
435 -(% style="color:#037691" %)**Uplink:**
477 +(((
478 +Example:
479 +)))
436 436  
437 -903.9 - SF7BW125 to SF10BW125
481 +(((
482 +0x(00): Normal uplink packet.
483 +)))
438 438  
439 -904.1 - SF7BW125 to SF10BW125
485 +(((
486 +0x(01): Interrupt Uplink Packet.
487 +)))
440 440  
441 -904.3 - SF7BW125 to SF10BW125
442 442  
443 -904.5 - SF7BW125 to SF10BW125
444 444  
445 -904.7 - SF7BW125 to SF10BW125
491 +=== 2.4.7  ​+5V Output ===
446 446  
447 -904.9 - SF7BW125 to SF10BW125
493 +(((
494 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
495 +)))
448 448  
449 -905.1 - SF7BW125 to SF10BW125
450 450  
451 -905.3 - SF7BW125 to SF10BW125
498 +(((
499 +The 5V output time can be controlled by AT Command.
500 +)))
452 452  
502 +(((
503 +(% style="color:blue" %)**AT+5VT=1000**
504 +)))
453 453  
454 -(% style="color:#037691" %)**Downlink:**
506 +(((
507 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
508 +)))
455 455  
456 -923.3 - SF7BW500 to SF12BW500
457 457  
458 -923.9 - SF7BW500 to SF12BW500
459 459  
460 -924.5 - SF7BW500 to SF12BW500
512 +== 2.5  Downlink Payload ==
461 461  
462 -925.1 - SF7BW500 to SF12BW500
514 +By default, NSE01 prints the downlink payload to console port.
463 463  
464 -925.7 - SF7BW500 to SF12BW500
516 +[[image:image-20220708133731-5.png]]
465 465  
466 -926.3 - SF7BW500 to SF12BW500
467 467  
468 -926.9 - SF7BW500 to SF12BW500
519 +(((
520 +(% style="color:blue" %)**Examples:**
521 +)))
469 469  
470 -927.5 - SF7BW500 to SF12BW500
523 +(((
524 +
525 +)))
471 471  
472 -923.3 - SF12BW500(RX2 downlink only)
527 +* (((
528 +(% style="color:blue" %)**Set TDC**
529 +)))
473 473  
531 +(((
532 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
533 +)))
474 474  
535 +(((
536 +Payload:    01 00 00 1E    TDC=30S
537 +)))
475 475  
476 -=== 2.7.3 CN470-510 (CN470) ===
539 +(((
540 +Payload:    01 00 00 3C    TDC=60S
541 +)))
477 477  
478 -Used in China, Default use CHE=1
543 +(((
544 +
545 +)))
479 479  
480 -(% style="color:#037691" %)**Uplink:**
547 +* (((
548 +(% style="color:blue" %)**Reset**
549 +)))
481 481  
482 -486.3 - SF7BW125 to SF12BW125
551 +(((
552 +If payload = 0x04FF, it will reset the NSE01
553 +)))
483 483  
484 -486.5 - SF7BW125 to SF12BW125
485 485  
486 -486.7 - SF7BW125 to SF12BW125
556 +* (% style="color:blue" %)**INTMOD**
487 487  
488 -486.9 - SF7BW125 to SF12BW125
558 +(((
559 +Downlink Payload: 06000003, Set AT+INTMOD=3
560 +)))
489 489  
490 -487.1 - SF7BW125 to SF12BW125
491 491  
492 -487.3 - SF7BW125 to SF12BW125
493 493  
494 -487.5 - SF7BW125 to SF12BW125
564 +== 2.6  ​LED Indicator ==
495 495  
496 -487.7 - SF7BW125 to SF12BW125
566 +(((
567 +The NSE01 has an internal LED which is to show the status of different state.
497 497  
498 498  
499 -(% style="color:#037691" %)**Downlink:**
570 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
571 +* Then the LED will be on for 1 second means device is boot normally.
572 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
573 +* For each uplink probe, LED will be on for 500ms.
574 +)))
500 500  
501 -506.7 - SF7BW125 to SF12BW125
502 502  
503 -506.9 - SF7BW125 to SF12BW125
504 504  
505 -507.1 - SF7BW125 to SF12BW125
506 506  
507 -507.3 - SF7BW125 to SF12BW125
579 +== 2.7  Installation in Soil ==
508 508  
509 -507.5 - SF7BW125 to SF12BW125
581 +__**Measurement the soil surface**__
510 510  
511 -507.7 - SF7BW125 to SF12BW125
583 +(((
584 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
585 +)))
512 512  
513 -507.9 - SF7BW125 to SF12BW125
587 +[[image:1657259653666-883.png]] ​
514 514  
515 -508.1 - SF7BW125 to SF12BW125
516 516  
517 -505.3 - SF12BW125 (RX2 downlink only)
590 +(((
591 +
518 518  
593 +(((
594 +Dig a hole with diameter > 20CM.
595 +)))
519 519  
597 +(((
598 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
599 +)))
600 +)))
520 520  
521 -=== 2.7.4 AU915-928(AU915) ===
602 +[[image:1654506665940-119.png]]
522 522  
523 -Default use CHE=2
604 +(((
605 +
606 +)))
524 524  
525 -(% style="color:#037691" %)**Uplink:**
526 526  
527 -916.8 - SF7BW125 to SF12BW125
609 +== 2.8  Firmware Change Log ==
528 528  
529 -917.0 - SF7BW125 to SF12BW125
530 530  
531 -917.2 - SF7BW125 to SF12BW125
612 +Download URL & Firmware Change log
532 532  
533 -917.4 - SF7BW125 to SF12BW125
614 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
534 534  
535 -917.6 - SF7BW125 to SF12BW125
536 536  
537 -917.8 - SF7BW125 to SF12BW125
617 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
538 538  
539 -918.0 - SF7BW125 to SF12BW125
540 540  
541 -918.2 - SF7BW125 to SF12BW125
542 542  
621 +== 2.9  ​Battery Analysis ==
543 543  
544 -(% style="color:#037691" %)**Downlink:**
623 +=== 2.9.1  ​Battery Type ===
545 545  
546 -923.3 - SF7BW500 to SF12BW500
547 547  
548 -923.9 - SF7BW500 to SF12BW500
549 -
550 -924.5 - SF7BW500 to SF12BW500
551 -
552 -925.1 - SF7BW500 to SF12BW500
553 -
554 -925.7 - SF7BW500 to SF12BW500
555 -
556 -926.3 - SF7BW500 to SF12BW500
557 -
558 -926.9 - SF7BW500 to SF12BW500
559 -
560 -927.5 - SF7BW500 to SF12BW500
561 -
562 -923.3 - SF12BW500(RX2 downlink only)
563 -
564 -
565 -
566 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
567 -
568 -(% style="color:#037691" %)**Default Uplink channel:**
569 -
570 -923.2 - SF7BW125 to SF10BW125
571 -
572 -923.4 - SF7BW125 to SF10BW125
573 -
574 -
575 -(% style="color:#037691" %)**Additional Uplink Channel**:
576 -
577 -(OTAA mode, channel added by JoinAccept message)
578 -
579 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
580 -
581 -922.2 - SF7BW125 to SF10BW125
582 -
583 -922.4 - SF7BW125 to SF10BW125
584 -
585 -922.6 - SF7BW125 to SF10BW125
586 -
587 -922.8 - SF7BW125 to SF10BW125
588 -
589 -923.0 - SF7BW125 to SF10BW125
590 -
591 -922.0 - SF7BW125 to SF10BW125
592 -
593 -
594 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
595 -
596 -923.6 - SF7BW125 to SF10BW125
597 -
598 -923.8 - SF7BW125 to SF10BW125
599 -
600 -924.0 - SF7BW125 to SF10BW125
601 -
602 -924.2 - SF7BW125 to SF10BW125
603 -
604 -924.4 - SF7BW125 to SF10BW125
605 -
606 -924.6 - SF7BW125 to SF10BW125
607 -
608 -
609 -(% style="color:#037691" %)** Downlink:**
610 -
611 -Uplink channels 1-8 (RX1)
612 -
613 -923.2 - SF10BW125 (RX2)
614 -
615 -
616 -
617 -=== 2.7.6 KR920-923 (KR920) ===
618 -
619 -Default channel:
620 -
621 -922.1 - SF7BW125 to SF12BW125
622 -
623 -922.3 - SF7BW125 to SF12BW125
624 -
625 -922.5 - SF7BW125 to SF12BW125
626 -
627 -
628 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
629 -
630 -922.1 - SF7BW125 to SF12BW125
631 -
632 -922.3 - SF7BW125 to SF12BW125
633 -
634 -922.5 - SF7BW125 to SF12BW125
635 -
636 -922.7 - SF7BW125 to SF12BW125
637 -
638 -922.9 - SF7BW125 to SF12BW125
639 -
640 -923.1 - SF7BW125 to SF12BW125
641 -
642 -923.3 - SF7BW125 to SF12BW125
643 -
644 -
645 -(% style="color:#037691" %)**Downlink:**
646 -
647 -Uplink channels 1-7(RX1)
648 -
649 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
650 -
651 -
652 -
653 -=== 2.7.7 IN865-867 (IN865) ===
654 -
655 -(% style="color:#037691" %)** Uplink:**
656 -
657 -865.0625 - SF7BW125 to SF12BW125
658 -
659 -865.4025 - SF7BW125 to SF12BW125
660 -
661 -865.9850 - SF7BW125 to SF12BW125
662 -
663 -
664 -(% style="color:#037691" %) **Downlink:**
665 -
666 -Uplink channels 1-3 (RX1)
667 -
668 -866.550 - SF10BW125 (RX2)
669 -
670 -
671 -
672 -
673 -== 2.8 LED Indicator ==
674 -
675 -The LSE01 has an internal LED which is to show the status of different state.
676 -
677 -* Blink once when device power on.
678 -* Solid ON for 5 seconds once device successful Join the network.
679 -* Blink once when device transmit a packet.
680 -
681 -== 2.9 Installation in Soil ==
682 -
683 -**Measurement the soil surface**
684 -
685 -
686 -[[image:1654506634463-199.png]] ​
687 -
688 688  (((
689 -(((
690 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
627 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
691 691  )))
692 -)))
693 693  
694 694  
695 -
696 -[[image:1654506665940-119.png]]
697 -
698 698  (((
699 -Dig a hole with diameter > 20CM.
632 +The battery is designed to last for several years depends on the actually use environment and update interval. 
700 700  )))
701 701  
702 -(((
703 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
704 -)))
705 705  
706 -
707 -== 2.10 ​Firmware Change Log ==
708 -
709 709  (((
710 -**Firmware download link:**
637 +The battery related documents as below:
711 711  )))
712 712  
713 -(((
714 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
715 -)))
640 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
642 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
716 716  
717 717  (((
718 -
645 +[[image:image-20220708140453-6.png]]
719 719  )))
720 720  
721 -(((
722 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
723 -)))
724 724  
725 -(((
726 -
727 -)))
728 728  
729 -(((
730 -**V1.0.**
731 -)))
650 +=== 2.9.2  Power consumption Analyze ===
732 732  
733 733  (((
734 -Release
653 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
735 735  )))
736 736  
737 737  
738 -== 2.11 ​Battery Analysis ==
739 -
740 -=== 2.11.1 ​Battery Type ===
741 -
742 742  (((
743 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
658 +Instruction to use as below:
744 744  )))
745 745  
746 746  (((
747 -The battery is designed to last for more than 5 years for the LSN50.
662 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
748 748  )))
749 749  
665 +
750 750  (((
751 -(((
752 -The battery-related documents are as below:
667 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
753 753  )))
754 -)))
755 755  
756 756  * (((
757 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
671 +Product Model
758 758  )))
759 759  * (((
760 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
674 +Uplink Interval
761 761  )))
762 762  * (((
763 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
677 +Working Mode
764 764  )))
765 765  
766 - [[image:image-20220610172436-1.png]]
680 +(((
681 +And the Life expectation in difference case will be shown on the right.
682 +)))
767 767  
684 +[[image:image-20220708141352-7.jpeg]]
768 768  
769 769  
770 -=== 2.11.2 ​Battery Note ===
771 771  
688 +=== 2.9.3  ​Battery Note ===
689 +
772 772  (((
773 773  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
774 774  )))
... ... @@ -775,302 +775,176 @@
775 775  
776 776  
777 777  
778 -=== 2.11.3 Replace the battery ===
696 +=== 2.9. Replace the battery ===
779 779  
780 780  (((
781 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
699 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
782 782  )))
783 783  
702 +
703 +
704 += 3. ​ Access NB-IoT Module =
705 +
784 784  (((
785 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
707 +Users can directly access the AT command set of the NB-IoT module.
786 786  )))
787 787  
788 788  (((
789 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
711 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
790 790  )))
791 791  
714 +[[image:1657261278785-153.png]]
792 792  
793 793  
794 -= 3. ​Using the AT Commands =
795 795  
796 -== 3.1 Access AT Commands ==
718 += 4.  Using the AT Commands =
797 797  
720 +== 4.1  Access AT Commands ==
798 798  
799 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
722 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
800 800  
801 -[[image:1654501986557-872.png||height="391" width="800"]]
802 802  
725 +AT+<CMD>?  : Help on <CMD>
803 803  
804 -Or if you have below board, use below connection:
727 +AT+<CMD>         : Run <CMD>
805 805  
729 +AT+<CMD>=<value> : Set the value
806 806  
807 -[[image:1654502005655-729.png||height="503" width="801"]]
731 +AT+<CMD>=?  : Get the value
808 808  
809 809  
810 -
811 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
812 -
813 -
814 - [[image:1654502050864-459.png||height="564" width="806"]]
815 -
816 -
817 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
818 -
819 -
820 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
821 -
822 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
823 -
824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
825 -
826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
827 -
828 -
829 829  (% style="color:#037691" %)**General Commands**(%%)      
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
736 +AT  : Attention       
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
738 +AT?  : Short Help     
834 834  
835 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
740 +ATZ  : MCU Reset    
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
742 +AT+TDC  : Application Data Transmission Interval
838 838  
744 +AT+CFG  : Print all configurations
839 839  
840 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
746 +AT+CFGMOD           : Working mode selection
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
748 +AT+INTMOD            : Set the trigger interrupt mode
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
750 +AT+5VT  : Set extend the time of 5V power  
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
752 +AT+PRO  : Choose agreement
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
754 +AT+WEIGRE  : Get weight or set weight to 0
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
756 +AT+WEIGAP  : Get or Set the GapValue of weight
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
758 +AT+RXDL  : Extend the sending and receiving time
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
760 +AT+CNTFAC  : Get or set counting parameters
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
762 +AT+SERVADDR  : Server Address
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
765 +(% style="color:#037691" %)**COAP Management**      
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
767 +AT+URI            : Resource parameters
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
770 +(% style="color:#037691" %)**UDP Management**
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
772 +AT+CFM          : Upload confirmation mode (only valid for UDP)
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
775 +(% style="color:#037691" %)**MQTT Management**
873 873  
777 +AT+CLIENT               : Get or Set MQTT client
874 874  
875 -(% style="color:#037691" %)**LoRa Network Management**
779 +AT+UNAME  : Get or Set MQTT Username
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
781 +AT+PWD                  : Get or Set MQTT password
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
783 +AT+PUBTOPI : Get or Set MQTT publish topic
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
785 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
788 +(% style="color:#037691" %)**Information**          
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
790 +AT+FDR  : Factory Data Reset
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
792 +AT+PWOR : Serial Access Password
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
796 += ​5.  FAQ =
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
798 +== 5.1 How to Upgrade Firmware ==
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
902 -
903 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
904 -
905 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
906 -
907 -
908 -(% style="color:#037691" %)**Information** 
909 -
910 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
911 -
912 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
921 -
922 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
923 -
924 -
925 -= ​4. FAQ =
926 -
927 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
928 -
929 929  (((
930 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
931 -When downloading the images, choose the required image file for download. ​
802 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
932 932  )))
933 933  
934 934  (((
935 -
806 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
936 936  )))
937 937  
938 938  (((
939 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
810 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
940 940  )))
941 941  
942 -(((
943 -
944 -)))
945 945  
946 -(((
947 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
948 -)))
949 949  
950 -(((
951 -
952 -)))
815 +== 5.2  Can I calibrate NSE01 to different soil types? ==
953 953  
954 954  (((
955 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
818 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
956 956  )))
957 957  
958 -[[image:image-20220606154726-3.png]]
959 959  
822 += 6.  Trouble Shooting =
960 960  
961 -When you use the TTN network, the US915 frequency bands use are:
824 +== 6.1  ​Connection problem when uploading firmware ==
962 962  
963 -* 903.9 - SF7BW125 to SF10BW125
964 -* 904.1 - SF7BW125 to SF10BW125
965 -* 904.3 - SF7BW125 to SF10BW125
966 -* 904.5 - SF7BW125 to SF10BW125
967 -* 904.7 - SF7BW125 to SF10BW125
968 -* 904.9 - SF7BW125 to SF10BW125
969 -* 905.1 - SF7BW125 to SF10BW125
970 -* 905.3 - SF7BW125 to SF10BW125
971 -* 904.6 - SF8BW500
972 972  
973 973  (((
974 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
975 -
976 -* (% style="color:#037691" %)**AT+CHE=2**
977 -* (% style="color:#037691" %)**ATZ**
828 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
978 978  )))
979 979  
831 +(% class="wikigeneratedid" %)
980 980  (((
981 981  
982 -
983 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
984 984  )))
985 985  
986 -(((
987 -
988 -)))
989 989  
990 -(((
991 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
992 -)))
837 +== 6.2  AT Command input doesn't work ==
993 993  
994 -[[image:image-20220606154825-4.png]]
995 -
996 -
997 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
998 -
999 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1000 -
1001 -
1002 -= 5. Trouble Shooting =
1003 -
1004 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1005 -
1006 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1007 -
1008 -
1009 -== 5.2 AT Command input doesn't work ==
1010 -
1011 1011  (((
1012 1012  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 -)))
1014 1014  
1015 -
1016 -== 5.3 Device rejoin in at the second uplink packet ==
1017 -
1018 -(% style="color:#4f81bd" %)**Issue describe as below:**
1019 -
1020 -[[image:1654500909990-784.png]]
1021 -
1022 -
1023 -(% style="color:#4f81bd" %)**Cause for this issue:**
1024 -
1025 -(((
1026 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
842 +
1027 1027  )))
1028 1028  
1029 1029  
1030 -(% style="color:#4f81bd" %)**Solution: **
846 += 7. ​ Order Info =
1031 1031  
1032 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1033 1033  
1034 -[[image:1654500929571-736.png||height="458" width="832"]]
849 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1035 1035  
1036 1036  
1037 -= 6. ​Order Info =
1038 -
1039 -
1040 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 -
1042 -
1043 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 -
1045 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 -
1054 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 -
1056 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 -
1059 1059  (% class="wikigeneratedid" %)
1060 1060  (((
1061 1061  
1062 1062  )))
1063 1063  
1064 -= 7. Packing Info =
857 += 8.  Packing Info =
1065 1065  
1066 1066  (((
1067 1067  
1068 1068  
1069 1069  (% style="color:#037691" %)**Package Includes**:
1070 -)))
1071 1071  
1072 -* (((
1073 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
864 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
865 +* External antenna x 1
1074 1074  )))
1075 1075  
1076 1076  (((
... ... @@ -1077,24 +1077,19 @@
1077 1077  
1078 1078  
1079 1079  (% style="color:#037691" %)**Dimension and weight**:
1080 -)))
1081 1081  
1082 -* (((
1083 -Device Size: cm
873 +* Size: 195 x 125 x 55 mm
874 +* Weight:   420g
1084 1084  )))
1085 -* (((
1086 -Device Weight: g
1087 -)))
1088 -* (((
1089 -Package Size / pcs : cm
1090 -)))
1091 -* (((
1092 -Weight / pcs : g
1093 1093  
877 +(((
1094 1094  
879 +
880 +
881 +
1095 1095  )))
1096 1096  
1097 -= 8. Support =
884 += 9.  Support =
1098 1098  
1099 1099  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1100 1100  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content