<
From version < 44.1 >
edited by Xiaoling
on 2022/07/08 10:14
To version < 69.1 >
edited by Xiaoling
on 2022/07/09 08:41
>
Change comment: Uploaded new attachment "image-20220709084137-2.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
1 +[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
3 3  
4 4  
5 5  
... ... @@ -9,8 +9,6 @@
9 9  
10 10  
11 11  
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  
... ... @@ -18,21 +18,23 @@
18 18  
19 19  
20 20  
21 -= 1. Introduction =
22 22  
23 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 += 1.  Introduction =
24 24  
21 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
22 +
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
26 +(((
27 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 +)))
29 29  
30 -It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly.
31 -
32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 -
34 -NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years.
35 -
36 36  
37 37  )))
38 38  
... ... @@ -43,732 +43,670 @@
43 43  
44 44  
45 45  
46 -== 1.2 ​Features ==
45 +== 1.2 ​ Features ==
47 47  
48 -* LoRaWAN 1.0.3 Class A
49 -* Ultra low power consumption
47 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
53 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 57  * IP66 Waterproof Enclosure
58 -* 4000mAh or 8500mAh Battery for long term use
55 +* Ultra-Low Power consumption
56 +* AT Commands to change parameters
57 +* Micro SIM card slot for NB-IoT SIM
58 +* 8500mAh Battery for long term use
59 59  
60 -== 1.3 Specification ==
60 +== 1.3  Specification ==
61 61  
62 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
63 63  
64 -[[image:image-20220606162220-5.png]]
63 +(% style="color:#037691" %)**Common DC Characteristics:**
65 65  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
66 66  
68 +(% style="color:#037691" %)**NB-IoT Spec:**
67 67  
68 -== ​1.4 Applications ==
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
69 69  
70 -* Smart Agriculture
77 +Probe(% style="color:#037691" %)** Specification:**
71 71  
72 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
73 -​
79 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
75 -== 1.5 Firmware Change log ==
81 +[[image:image-20220708101224-1.png]]
76 76  
77 77  
78 -**LSE01 v1.0 :**  Release
79 79  
85 +== ​1.4  Applications ==
80 80  
87 +* Smart Agriculture
81 81  
82 -= 2. Configure LSE01 to connect to LoRaWAN network =
89 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
90 +​
83 83  
84 -== 2.1 How it works ==
92 +== 1.5  Pin Definitions ==
85 85  
86 -(((
87 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
88 -)))
89 89  
90 -(((
91 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
92 -)))
95 +[[image:1657246476176-652.png]]
93 93  
94 94  
95 95  
96 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
99 += 2.  Use NSE01 to communicate with IoT Server =
97 97  
98 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 +== 2. How it works ==
99 99  
100 100  
101 -[[image:1654503992078-669.png]]
102 -
103 -
104 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
105 -
106 -
107 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
108 -
109 -Each LSE01 is shipped with a sticker with the default device EUI as below:
110 -
111 -[[image:image-20220606163732-6.jpeg]]
112 -
113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 -
115 -**Add APP EUI in the application**
116 -
117 -
118 -[[image:1654504596150-405.png]]
119 -
120 -
121 -
122 -**Add APP KEY and DEV EUI**
123 -
124 -[[image:1654504683289-357.png]]
125 -
126 -
127 -
128 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
129 -
130 -
131 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
132 -
133 -[[image:image-20220606163915-7.png]]
134 -
135 -
136 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
137 -
138 -[[image:1654504778294-788.png]]
139 -
140 -
141 -
142 -== 2.3 Uplink Payload ==
143 -
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 149  (((
150 -Uplink payload includes in total 11 bytes.
105 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
151 151  )))
152 152  
153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 -|(((
155 -**Size**
156 156  
157 -**(bytes)**
158 -)))|**2**|**2**|**2**|**2**|**2**|**1**
159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 -Temperature
161 -
162 -(Reserve, Ignore now)
163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 -MOD & Digital Interrupt
165 -
166 -(Optional)
167 -)))
168 -
169 -=== 2.3.2 MOD~=1(Original value) ===
170 -
171 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
172 -
173 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 -|(((
175 -**Size**
176 -
177 -**(bytes)**
178 -)))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 -Temperature
181 -
182 -(Reserve, Ignore now)
183 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 -MOD & Digital Interrupt
185 -
186 -(Optional)
187 -)))
188 -
189 -=== 2.3.3 Battery Info ===
190 -
191 191  (((
192 -Check the battery voltage for LSE01.
110 +The diagram below shows the working flow in default firmware of NSE01:
193 193  )))
194 194  
195 -(((
196 -Ex1: 0x0B45 = 2885mV
197 -)))
113 +[[image:image-20220708101605-2.png]]
198 198  
199 199  (((
200 -Ex2: 0x0B49 = 2889mV
201 -)))
202 -
203 -
204 -
205 -=== 2.3.4 Soil Moisture ===
206 -
207 -(((
208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 -)))
210 -
211 -(((
212 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
213 -)))
214 -
215 -(((
216 216  
217 217  )))
218 218  
219 -(((
220 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
221 -)))
222 222  
223 223  
121 +== 2.2 ​ Configure the NSE01 ==
224 224  
225 -=== 2.3.5 Soil Temperature ===
226 226  
227 -(((
228 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
229 -)))
124 +=== 2.2.1 Test Requirement ===
230 230  
231 -(((
232 -**Example**:
233 -)))
234 234  
235 235  (((
236 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
128 +To use NSE01 in your city, make sure meet below requirements:
237 237  )))
238 238  
239 -(((
240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
241 -)))
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
242 242  
243 -
244 -
245 -=== 2.3.6 Soil Conductivity (EC) ===
246 -
247 247  (((
248 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
249 249  )))
250 250  
251 -(((
252 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
253 -)))
254 254  
255 -(((
256 -Generally, the EC value of irrigation water is less than 800uS / cm.
257 -)))
140 +[[image:1657249419225-449.png]]
258 258  
259 -(((
260 -
261 -)))
262 262  
263 -(((
264 -
265 -)))
266 266  
267 -=== 2.3.7 MOD ===
144 +=== 2.2.2 Insert SIM card ===
268 268  
269 -Firmware version at least v2.1 supports changing mode.
270 -
271 -For example, bytes[10]=90
272 -
273 -mod=(bytes[10]>>7)&0x01=1.
274 -
275 -
276 -**Downlink Command:**
277 -
278 -If payload = 0x0A00, workmode=0
279 -
280 -If** **payload =** **0x0A01, workmode=1
281 -
282 -
283 -
284 -=== 2.3.8 ​Decode payload in The Things Network ===
285 -
286 -While using TTN network, you can add the payload format to decode the payload.
287 -
288 -
289 -[[image:1654505570700-128.png]]
290 -
291 291  (((
292 -The payload decoder function for TTN is here:
147 +Insert the NB-IoT Card get from your provider.
293 293  )))
294 294  
295 295  (((
296 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
151 +User need to take out the NB-IoT module and insert the SIM card like below:
297 297  )))
298 298  
299 299  
300 -== 2.4 Uplink Interval ==
155 +[[image:1657249468462-536.png]]
301 301  
302 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
303 303  
304 304  
159 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
305 305  
306 -== 2.5 Downlink Payload ==
307 -
308 -By default, LSE50 prints the downlink payload to console port.
309 -
310 -[[image:image-20220606165544-8.png]]
311 -
312 -
313 313  (((
314 -(% style="color:blue" %)**Examples:**
315 -)))
316 -
317 317  (((
318 -
163 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
319 319  )))
320 -
321 -* (((
322 -(% style="color:blue" %)**Set TDC**
323 323  )))
324 324  
325 -(((
326 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 -)))
328 328  
329 -(((
330 -Payload:    01 00 00 1E    TDC=30S
331 -)))
168 +**Connection:**
332 332  
333 -(((
334 -Payload:    01 00 00 3C    TDC=60S
335 -)))
170 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
336 336  
337 -(((
338 -
339 -)))
172 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
340 340  
341 -* (((
342 -(% style="color:blue" %)**Reset**
343 -)))
174 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
344 344  
345 -(((
346 -If payload = 0x04FF, it will reset the LSE01
347 -)))
348 348  
177 +In the PC, use below serial tool settings:
349 349  
350 -* (% style="color:blue" %)**CFM**
179 +* Baud:  (% style="color:green" %)**9600**
180 +* Data bits:** (% style="color:green" %)8(%%)**
181 +* Stop bits: (% style="color:green" %)**1**
182 +* Parity:  (% style="color:green" %)**None**
183 +* Flow Control: (% style="color:green" %)**None**
351 351  
352 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
353 -
354 -
355 -
356 -== 2.6 ​Show Data in DataCake IoT Server ==
357 -
358 358  (((
359 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
186 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
360 360  )))
361 361  
362 -(((
363 -
364 -)))
189 +[[image:image-20220708110657-3.png]]
365 365  
366 366  (((
367 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
368 368  )))
369 369  
370 -(((
371 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 -)))
373 373  
374 374  
375 -[[image:1654505857935-743.png]]
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
376 376  
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
377 377  
378 -[[image:1654505874829-548.png]]
379 379  
202 +**Use below commands:**
380 380  
381 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
382 382  
383 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
208 +For parameter description, please refer to AT command set
384 384  
210 +[[image:1657249793983-486.png]]
385 385  
386 -[[image:1654505905236-553.png]]
387 387  
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
388 388  
389 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
215 +[[image:1657249831934-534.png]]
390 390  
391 -[[image:1654505925508-181.png]]
392 392  
393 393  
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
394 394  
395 -== 2.7 Frequency Plans ==
221 +This feature is supported since firmware version v1.0.1
396 396  
397 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
398 398  
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
399 399  
400 -=== 2.7.1 EU863-870 (EU868) ===
228 +[[image:1657249864775-321.png]]
401 401  
402 -(% style="color:#037691" %)** Uplink:**
403 403  
404 -868.1 - SF7BW125 to SF12BW125
231 +[[image:1657249930215-289.png]]
405 405  
406 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
407 407  
408 -868.5 - SF7BW125 to SF12BW125
409 409  
410 -867.1 - SF7BW125 to SF12BW125
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
411 411  
412 -867.3 - SF7BW125 to SF12BW125
237 +This feature is supported since firmware version v110
413 413  
414 -867.5 - SF7BW125 to SF12BW125
415 415  
416 -867.7 - SF7BW125 to SF12BW125
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
417 417  
418 -867.9 - SF7BW125 to SF12BW125
248 +[[image:1657249978444-674.png]]
419 419  
420 -868.8 - FSK
421 421  
251 +[[image:1657249990869-686.png]]
422 422  
423 -(% style="color:#037691" %)** Downlink:**
424 424  
425 -Uplink channels 1-9 (RX1)
254 +(((
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
256 +)))
426 426  
427 -869.525 - SF9BW125 (RX2 downlink only)
428 428  
429 429  
260 +=== 2.2.7 Use TCP protocol to uplink data ===
430 430  
431 -=== 2.7.2 US902-928(US915) ===
262 +This feature is supported since firmware version v110
432 432  
433 -Used in USA, Canada and South America. Default use CHE=2
434 434  
435 -(% style="color:#037691" %)**Uplink:**
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
436 436  
437 -903.9 - SF7BW125 to SF10BW125
268 +[[image:1657250217799-140.png]]
438 438  
439 -904.1 - SF7BW125 to SF10BW125
440 440  
441 -904.3 - SF7BW125 to SF10BW125
271 +[[image:1657250255956-604.png]]
442 442  
443 -904.5 - SF7BW125 to SF10BW125
444 444  
445 -904.7 - SF7BW125 to SF10BW125
446 446  
447 -904.9 - SF7BW125 to SF10BW125
275 +=== 2.2.8 Change Update Interval ===
448 448  
449 -905.1 - SF7BW125 to SF10BW125
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
450 450  
451 -905.3 - SF7BW125 to SF10BW125
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
452 452  
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
453 453  
454 -(% style="color:#037691" %)**Downlink:**
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
455 455  
456 -923.3 - SF7BW500 to SF12BW500
457 457  
458 -923.9 - SF7BW500 to SF12BW500
459 459  
460 -924.5 - SF7BW500 to SF12BW500
291 +== 2. Uplink Payload ==
461 461  
462 -925.1 - SF7BW500 to SF12BW500
293 +In this mode, uplink payload includes in total 18 bytes
463 463  
464 -925.7 - SF7BW500 to SF12BW500
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 60px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
465 465  
466 -926.3 - SF7BW500 to SF12BW500
301 +(((
302 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
303 +)))
467 467  
468 -926.9 - SF7BW500 to SF12BW500
469 469  
470 -927.5 - SF7BW500 to SF12BW500
306 +[[image:image-20220708111918-4.png]]
471 471  
472 -923.3 - SF12BW500(RX2 downlink only)
473 473  
309 +The payload is ASCII string, representative same HEX:
474 474  
311 +0x72403155615900640c7817075e0a8c02f900 where:
475 475  
476 -=== 2.7.3 CN470-510 (CN470) ===
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
477 477  
478 -Used in China, Default use CHE=1
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
479 479  
480 -(% style="color:#037691" %)**Uplink:**
323 +== 2.4  Payload Explanation and Sensor Interface ==
481 481  
482 -486.3 - SF7BW125 to SF12BW125
483 483  
484 -486.5 - SF7BW125 to SF12BW125
326 +=== 2.4.1  Device ID ===
485 485  
486 -486.7 - SF7BW125 to SF12BW125
328 +(((
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
330 +)))
487 487  
488 -486.9 - SF7BW125 to SF12BW125
332 +(((
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
334 +)))
489 489  
490 -487.1 - SF7BW125 to SF12BW125
336 +(((
337 +**Example:**
338 +)))
491 491  
492 -487.3 - SF7BW125 to SF12BW125
340 +(((
341 +AT+DEUI=A84041F15612
342 +)))
493 493  
494 -487.5 - SF7BW125 to SF12BW125
344 +(((
345 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
346 +)))
495 495  
496 -487.7 - SF7BW125 to SF12BW125
497 497  
498 498  
499 -(% style="color:#037691" %)**Downlink:**
350 +=== 2.4.2  Version Info ===
500 500  
501 -506.7 - SF7BW125 to SF12BW125
352 +(((
353 +Specify the software version: 0x64=100, means firmware version 1.00.
354 +)))
502 502  
503 -506.9 - SF7BW125 to SF12BW125
356 +(((
357 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
358 +)))
504 504  
505 -507.1 - SF7BW125 to SF12BW125
506 506  
507 -507.3 - SF7BW125 to SF12BW125
508 508  
509 -507.5 - SF7BW125 to SF12BW125
362 +=== 2.4.3  Battery Info ===
510 510  
511 -507.7 - SF7BW125 to SF12BW125
364 +(((
365 +Check the battery voltage for LSE01.
366 +)))
512 512  
513 -507.9 - SF7BW125 to SF12BW125
368 +(((
369 +Ex1: 0x0B45 = 2885mV
370 +)))
514 514  
515 -508.1 - SF7BW125 to SF12BW125
372 +(((
373 +Ex2: 0x0B49 = 2889mV
374 +)))
516 516  
517 -505.3 - SF12BW125 (RX2 downlink only)
518 518  
519 519  
378 +=== 2.4.4  Signal Strength ===
520 520  
521 -=== 2.7.4 AU915-928(AU915) ===
380 +(((
381 +NB-IoT Network signal Strength.
382 +)))
522 522  
523 -Default use CHE=2
384 +(((
385 +**Ex1: 0x1d = 29**
386 +)))
524 524  
525 -(% style="color:#037691" %)**Uplink:**
388 +(((
389 +(% style="color:blue" %)**0**(%%)  -113dBm or less
390 +)))
526 526  
527 -916.8 - SF7BW125 to SF12BW125
392 +(((
393 +(% style="color:blue" %)**1**(%%)  -111dBm
394 +)))
528 528  
529 -917.0 - SF7BW125 to SF12BW125
396 +(((
397 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
398 +)))
530 530  
531 -917.2 - SF7BW125 to SF12BW125
400 +(((
401 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
402 +)))
532 532  
533 -917.4 - SF7BW125 to SF12BW125
404 +(((
405 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 +)))
534 534  
535 -917.6 - SF7BW125 to SF12BW125
536 536  
537 -917.8 - SF7BW125 to SF12BW125
538 538  
539 -918.0 - SF7BW125 to SF12BW125
410 +=== 2.4.5  Soil Moisture ===
540 540  
541 -918.2 - SF7BW125 to SF12BW125
412 +(((
413 +(((
414 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
415 +)))
416 +)))
542 542  
418 +(((
419 +(((
420 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
421 +)))
422 +)))
543 543  
544 -(% style="color:#037691" %)**Downlink:**
424 +(((
425 +
426 +)))
545 545  
546 -923.3 - SF7BW500 to SF12BW500
428 +(((
429 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
430 +)))
547 547  
548 -923.9 - SF7BW500 to SF12BW500
549 549  
550 -924.5 - SF7BW500 to SF12BW500
551 551  
552 -925.1 - SF7BW500 to SF12BW500
434 +=== 2.4.6  Soil Temperature ===
553 553  
554 -925.7 - SF7BW500 to SF12BW500
436 +(((
437 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 +)))
555 555  
556 -926.3 - SF7BW500 to SF12BW500
440 +(((
441 +**Example**:
442 +)))
557 557  
558 -926.9 - SF7BW500 to SF12BW500
444 +(((
445 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 +)))
559 559  
560 -927.5 - SF7BW500 to SF12BW500
448 +(((
449 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 +)))
561 561  
562 -923.3 - SF12BW500(RX2 downlink only)
563 563  
564 564  
454 +=== 2.4.7  Soil Conductivity (EC) ===
565 565  
566 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
456 +(((
457 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 +)))
567 567  
568 -(% style="color:#037691" %)**Default Uplink channel:**
460 +(((
461 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 +)))
569 569  
570 -923.2 - SF7BW125 to SF10BW125
464 +(((
465 +Generally, the EC value of irrigation water is less than 800uS / cm.
466 +)))
571 571  
572 -923.4 - SF7BW125 to SF10BW125
468 +(((
469 +
470 +)))
573 573  
472 +(((
473 +
474 +)))
574 574  
575 -(% style="color:#037691" %)**Additional Uplink Channel**:
476 +=== 2.4.8  Digital Interrupt ===
576 576  
577 -(OTAA mode, channel added by JoinAccept message)
478 +(((
479 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 +)))
578 578  
579 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
482 +(((
483 +The command is:
484 +)))
580 580  
581 -922.2 - SF7BW125 to SF10BW125
486 +(((
487 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 +)))
582 582  
583 -922.4 - SF7BW125 to SF10BW125
584 584  
585 -922.6 - SF7BW125 to SF10BW125
491 +(((
492 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 +)))
586 586  
587 -922.8 - SF7BW125 to SF10BW125
588 588  
589 -923.0 - SF7BW125 to SF10BW125
496 +(((
497 +Example:
498 +)))
590 590  
591 -922.0 - SF7BW125 to SF10BW125
500 +(((
501 +0x(00): Normal uplink packet.
502 +)))
592 592  
504 +(((
505 +0x(01): Interrupt Uplink Packet.
506 +)))
593 593  
594 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
595 595  
596 -923.6 - SF7BW125 to SF10BW125
597 597  
598 -923.8 - SF7BW125 to SF10BW125
510 +=== 2.4.9  ​+5V Output ===
599 599  
600 -924.0 - SF7BW125 to SF10BW125
512 +(((
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 +)))
601 601  
602 -924.2 - SF7BW125 to SF10BW125
603 603  
604 -924.4 - SF7BW125 to SF10BW125
517 +(((
518 +The 5V output time can be controlled by AT Command.
519 +)))
605 605  
606 -924.6 - SF7BW125 to SF10BW125
521 +(((
522 +(% style="color:blue" %)**AT+5VT=1000**
523 +)))
607 607  
525 +(((
526 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 +)))
608 608  
609 -(% style="color:#037691" %)** Downlink:**
610 610  
611 -Uplink channels 1-8 (RX1)
612 612  
613 -923.2 - SF10BW125 (RX2)
531 +== 2. Downlink Payload ==
614 614  
533 +By default, NSE01 prints the downlink payload to console port.
615 615  
535 +[[image:image-20220708133731-5.png]]
616 616  
617 -=== 2.7.6 KR920-923 (KR920) ===
618 618  
619 -Default channel:
538 +(((
539 +(% style="color:blue" %)**Examples:**
540 +)))
620 620  
621 -922.1 - SF7BW125 to SF12BW125
542 +(((
543 +
544 +)))
622 622  
623 -922.3 - SF7BW125 to SF12BW125
546 +* (((
547 +(% style="color:blue" %)**Set TDC**
548 +)))
624 624  
625 -922.5 - SF7BW125 to SF12BW125
550 +(((
551 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 +)))
626 626  
554 +(((
555 +Payload:    01 00 00 1E    TDC=30S
556 +)))
627 627  
628 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
558 +(((
559 +Payload:    01 00 00 3C    TDC=60S
560 +)))
629 629  
630 -922.1 - SF7BW125 to SF12BW125
562 +(((
563 +
564 +)))
631 631  
632 -922.3 - SF7BW125 to SF12BW125
566 +* (((
567 +(% style="color:blue" %)**Reset**
568 +)))
633 633  
634 -922.5 - SF7BW125 to SF12BW125
570 +(((
571 +If payload = 0x04FF, it will reset the NSE01
572 +)))
635 635  
636 -922.7 - SF7BW125 to SF12BW125
637 637  
638 -922.9 - SF7BW125 to SF12BW125
575 +* (% style="color:blue" %)**INTMOD**
639 639  
640 -923.1 - SF7BW125 to SF12BW125
577 +(((
578 +Downlink Payload: 06000003, Set AT+INTMOD=3
579 +)))
641 641  
642 -923.3 - SF7BW125 to SF12BW125
643 643  
644 644  
645 -(% style="color:#037691" %)**Downlink:**
583 +== 2.6  ​LED Indicator ==
646 646  
647 -Uplink channels 1-7(RX1)
585 +(((
586 +The NSE01 has an internal LED which is to show the status of different state.
648 648  
649 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
650 650  
589 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 +* Then the LED will be on for 1 second means device is boot normally.
591 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 +* For each uplink probe, LED will be on for 500ms.
593 +)))
651 651  
652 652  
653 -=== 2.7.7 IN865-867 (IN865) ===
654 654  
655 -(% style="color:#037691" %)** Uplink:**
656 656  
657 -865.0625 - SF7BW125 to SF12BW125
598 +== 2.7  Installation in Soil ==
658 658  
659 -865.4025 - SF7BW125 to SF12BW125
600 +__**Measurement the soil surface**__
660 660  
661 -865.9850 - SF7BW125 to SF12BW125
602 +(((
603 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 +)))
662 662  
606 +[[image:1657259653666-883.png]] ​
663 663  
664 -(% style="color:#037691" %) **Downlink:**
665 665  
666 -Uplink channels 1-3 (RX1)
609 +(((
610 +
667 667  
668 -866.550 - SF10BW125 (RX2)
612 +(((
613 +Dig a hole with diameter > 20CM.
614 +)))
669 669  
616 +(((
617 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +)))
619 +)))
670 670  
621 +[[image:1654506665940-119.png]]
671 671  
623 +(((
624 +
625 +)))
672 672  
673 -== 2.8 LED Indicator ==
674 674  
675 -The LSE01 has an internal LED which is to show the status of different state.
628 +== 2.8  ​Firmware Change Log ==
676 676  
677 -* Blink once when device power on.
678 -* Solid ON for 5 seconds once device successful Join the network.
679 -* Blink once when device transmit a packet.
680 680  
681 -== 2.9 Installation in Soil ==
631 +Download URL & Firmware Change log
682 682  
683 -**Measurement the soil surface**
633 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
684 684  
685 685  
686 -[[image:1654506634463-199.png]]
636 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
687 687  
688 -(((
689 -(((
690 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
691 -)))
692 -)))
693 693  
694 694  
640 +== 2.9  ​Battery Analysis ==
695 695  
696 -[[image:1654506665940-119.png]]
642 +=== 2.9.1  ​Battery Type ===
697 697  
698 -(((
699 -Dig a hole with diameter > 20CM.
700 -)))
701 701  
702 702  (((
703 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
646 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
704 704  )))
705 705  
706 706  
707 -== 2.10 ​Firmware Change Log ==
708 -
709 709  (((
710 -**Firmware download link:**
651 +The battery is designed to last for several years depends on the actually use environment and update interval. 
711 711  )))
712 712  
713 -(((
714 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
715 -)))
716 716  
717 717  (((
718 -
656 +The battery related documents as below:
719 719  )))
720 720  
721 -(((
722 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
723 -)))
659 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
724 724  
725 725  (((
726 -
664 +[[image:image-20220708140453-6.png]]
727 727  )))
728 728  
729 -(((
730 -**V1.0.**
731 -)))
732 732  
668 +
669 +=== 2.9.2  Power consumption Analyze ===
670 +
733 733  (((
734 -Release
672 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
735 735  )))
736 736  
737 737  
738 -== 2.11 ​Battery Analysis ==
739 -
740 -=== 2.11.1 ​Battery Type ===
741 -
742 742  (((
743 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 +Instruction to use as below:
744 744  )))
745 745  
746 746  (((
747 -The battery is designed to last for more than 5 years for the LSN50.
681 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
748 748  )))
749 749  
684 +
750 750  (((
751 -(((
752 -The battery-related documents are as below:
686 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
753 753  )))
754 -)))
755 755  
756 756  * (((
757 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
690 +Product Model
758 758  )))
759 759  * (((
760 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
693 +Uplink Interval
761 761  )))
762 762  * (((
763 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
696 +Working Mode
764 764  )))
765 765  
766 - [[image:image-20220610172436-1.png]]
699 +(((
700 +And the Life expectation in difference case will be shown on the right.
701 +)))
767 767  
703 +[[image:image-20220708141352-7.jpeg]]
768 768  
769 769  
770 -=== 2.11.2 ​Battery Note ===
771 771  
707 +=== 2.9.3  ​Battery Note ===
708 +
772 772  (((
773 773  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
774 774  )))
... ... @@ -775,302 +775,176 @@
775 775  
776 776  
777 777  
778 -=== 2.11.3 Replace the battery ===
715 +=== 2.9. Replace the battery ===
779 779  
780 780  (((
781 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
782 782  )))
783 783  
721 +
722 +
723 += 3. ​ Access NB-IoT Module =
724 +
784 784  (((
785 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
726 +Users can directly access the AT command set of the NB-IoT module.
786 786  )))
787 787  
788 788  (((
789 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
790 790  )))
791 791  
733 +[[image:1657261278785-153.png]]
792 792  
793 793  
794 -= 3. ​Using the AT Commands =
795 795  
796 -== 3.1 Access AT Commands ==
737 += 4.  Using the AT Commands =
797 797  
739 +== 4.1  Access AT Commands ==
798 798  
799 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
800 800  
801 -[[image:1654501986557-872.png||height="391" width="800"]]
802 802  
744 +AT+<CMD>?  : Help on <CMD>
803 803  
804 -Or if you have below board, use below connection:
746 +AT+<CMD>         : Run <CMD>
805 805  
748 +AT+<CMD>=<value> : Set the value
806 806  
807 -[[image:1654502005655-729.png||height="503" width="801"]]
750 +AT+<CMD>=?  : Get the value
808 808  
809 809  
810 -
811 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
812 -
813 -
814 - [[image:1654502050864-459.png||height="564" width="806"]]
815 -
816 -
817 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
818 -
819 -
820 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
821 -
822 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
823 -
824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
825 -
826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
827 -
828 -
829 829  (% style="color:#037691" %)**General Commands**(%%)      
830 830  
831 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 +AT  : Attention       
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 +AT?  : Short Help     
834 834  
835 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 +ATZ  : MCU Reset    
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 +AT+TDC  : Application Data Transmission Interval
838 838  
763 +AT+CFG  : Print all configurations
839 839  
840 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 +AT+CFGMOD           : Working mode selection
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 +AT+INTMOD            : Set the trigger interrupt mode
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 +AT+5VT  : Set extend the time of 5V power  
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 +AT+PRO  : Choose agreement
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 +AT+WEIGRE  : Get weight or set weight to 0
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 +AT+WEIGAP  : Get or Set the GapValue of weight
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
777 +AT+RXDL  : Extend the sending and receiving time
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 +AT+CNTFAC  : Get or set counting parameters
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 +AT+SERVADDR  : Server Address
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 +(% style="color:#037691" %)**COAP Management**      
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 +AT+URI            : Resource parameters
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 +(% style="color:#037691" %)**UDP Management**
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 +AT+CFM          : Upload confirmation mode (only valid for UDP)
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 +(% style="color:#037691" %)**MQTT Management**
873 873  
796 +AT+CLIENT               : Get or Set MQTT client
874 874  
875 -(% style="color:#037691" %)**LoRa Network Management**
798 +AT+UNAME  : Get or Set MQTT Username
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 +AT+PWD                  : Get or Set MQTT password
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 +AT+PUBTOPI : Get or Set MQTT publish topic
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 +(% style="color:#037691" %)**Information**          
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 +AT+FDR  : Factory Data Reset
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 +AT+PWOR : Serial Access Password
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 += ​5.  FAQ =
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 +== 5.1 How to Upgrade Firmware ==
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
902 -
903 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
904 -
905 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
906 -
907 -
908 -(% style="color:#037691" %)**Information** 
909 -
910 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
911 -
912 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
921 -
922 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
923 -
924 -
925 -= ​4. FAQ =
926 -
927 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
928 -
929 929  (((
930 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
931 -When downloading the images, choose the required image file for download. ​
821 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
932 932  )))
933 933  
934 934  (((
935 -
825 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
936 936  )))
937 937  
938 938  (((
939 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
829 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
940 940  )))
941 941  
942 -(((
943 -
944 -)))
945 945  
946 -(((
947 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
948 -)))
949 949  
950 -(((
951 -
952 -)))
834 +== 5.2  Can I calibrate NSE01 to different soil types? ==
953 953  
954 954  (((
955 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
837 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
956 956  )))
957 957  
958 -[[image:image-20220606154726-3.png]]
959 959  
841 += 6.  Trouble Shooting =
960 960  
961 -When you use the TTN network, the US915 frequency bands use are:
843 +== 6.1  ​Connection problem when uploading firmware ==
962 962  
963 -* 903.9 - SF7BW125 to SF10BW125
964 -* 904.1 - SF7BW125 to SF10BW125
965 -* 904.3 - SF7BW125 to SF10BW125
966 -* 904.5 - SF7BW125 to SF10BW125
967 -* 904.7 - SF7BW125 to SF10BW125
968 -* 904.9 - SF7BW125 to SF10BW125
969 -* 905.1 - SF7BW125 to SF10BW125
970 -* 905.3 - SF7BW125 to SF10BW125
971 -* 904.6 - SF8BW500
972 972  
973 973  (((
974 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
975 -
976 -* (% style="color:#037691" %)**AT+CHE=2**
977 -* (% style="color:#037691" %)**ATZ**
847 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
978 978  )))
979 979  
850 +(% class="wikigeneratedid" %)
980 980  (((
981 981  
982 -
983 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
984 984  )))
985 985  
986 -(((
987 -
988 -)))
989 989  
990 -(((
991 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
992 -)))
856 +== 6.2  AT Command input doesn't work ==
993 993  
994 -[[image:image-20220606154825-4.png]]
995 -
996 -
997 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
998 -
999 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1000 -
1001 -
1002 -= 5. Trouble Shooting =
1003 -
1004 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1005 -
1006 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1007 -
1008 -
1009 -== 5.2 AT Command input doesn't work ==
1010 -
1011 1011  (((
1012 1012  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 -)))
1014 1014  
1015 -
1016 -== 5.3 Device rejoin in at the second uplink packet ==
1017 -
1018 -(% style="color:#4f81bd" %)**Issue describe as below:**
1019 -
1020 -[[image:1654500909990-784.png]]
1021 -
1022 -
1023 -(% style="color:#4f81bd" %)**Cause for this issue:**
1024 -
1025 -(((
1026 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
861 +
1027 1027  )))
1028 1028  
1029 1029  
1030 -(% style="color:#4f81bd" %)**Solution: **
865 += 7. ​ Order Info =
1031 1031  
1032 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1033 1033  
1034 -[[image:1654500929571-736.png||height="458" width="832"]]
868 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1035 1035  
1036 1036  
1037 -= 6. ​Order Info =
1038 -
1039 -
1040 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 -
1042 -
1043 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 -
1045 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 -
1054 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 -
1056 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 -
1059 1059  (% class="wikigeneratedid" %)
1060 1060  (((
1061 1061  
1062 1062  )))
1063 1063  
1064 -= 7. Packing Info =
876 += 8.  Packing Info =
1065 1065  
1066 1066  (((
1067 1067  
1068 1068  
1069 1069  (% style="color:#037691" %)**Package Includes**:
1070 -)))
1071 1071  
1072 -* (((
1073 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
883 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 +* External antenna x 1
1074 1074  )))
1075 1075  
1076 1076  (((
... ... @@ -1077,24 +1077,19 @@
1077 1077  
1078 1078  
1079 1079  (% style="color:#037691" %)**Dimension and weight**:
1080 -)))
1081 1081  
1082 -* (((
1083 -Device Size: cm
892 +* Size: 195 x 125 x 55 mm
893 +* Weight:   420g
1084 1084  )))
1085 -* (((
1086 -Device Weight: g
1087 -)))
1088 -* (((
1089 -Package Size / pcs : cm
1090 -)))
1091 -* (((
1092 -Weight / pcs : g
1093 1093  
896 +(((
1094 1094  
898 +
899 +
900 +
1095 1095  )))
1096 1096  
1097 -= 8. Support =
903 += 9.  Support =
1098 1098  
1099 1099  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1100 1100  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0