<
From version < 44.1 >
edited by Xiaoling
on 2022/07/08 10:14
To version < 63.1 >
edited by Xiaoling
on 2022/07/08 14:18
>
Change comment: Uploaded new attachment "1657261119050-993.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -18,20 +18,20 @@
18 18  
19 19  
20 20  
21 -= 1. Introduction =
21 += 1.  Introduction =
22 22  
23 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
29 29  
30 -It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly.
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 31  
32 32  The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 33  
34 -NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years.
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 35  
36 36  
37 37  )))
... ... @@ -45,27 +45,46 @@
45 45  
46 46  == 1.2 ​Features ==
47 47  
48 -* LoRaWAN 1.0.3 Class A
49 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 50  * Monitor Soil Moisture
51 51  * Monitor Soil Temperature
52 52  * Monitor Soil Conductivity
53 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 57  * IP66 Waterproof Enclosure
58 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
59 59  
60 -== 1.3 Specification ==
62 +== 1.3  Specification ==
61 61  
64 +
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
62 62  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
63 63  
64 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
65 65  
66 66  
67 67  
68 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
69 69  
70 70  * Smart Agriculture
71 71  
... ... @@ -72,703 +72,550 @@
72 72  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
73 73  ​
74 74  
75 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
76 76  
77 77  
78 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
79 79  
80 80  
81 81  
82 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
83 83  
84 -== 2.1 How it works ==
103 +== 2.1  How it works ==
85 85  
105 +
86 86  (((
87 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
88 88  )))
89 89  
110 +
90 90  (((
91 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
92 92  )))
93 93  
115 +[[image:image-20220708101605-2.png]]
94 94  
117 +(((
118 +
119 +)))
95 95  
96 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
97 97  
98 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
99 99  
123 +== 2.2 ​ Configure the NSE01 ==
100 100  
101 -[[image:1654503992078-669.png]]
102 102  
126 +=== 2.2.1 Test Requirement ===
103 103  
104 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
105 105  
129 +To use NSE01 in your city, make sure meet below requirements:
106 106  
107 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
108 108  
109 -Each LSE01 is shipped with a sticker with the default device EUI as below:
110 -
111 -[[image:image-20220606163732-6.jpeg]]
112 -
113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
114 -
115 -**Add APP EUI in the application**
116 -
117 -
118 -[[image:1654504596150-405.png]]
119 -
120 -
121 -
122 -**Add APP KEY and DEV EUI**
123 -
124 -[[image:1654504683289-357.png]]
125 -
126 -
127 -
128 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
129 -
130 -
131 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
132 -
133 -[[image:image-20220606163915-7.png]]
134 -
135 -
136 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
137 -
138 -[[image:1654504778294-788.png]]
139 -
140 -
141 -
142 -== 2.3 Uplink Payload ==
143 -
144 -
145 -=== 2.3.1 MOD~=0(Default Mode) ===
146 -
147 -LSE01 will uplink payload via LoRaWAN with below payload format: 
148 -
149 149  (((
150 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
151 151  )))
152 152  
153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 -|(((
155 -**Size**
156 156  
157 -**(bytes)**
158 -)))|**2**|**2**|**2**|**2**|**2**|**1**
159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 -Temperature
140 +[[image:1657249419225-449.png]]
161 161  
162 -(Reserve, Ignore now)
163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 -MOD & Digital Interrupt
165 165  
166 -(Optional)
167 -)))
168 168  
169 -=== 2.3.2 MOD~=1(Original value) ===
144 +=== 2.2.2 Insert SIM card ===
170 170  
171 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
146 +Insert the NB-IoT Card get from your provider.
172 172  
173 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
174 -|(((
175 -**Size**
148 +User need to take out the NB-IoT module and insert the SIM card like below:
176 176  
177 -**(bytes)**
178 -)))|**2**|**2**|**2**|**2**|**2**|**1**
179 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
180 -Temperature
181 181  
182 -(Reserve, Ignore now)
183 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
184 -MOD & Digital Interrupt
151 +[[image:1657249468462-536.png]]
185 185  
186 -(Optional)
187 -)))
188 188  
189 -=== 2.3.3 Battery Info ===
190 190  
191 -(((
192 -Check the battery voltage for LSE01.
193 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
194 194  
195 195  (((
196 -Ex1: 0x0B45 = 2885mV
197 -)))
198 -
199 199  (((
200 -Ex2: 0x0B49 = 2889mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
201 201  )))
202 -
203 -
204 -
205 -=== 2.3.4 Soil Moisture ===
206 -
207 -(((
208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
209 209  )))
210 210  
211 -(((
212 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
213 -)))
214 214  
215 -(((
216 -
217 -)))
164 +**Connection:**
218 218  
219 -(((
220 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
221 -)))
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
222 222  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
223 223  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
224 224  
225 -=== 2.3.5 Soil Temperature ===
226 226  
227 -(((
228 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
229 -)))
173 +In the PC, use below serial tool settings:
230 230  
231 -(((
232 -**Example**:
233 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
234 234  
235 235  (((
236 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
237 237  )))
238 238  
239 -(((
240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
241 -)))
185 +[[image:image-20220708110657-3.png]]
242 242  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
243 243  
244 244  
245 -=== 2.3.6 Soil Conductivity (EC) ===
246 246  
247 -(((
248 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
249 -)))
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
250 250  
251 -(((
252 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
253 -)))
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
254 254  
255 -(((
256 -Generally, the EC value of irrigation water is less than 800uS / cm.
257 -)))
258 258  
259 -(((
260 -
261 -)))
196 +**Use below commands:**
262 262  
263 -(((
264 -
265 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
266 266  
267 -=== 2.3.7 MOD ===
202 +For parameter description, please refer to AT command set
268 268  
269 -Firmware version at least v2.1 supports changing mode.
204 +[[image:1657249793983-486.png]]
270 270  
271 -For example, bytes[10]=90
272 272  
273 -mod=(bytes[10]>>7)&0x01=1.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
274 274  
209 +[[image:1657249831934-534.png]]
275 275  
276 -**Downlink Command:**
277 277  
278 -If payload = 0x0A00, workmode=0
279 279  
280 -If** **payload =** **0x0A01, workmode=1
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
281 281  
215 +This feature is supported since firmware version v1.0.1
282 282  
283 283  
284 -=== 2.3.8 ​Decode payload in The Things Network ===
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
285 285  
286 -While using TTN network, you can add the payload format to decode the payload.
222 +[[image:1657249864775-321.png]]
287 287  
288 288  
289 -[[image:1654505570700-128.png]]
225 +[[image:1657249930215-289.png]]
290 290  
291 -(((
292 -The payload decoder function for TTN is here:
293 -)))
294 294  
295 -(((
296 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
297 -)))
298 298  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
299 299  
300 -== 2.4 Uplink Interval ==
231 +This feature is supported since firmware version v110
301 301  
302 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
303 303  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
304 304  
242 +[[image:1657249978444-674.png]]
305 305  
306 -== 2.5 Downlink Payload ==
307 307  
308 -By default, LSE50 prints the downlink payload to console port.
245 +[[image:1657249990869-686.png]]
309 309  
310 -[[image:image-20220606165544-8.png]]
311 311  
312 -
313 313  (((
314 -(% style="color:blue" %)**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
315 315  )))
316 316  
317 -(((
318 -
319 -)))
320 320  
321 -* (((
322 -(% style="color:blue" %)**Set TDC**
323 -)))
324 324  
325 -(((
326 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
328 328  
329 -(((
330 -Payload:    01 00 00 1E    TDC=30S
331 -)))
256 +This feature is supported since firmware version v110
332 332  
333 -(((
334 -Payload:    01 00 00 3C    TDC=60S
335 -)))
336 336  
337 -(((
338 -
339 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
340 340  
341 -* (((
342 -(% style="color:blue" %)**Reset**
343 -)))
262 +[[image:1657250217799-140.png]]
344 344  
345 -(((
346 -If payload = 0x04FF, it will reset the LSE01
347 -)))
348 348  
265 +[[image:1657250255956-604.png]]
349 349  
350 -* (% style="color:blue" %)**CFM**
351 351  
352 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
353 353  
269 +=== 2.2.8 Change Update Interval ===
354 354  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
355 355  
356 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
357 357  
358 358  (((
359 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
360 360  )))
361 361  
362 362  (((
363 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
364 364  )))
365 365  
366 -(((
367 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
368 -)))
369 369  
370 -(((
371 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
372 -)))
373 373  
285 +== 2.3  Uplink Payload ==
374 374  
375 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
376 376  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
377 377  
378 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
379 379  
380 380  
381 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
298 +[[image:image-20220708111918-4.png]]
382 382  
383 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
384 384  
301 +The payload is ASCII string, representative same HEX:
385 385  
386 -[[image:1654505905236-553.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
387 387  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
388 388  
389 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
390 390  
391 -[[image:1654505925508-181.png]]
315 +== 2.4  Payload Explanation and Sensor Interface ==
392 392  
393 393  
318 +=== 2.4.1  Device ID ===
394 394  
395 -== 2.7 Frequency Plans ==
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
396 396  
397 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
398 398  
324 +**Example:**
399 399  
400 -=== 2.7.1 EU863-870 (EU868) ===
326 +AT+DEUI=A84041F15612
401 401  
402 -(% style="color:#037691" %)** Uplink:**
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
403 403  
404 -868.1 - SF7BW125 to SF12BW125
405 405  
406 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
407 407  
408 -868.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
409 409  
410 -867.1 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
411 411  
412 -867.3 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
413 413  
414 -867.5 - SF7BW125 to SF12BW125
415 415  
416 -867.7 - SF7BW125 to SF12BW125
417 417  
418 -867.9 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
419 419  
420 -868.8 - FSK
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
421 421  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
422 422  
423 -(% style="color:#037691" %)** Downlink:**
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
424 424  
425 -Uplink channels 1-9 (RX1)
426 426  
427 -869.525 - SF9BW125 (RX2 downlink only)
428 428  
356 +=== 2.4.4  Signal Strength ===
429 429  
358 +NB-IoT Network signal Strength.
430 430  
431 -=== 2.7.2 US902-928(US915) ===
360 +**Ex1: 0x1d = 29**
432 432  
433 -Used in USA, Canada and South America. Default use CHE=2
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
434 434  
435 -(% style="color:#037691" %)**Uplink:**
364 +(% style="color:blue" %)**1**(%%)  -111dBm
436 436  
437 -903.9 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
438 438  
439 -904.1 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
440 440  
441 -904.3 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
442 442  
443 -904.5 - SF7BW125 to SF10BW125
444 444  
445 -904.7 - SF7BW125 to SF10BW125
446 446  
447 -904.9 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
448 448  
449 -905.1 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
450 450  
451 -905.3 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
452 452  
384 +(((
385 +
386 +)))
453 453  
454 -(% style="color:#037691" %)**Downlink:**
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
455 455  
456 -923.3 - SF7BW500 to SF12BW500
457 457  
458 -923.9 - SF7BW500 to SF12BW500
459 459  
460 -924.5 - SF7BW500 to SF12BW500
394 +=== 2.4. Soil Temperature ===
461 461  
462 -925.1 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
463 463  
464 -925.7 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
465 465  
466 -926.3 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
467 467  
468 -926.9 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
469 469  
470 -927.5 - SF7BW500 to SF12BW500
471 471  
472 -923.3 - SF12BW500(RX2 downlink only)
473 473  
414 +=== 2.4.7  Soil Conductivity (EC) ===
474 474  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
475 475  
476 -=== 2.7.3 CN470-510 (CN470) ===
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
477 477  
478 -Used in China, Default use CHE=1
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
479 479  
480 -(% style="color:#037691" %)**Uplink:**
428 +(((
429 +
430 +)))
481 481  
482 -486.3 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
483 483  
484 -486.5 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
485 485  
486 -486.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
487 487  
488 -486.9 - SF7BW125 to SF12BW125
440 +The command is:
489 489  
490 -487.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
491 491  
492 -487.3 - SF7BW125 to SF12BW125
493 493  
494 -487.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
495 495  
496 -487.7 - SF7BW125 to SF12BW125
497 497  
448 +Example:
498 498  
499 -(% style="color:#037691" %)**Downlink:**
450 +0x(00): Normal uplink packet.
500 500  
501 -506.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
502 502  
503 -506.9 - SF7BW125 to SF12BW125
504 504  
505 -507.1 - SF7BW125 to SF12BW125
506 506  
507 -507.3 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
508 508  
509 -507.5 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
510 510  
511 -507.7 - SF7BW125 to SF12BW125
512 512  
513 -507.9 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
514 514  
515 -508.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
516 516  
517 -505.3 - SF12BW125 (RX2 downlink only)
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
518 518  
519 519  
520 520  
521 -=== 2.7.4 AU915-928(AU915) ===
469 +== 2.5  Downlink Payload ==
522 522  
523 -Default use CHE=2
471 +By default, NSE01 prints the downlink payload to console port.
524 524  
525 -(% style="color:#037691" %)**Uplink:**
473 +[[image:image-20220708133731-5.png]]
526 526  
527 -916.8 - SF7BW125 to SF12BW125
528 528  
529 -917.0 - SF7BW125 to SF12BW125
530 530  
531 -917.2 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
532 532  
533 -917.4 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
534 534  
535 -917.6 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
536 536  
537 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
538 538  
539 -918.0 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
540 540  
541 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
542 542  
501 +(((
502 +
503 +)))
543 543  
544 -(% style="color:#037691" %)**Downlink:**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
545 545  
546 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
547 547  
548 -923.9 - SF7BW500 to SF12BW500
549 549  
550 -924.5 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
551 551  
552 -925.1 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
553 553  
554 -925.7 - SF7BW500 to SF12BW500
555 555  
556 -926.3 - SF7BW500 to SF12BW500
557 557  
558 -926.9 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
559 559  
560 -927.5 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
561 561  
562 -923.3 - SF12BW500(RX2 downlink only)
563 563  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
564 564  
565 565  
566 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
567 567  
568 -(% style="color:#037691" %)**Default Uplink channel:**
569 569  
570 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
571 571  
572 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
573 573  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
574 574  
575 -(% style="color:#037691" %)**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
576 576  
577 -(OTAA mode, channel added by JoinAccept message)
578 578  
579 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
580 580  
581 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
582 582  
583 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
584 584  
585 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
586 586  
587 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
588 588  
589 -923.0 - SF7BW125 to SF10BW125
590 590  
591 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
592 592  
593 593  
594 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
595 595  
596 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
597 597  
598 -923.8 - SF7BW125 to SF10BW125
599 599  
600 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
601 601  
602 -924.2 - SF7BW125 to SF10BW125
603 603  
604 -924.4 - SF7BW125 to SF10BW125
605 605  
606 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
607 607  
577 +=== 2.9.1  ​Battery Type ===
608 608  
609 -(% style="color:#037691" %)** Downlink:**
610 610  
611 -Uplink channels 1-8 (RX1)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
612 612  
613 -923.2 - SF10BW125 (RX2)
614 614  
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
615 615  
616 616  
617 -=== 2.7.6 KR920-923 (KR920) ===
586 +The battery related documents as below:
618 618  
619 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
620 620  
621 -922.1 - SF7BW125 to SF12BW125
622 -
623 -922.3 - SF7BW125 to SF12BW125
624 -
625 -922.5 - SF7BW125 to SF12BW125
626 -
627 -
628 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
629 -
630 -922.1 - SF7BW125 to SF12BW125
631 -
632 -922.3 - SF7BW125 to SF12BW125
633 -
634 -922.5 - SF7BW125 to SF12BW125
635 -
636 -922.7 - SF7BW125 to SF12BW125
637 -
638 -922.9 - SF7BW125 to SF12BW125
639 -
640 -923.1 - SF7BW125 to SF12BW125
641 -
642 -923.3 - SF7BW125 to SF12BW125
643 -
644 -
645 -(% style="color:#037691" %)**Downlink:**
646 -
647 -Uplink channels 1-7(RX1)
648 -
649 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
650 -
651 -
652 -
653 -=== 2.7.7 IN865-867 (IN865) ===
654 -
655 -(% style="color:#037691" %)** Uplink:**
656 -
657 -865.0625 - SF7BW125 to SF12BW125
658 -
659 -865.4025 - SF7BW125 to SF12BW125
660 -
661 -865.9850 - SF7BW125 to SF12BW125
662 -
663 -
664 -(% style="color:#037691" %) **Downlink:**
665 -
666 -Uplink channels 1-3 (RX1)
667 -
668 -866.550 - SF10BW125 (RX2)
669 -
670 -
671 -
672 -
673 -== 2.8 LED Indicator ==
674 -
675 -The LSE01 has an internal LED which is to show the status of different state.
676 -
677 -* Blink once when device power on.
678 -* Solid ON for 5 seconds once device successful Join the network.
679 -* Blink once when device transmit a packet.
680 -
681 -== 2.9 Installation in Soil ==
682 -
683 -**Measurement the soil surface**
684 -
685 -
686 -[[image:1654506634463-199.png]] ​
687 -
688 688  (((
689 -(((
690 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
691 691  )))
692 -)))
693 693  
694 694  
695 695  
696 -[[image:1654506665940-119.png]]
598 +=== 2.9.2  Power consumption Analyze ===
697 697  
698 698  (((
699 -Dig a hole with diameter > 20CM.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
700 700  )))
701 701  
702 -(((
703 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
704 -)))
705 705  
706 -
707 -== 2.10 ​Firmware Change Log ==
708 -
709 709  (((
710 -**Firmware download link:**
606 +Instruction to use as below:
711 711  )))
712 712  
713 713  (((
714 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
715 715  )))
716 716  
717 -(((
718 -
719 -)))
720 720  
721 721  (((
722 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
723 723  )))
724 724  
725 -(((
726 -
727 -)))
728 -
729 -(((
730 -**V1.0.**
731 -)))
732 -
733 -(((
734 -Release
735 -)))
736 -
737 -
738 -== 2.11 ​Battery Analysis ==
739 -
740 -=== 2.11.1 ​Battery Type ===
741 -
742 -(((
743 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
744 -)))
745 -
746 -(((
747 -The battery is designed to last for more than 5 years for the LSN50.
748 -)))
749 -
750 -(((
751 -(((
752 -The battery-related documents are as below:
753 -)))
754 -)))
755 -
756 756  * (((
757 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
619 +Product Model
758 758  )))
759 759  * (((
760 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
622 +Uplink Interval
761 761  )))
762 762  * (((
763 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
625 +Working Mode
764 764  )))
765 765  
766 - [[image:image-20220610172436-1.png]]
628 +(((
629 +And the Life expectation in difference case will be shown on the right.
630 +)))
767 767  
632 +[[image:image-20220708141352-7.jpeg]]
768 768  
769 769  
770 -=== 2.11.2 ​Battery Note ===
771 771  
636 +=== 2.9.3  ​Battery Note ===
637 +
772 772  (((
773 773  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
774 774  )))
... ... @@ -775,22 +775,14 @@
775 775  
776 776  
777 777  
778 -=== 2.11.3 Replace the battery ===
644 +=== 2.9. Replace the battery ===
779 779  
780 780  (((
781 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
782 782  )))
783 783  
784 -(((
785 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
786 -)))
787 787  
788 -(((
789 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
790 -)))
791 791  
792 -
793 -
794 794  = 3. ​Using the AT Commands =
795 795  
796 796  == 3.1 Access AT Commands ==
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0