Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 43 added, 0 removed)
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -NS E01-NB-IoTSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,16 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 16 ... ... @@ -18,21 +18,23 @@ 18 18 19 19 20 20 21 -= 1. Introduction = 22 22 23 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==16 += 1. Introduction = 24 24 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 19 + 25 25 ((( 26 26 27 27 28 -Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 23 +((( 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 30 +))) 29 29 30 -It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 31 - 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 - 34 -NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 35 - 36 36 37 37 ))) 38 38 ... ... @@ -39,736 +39,658 @@ 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:16572 45163077-232.png]]38 +[[image:1657327959271-447.png]] 43 43 44 44 45 45 46 -== 1.2 Features == 42 +== 1.2 Features == 47 47 48 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 49 * Ultra low power consumption 50 -* MonitorSoilMoisture51 -* MonitorSoil Temperature52 -* Monitor SoilConductivity53 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 54 54 * AT Commands to change parameters 55 55 * Uplink on periodically 56 56 * Downlink to change configure 57 57 * IP66 Waterproof Enclosure 58 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 59 59 60 -== 1.3 Specification == 61 61 62 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 63 63 64 - [[image:image-20220606162220-5.png]]60 +== 1.3 Specification == 65 65 66 66 63 +(% style="color:#037691" %)**Common DC Characteristics:** 67 67 68 -== 1.4 Applications == 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 69 69 70 - *SmartAgriculture68 +(% style="color:#037691" %)**NB-IoT Spec:** 71 71 72 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 73 - 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 74 74 75 - ==1.5 FirmwareChangelog==77 +(% style="color:#037691" %)**Battery:** 76 76 79 +* Li/SOCI2 un-chargeable battery 80 +* Capacity: 8500mAh 81 +* Self Discharge: <1% / Year @ 25°C 82 +* Max continuously current: 130mA 83 +* Max boost current: 2A, 1 second 77 77 78 - **LSE01v1.0 :**Release85 +(% style="color:#037691" %)**Power Consumption** 79 79 87 +* STOP Mode: 10uA @ 3.3v 88 +* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 80 80 81 81 82 -= 2. Configure LSE01 to connect to LoRaWAN network = 83 83 84 -== 2.1 How it works == 85 85 86 -((( 87 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 88 -))) 93 +== 1.4 Applications == 89 89 90 -((( 91 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 92 -))) 95 +* Smart Buildings & Home Automation 96 +* Logistics and Supply Chain Management 97 +* Smart Metering 98 +* Smart Agriculture 99 +* Smart Cities 100 +* Smart Factory 93 93 102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 + 94 94 95 95 96 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 97 97 98 - Followingisan examplefor how to jointhe [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.107 +== 1.5 Pin Definitions == 99 99 100 100 101 -[[image:165 4503992078-669.png]]110 +[[image:1657328609906-564.png]] 102 102 103 103 104 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 105 105 114 += 2. Use NDDS75 to communicate with IoT Server = 106 106 107 - (% style="color:blue"%)**Step1**(%%):Createa device in TTN withthe OTAAkeysfrom LSE01.116 +== 2.1 How it works == 108 108 109 -Each LSE01 is shipped with a sticker with the default device EUI as below: 118 +((( 119 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 120 +))) 110 110 111 -[[image:image-20220606163732-6.jpeg]] 112 112 113 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 123 +((( 124 +The diagram below shows the working flow in default firmware of NDDS75: 125 +))) 114 114 115 -**Add APP EUI in the application** 127 +((( 128 + 129 +))) 116 116 131 +[[image:1657328659945-416.png]] 117 117 118 -[[image:1654504596150-405.png]] 133 +((( 134 + 135 +))) 119 119 120 120 138 +== 2.2 Configure the NDDS75 == 121 121 122 -**Add APP KEY and DEV EUI** 123 123 124 - [[image:1654504683289-357.png]]141 +=== 2.2.1 Test Requirement === 125 125 143 +((( 144 +To use NDDS75 in your city, make sure meet below requirements: 145 +))) 126 126 147 +* Your local operator has already distributed a NB-IoT Network there. 148 +* The local NB-IoT network used the band that NSE01 supports. 149 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 127 127 128 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 151 +((( 152 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 153 +))) 129 129 130 130 131 - Put a Jumper on JP2to power on the device.( The Jumper must be inFLASH position).156 +[[image:1657328756309-230.png]] 132 132 133 -[[image:image-20220606163915-7.png]] 134 134 135 135 136 - (% style="color:blue"%)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network.Afterjoinuccess, it will starttouploadmessages to TTN and you can see the messages in the panel.160 +=== 2.2.2 Insert SIM card === 137 137 138 -[[image:1654504778294-788.png]] 162 +((( 163 +Insert the NB-IoT Card get from your provider. 164 +))) 139 139 166 +((( 167 +User need to take out the NB-IoT module and insert the SIM card like below: 168 +))) 140 140 141 141 142 - ==2.3 Uplink Payload ==171 +[[image:1657328884227-504.png]] 143 143 144 144 145 -=== 2.3.1 MOD~=0(Default Mode) === 146 146 147 - LSE01willuplinkpayloadviaLoRaWANwith belowpayloadformat:175 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 148 148 149 149 ((( 150 -Uplink payload includes in total 11 bytes. 178 +((( 179 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 151 151 ))) 181 +))) 152 152 153 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 -|((( 155 -**Size** 183 +[[image:image-20220709092052-2.png]] 156 156 157 -**(bytes)** 158 -)))|**2**|**2**|**2**|**2**|**2**|**1** 159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 -Temperature 185 +**Connection:** 161 161 162 -(Reserve, Ignore now) 163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 -MOD & Digital Interrupt 187 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 165 165 166 -(Optional) 167 -))) 189 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 168 168 169 - ===2.3.2MOD~=1(Originalvalue)===191 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 170 170 171 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 172 172 173 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 -|((( 175 -**Size** 194 +In the PC, use below serial tool settings: 176 176 177 -**(bytes)** 178 -)))|**2**|**2**|**2**|**2**|**2**|**1** 179 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 -Temperature 196 +* Baud: (% style="color:green" %)**9600** 197 +* Data bits:** (% style="color:green" %)8(%%)** 198 +* Stop bits: (% style="color:green" %)**1** 199 +* Parity: (% style="color:green" %)**None** 200 +* Flow Control: (% style="color:green" %)**None** 181 181 182 -(Reserve, Ignore now) 183 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 -MOD & Digital Interrupt 185 - 186 -(Optional) 202 +((( 203 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 187 187 ))) 188 188 189 - ===2.3.3 Battery Info ===206 +[[image:1657329814315-101.png]] 190 190 191 191 ((( 192 - Checkthe battery voltage forLSE01.209 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 193 193 ))) 194 194 195 -((( 196 -Ex1: 0x0B45 = 2885mV 197 -))) 198 198 199 -((( 200 -Ex2: 0x0B49 = 2889mV 201 -))) 202 202 214 +=== 2.2.4 Use CoAP protocol to uplink data === 203 203 216 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 204 204 205 -=== 2.3.4 Soil Moisture === 206 206 207 -((( 208 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 -))) 219 +**Use below commands:** 210 210 211 -(( (212 - Forexample,ifthedatayougetfromthegisteris __0x05 0xDC__, the moisturecontentin the soil is213 -)) )221 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 214 214 215 -((( 216 - 217 -))) 225 +For parameter description, please refer to AT command set 218 218 219 -((( 220 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 221 -))) 227 +[[image:1657330452568-615.png]] 222 222 223 223 230 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 224 224 225 - === 2.3.5 Soil Temperature===232 +[[image:1657330472797-498.png]] 226 226 227 -((( 228 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 -))) 230 230 231 -((( 232 -**Example**: 233 -))) 234 234 235 -((( 236 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 237 -))) 236 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 238 238 239 -((( 240 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 -))) 242 242 239 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 243 243 243 +[[image:1657330501006-241.png]] 244 244 245 -=== 2.3.6 Soil Conductivity (EC) === 246 246 247 -((( 248 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 249 -))) 246 +[[image:1657330533775-472.png]] 250 250 251 -((( 252 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 253 -))) 254 254 255 -((( 256 -Generally, the EC value of irrigation water is less than 800uS / cm. 257 -))) 258 258 259 -((( 260 - 261 -))) 250 +=== 2.2.6 Use MQTT protocol to uplink data === 262 262 252 + 253 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 259 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 260 + 261 +[[image:1657249978444-674.png]] 262 + 263 + 264 +[[image:1657330723006-866.png]] 265 + 266 + 263 263 ((( 264 - 268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 265 ))) 266 266 267 -=== 2.3.7 MOD === 268 268 269 -Firmware version at least v2.1 supports changing mode. 270 270 271 - Forexample,bytes[10]=90273 +=== 2.2.7 Use TCP protocol to uplink data === 272 272 273 -mod=(bytes[10]>>7)&0x01=1. 274 274 276 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 275 275 276 - **Downlink Command:**279 +[[image:image-20220709093918-1.png]] 277 277 278 -If payload = 0x0A00, workmode=0 279 279 280 - If** **payload =** **0x0A01, workmode=1282 +[[image:image-20220709093918-2.png]] 281 281 282 282 283 283 284 -=== 2. 3.8Decodepayload inTheThings Network===286 +=== 2.2.8 Change Update Interval === 285 285 286 - While using TTN network,youcanadd thepayloadformattodecode thepayload.288 +User can use below command to change the (% style="color:green" %)**uplink interval**. 287 287 290 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 288 288 289 -[[image:1654505570700-128.png]] 290 - 291 291 ((( 292 - Thepayload decoder function forTTN is here:293 +(% style="color:red" %)**NOTE:** 293 293 ))) 294 294 295 295 ((( 296 - LSE01TTN Payload Decoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 297 297 ))) 298 298 299 299 300 -== 2.4 Uplink Interval == 301 301 302 - TheLSE01 by default uplink the sensor data every20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change UplinkInterval>>doc:Main.EndDevice AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]302 +== 2.3 Uplink Payload == 303 303 304 +In this mode, uplink payload includes in total 14 bytes 304 304 305 305 306 -== 2.5 Downlink Payload == 307 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 308 +|=(% style="width: 60px;" %)((( 309 +**Size(bytes)** 310 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 311 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 307 307 308 -By default, LSE50 prints the downlink payload to console port. 313 +((( 314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 315 +))) 309 309 310 -[[image:image-20220606165544-8.png]] 311 311 318 +[[image:1657331036973-987.png]] 312 312 313 313 ((( 314 - (%style="color:blue"%)**Examples:**321 +The payload is ASCII string, representative same HEX: 315 315 ))) 316 316 317 317 ((( 318 - 325 +0x72403155615900640c6c19029200 where: 319 319 ))) 320 320 321 321 * ((( 322 - (% style="color:blue"%)**Set TDC**329 +Device ID: 0x724031556159 = 724031556159 323 323 ))) 324 - 325 -((( 326 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 331 +* ((( 332 +Version: 0x0064=100=1.0.0 327 327 ))) 328 328 329 -((( 330 - Payload:100001ETDC=30S335 +* ((( 336 +BAT: 0x0c6c = 3180 mV = 3.180V 331 331 ))) 332 - 333 -((( 334 -Payload: 01 00 00 3C TDC=60S 338 +* ((( 339 +Signal: 0x19 = 25 335 335 ))) 336 - 337 -((( 338 - 341 +* ((( 342 +Distance: 0x0292= 658 mm 339 339 ))) 340 - 341 341 * ((( 342 - (% style="color:blue" %)**Reset**345 +Interrupt: 0x00 = 0 343 343 ))) 344 344 345 -((( 346 -If payload = 0x04FF, it will reset the LSE01 347 -))) 348 348 349 349 350 - *(%style="color:blue"%)**CFM**350 +== 2.4 Payload Explanation and Sensor Interface == 351 351 352 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 353 353 353 +=== 2.4.1 Device ID === 354 354 355 +((( 356 +By default, the Device ID equal to the last 6 bytes of IMEI. 357 +))) 355 355 356 -== 2.6 Show Data in DataCake IoT Server == 357 - 358 358 ((( 359 - [[DATACAKE>>url:https://datacake.co/]] providesahumanfriendlyinterfacetoshowthesensor data,once we have data in TTN, we canuse[[DATACAKE>>url:https://datacake.co/]]toconnect to TTN andseethedata inDATACAKE. Below arethe steps:360 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 360 360 ))) 361 361 362 362 ((( 363 - 364 +**Example:** 364 364 ))) 365 365 366 366 ((( 367 - (% style="color:blue" %)**Step1**(%%): Be sure that your device is programmed and properly connected to the network at this time.368 +AT+DEUI=A84041F15612 368 368 ))) 369 369 370 370 ((( 371 - (%style="color:blue"%)**Step2**(%%):ToconfiguretheApplicationtoforward data to DATACAKE you will needtoadd integration.To add the DATACAKEintegration, performthefollowing steps:372 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 372 372 ))) 373 373 374 374 375 -[[image:1654505857935-743.png]] 376 376 377 +=== 2.4.2 Version Info === 377 377 378 -[[image:1654505874829-548.png]] 379 +((( 380 +Specify the software version: 0x64=100, means firmware version 1.00. 381 +))) 379 379 383 +((( 384 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 385 +))) 380 380 381 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 382 382 383 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 384 384 389 +=== 2.4.3 Battery Info === 385 385 386 -[[image:1654505905236-553.png]] 391 +((( 392 +Check the battery voltage for LSE01. 393 +))) 387 387 395 +((( 396 +Ex1: 0x0B45 = 2885mV 397 +))) 388 388 389 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 399 +((( 400 +Ex2: 0x0B49 = 2889mV 401 +))) 390 390 391 -[[image:1654505925508-181.png]] 392 392 393 393 405 +=== 2.4.4 Signal Strength === 394 394 395 -== 2.7 Frequency Plans == 407 +((( 408 +NB-IoT Network signal Strength. 409 +))) 396 396 397 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 411 +((( 412 +**Ex1: 0x1d = 29** 413 +))) 398 398 415 +((( 416 +(% style="color:blue" %)**0**(%%) -113dBm or less 417 +))) 399 399 400 -=== 2.7.1 EU863-870 (EU868) === 419 +((( 420 +(% style="color:blue" %)**1**(%%) -111dBm 421 +))) 401 401 402 -(% style="color:#037691" %)** Uplink:** 423 +((( 424 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 425 +))) 403 403 404 -868.1 - SF7BW125 to SF12BW125 427 +((( 428 +(% style="color:blue" %)**31** (%%) -51dBm or greater 429 +))) 405 405 406 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 431 +((( 432 +(% style="color:blue" %)**99** (%%) Not known or not detectable 433 +))) 407 407 408 -868.5 - SF7BW125 to SF12BW125 409 409 410 -867.1 - SF7BW125 to SF12BW125 411 411 412 - 867.3- SF7BW125toSF12BW125437 +=== 2.4.5 Soil Moisture === 413 413 414 - 867.5-SF7BW125toSF12BW125439 +Get the distance. Flat object range 280mm - 7500mm. 415 415 416 - 867.7-SF7BW125toSF12BW125441 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 417 417 418 -867.9 - SF7BW125 to SF12BW125 443 +((( 444 +((( 445 +(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.** 446 +))) 447 +))) 419 419 420 -868.8 - FSK 449 +((( 450 + 451 +))) 421 421 453 +((( 454 + 455 +))) 422 422 423 - (% style="color:#037691"%)**Downlink:**457 +=== 2.4.6 Digital Interrupt === 424 424 425 -Uplink channels 1-9 (RX1) 459 +((( 460 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 461 +))) 426 426 427 -869.525 - SF9BW125 (RX2 downlink only) 463 +((( 464 +The command is: 465 +))) 428 428 467 +((( 468 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 469 +))) 429 429 430 430 431 -=== 2.7.2 US902-928(US915) === 472 +((( 473 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 474 +))) 432 432 433 -Used in USA, Canada and South America. Default use CHE=2 434 434 435 -(% style="color:#037691" %)**Uplink:** 477 +((( 478 +Example: 479 +))) 436 436 437 -903.9 - SF7BW125 to SF10BW125 481 +((( 482 +0x(00): Normal uplink packet. 483 +))) 438 438 439 -904.1 - SF7BW125 to SF10BW125 485 +((( 486 +0x(01): Interrupt Uplink Packet. 487 +))) 440 440 441 -904.3 - SF7BW125 to SF10BW125 442 442 443 -904.5 - SF7BW125 to SF10BW125 444 444 445 - 904.7- SF7BW125 toSF10BW125491 +=== 2.4.7 +5V Output === 446 446 447 -904.9 - SF7BW125 to SF10BW125 493 +((( 494 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 495 +))) 448 448 449 -905.1 - SF7BW125 to SF10BW125 450 450 451 -905.3 - SF7BW125 to SF10BW125 498 +((( 499 +The 5V output time can be controlled by AT Command. 500 +))) 452 452 502 +((( 503 +(% style="color:blue" %)**AT+5VT=1000** 504 +))) 453 453 454 -(% style="color:#037691" %)**Downlink:** 506 +((( 507 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 508 +))) 455 455 456 -923.3 - SF7BW500 to SF12BW500 457 457 458 -923.9 - SF7BW500 to SF12BW500 459 459 460 - 924.5-SF7BW500 toSF12BW500512 +== 2.5 Downlink Payload == 461 461 462 - 925.1-SF7BW500toSF12BW500514 +By default, NSE01 prints the downlink payload to console port. 463 463 464 - 925.7-SF7BW500 to SF12BW500516 +[[image:image-20220708133731-5.png]] 465 465 466 -926.3 - SF7BW500 to SF12BW500 467 467 468 -926.9 - SF7BW500 to SF12BW500 519 +((( 520 +(% style="color:blue" %)**Examples:** 521 +))) 469 469 470 -927.5 - SF7BW500 to SF12BW500 523 +((( 524 + 525 +))) 471 471 472 -923.3 - SF12BW500(RX2 downlink only) 527 +* ((( 528 +(% style="color:blue" %)**Set TDC** 529 +))) 473 473 531 +((( 532 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 533 +))) 474 474 535 +((( 536 +Payload: 01 00 00 1E TDC=30S 537 +))) 475 475 476 -=== 2.7.3 CN470-510 (CN470) === 539 +((( 540 +Payload: 01 00 00 3C TDC=60S 541 +))) 477 477 478 -Used in China, Default use CHE=1 543 +((( 544 + 545 +))) 479 479 480 -(% style="color:#037691" %)**Uplink:** 547 +* ((( 548 +(% style="color:blue" %)**Reset** 549 +))) 481 481 482 -486.3 - SF7BW125 to SF12BW125 551 +((( 552 +If payload = 0x04FF, it will reset the NSE01 553 +))) 483 483 484 -486.5 - SF7BW125 to SF12BW125 485 485 486 - 486.7-SF7BW125toSF12BW125556 +* (% style="color:blue" %)**INTMOD** 487 487 488 -486.9 - SF7BW125 to SF12BW125 558 +((( 559 +Downlink Payload: 06000003, Set AT+INTMOD=3 560 +))) 489 489 490 -487.1 - SF7BW125 to SF12BW125 491 491 492 -487.3 - SF7BW125 to SF12BW125 493 493 494 - 487.5- SF7BW125toSF12BW125564 +== 2.6 LED Indicator == 495 495 496 -487.7 - SF7BW125 to SF12BW125 566 +((( 567 +The NSE01 has an internal LED which is to show the status of different state. 497 497 498 498 499 -(% style="color:#037691" %)**Downlink:** 570 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 571 +* Then the LED will be on for 1 second means device is boot normally. 572 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 573 +* For each uplink probe, LED will be on for 500ms. 574 +))) 500 500 501 -506.7 - SF7BW125 to SF12BW125 502 502 503 -506.9 - SF7BW125 to SF12BW125 504 504 505 -507.1 - SF7BW125 to SF12BW125 506 506 507 - 507.3- SF7BW125to SF12BW125579 +== 2.7 Installation in Soil == 508 508 509 - 507.5- SF7BW125toSF12BW125581 +__**Measurement the soil surface**__ 510 510 511 -507.7 - SF7BW125 to SF12BW125 583 +((( 584 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 585 +))) 512 512 513 -5 07.9 - SF7BW125to SF12BW125587 +[[image:1657259653666-883.png]] 514 514 515 -508.1 - SF7BW125 to SF12BW125 516 516 517 -505.3 - SF12BW125 (RX2 downlink only) 590 +((( 591 + 518 518 593 +((( 594 +Dig a hole with diameter > 20CM. 595 +))) 519 519 597 +((( 598 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 599 +))) 600 +))) 520 520 521 - === 2.7.4 AU915-928(AU915) ===602 +[[image:1654506665940-119.png]] 522 522 523 -Default use CHE=2 604 +((( 605 + 606 +))) 524 524 525 -(% style="color:#037691" %)**Uplink:** 526 526 527 - 916.8- SF7BW125toSF12BW125609 +== 2.8 Firmware Change Log == 528 528 529 -917.0 - SF7BW125 to SF12BW125 530 530 531 - 917.2-SF7BW125toSF12BW125612 +Download URL & Firmware Change log 532 532 533 - 917.4-F7BW125toSF12BW125614 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 534 534 535 -917.6 - SF7BW125 to SF12BW125 536 536 537 - 917.8- SF7BW125toSF12BW125617 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 538 538 539 -918.0 - SF7BW125 to SF12BW125 540 540 541 -918.2 - SF7BW125 to SF12BW125 542 542 621 +== 2.9 Battery Analysis == 543 543 544 - (%style="color:#037691"%)**Downlink:**623 +=== 2.9.1 Battery Type === 545 545 546 -923.3 - SF7BW500 to SF12BW500 547 547 548 -923.9 - SF7BW500 to SF12BW500 549 - 550 -924.5 - SF7BW500 to SF12BW500 551 - 552 -925.1 - SF7BW500 to SF12BW500 553 - 554 -925.7 - SF7BW500 to SF12BW500 555 - 556 -926.3 - SF7BW500 to SF12BW500 557 - 558 -926.9 - SF7BW500 to SF12BW500 559 - 560 -927.5 - SF7BW500 to SF12BW500 561 - 562 -923.3 - SF12BW500(RX2 downlink only) 563 - 564 - 565 - 566 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 567 - 568 -(% style="color:#037691" %)**Default Uplink channel:** 569 - 570 -923.2 - SF7BW125 to SF10BW125 571 - 572 -923.4 - SF7BW125 to SF10BW125 573 - 574 - 575 -(% style="color:#037691" %)**Additional Uplink Channel**: 576 - 577 -(OTAA mode, channel added by JoinAccept message) 578 - 579 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 580 - 581 -922.2 - SF7BW125 to SF10BW125 582 - 583 -922.4 - SF7BW125 to SF10BW125 584 - 585 -922.6 - SF7BW125 to SF10BW125 586 - 587 -922.8 - SF7BW125 to SF10BW125 588 - 589 -923.0 - SF7BW125 to SF10BW125 590 - 591 -922.0 - SF7BW125 to SF10BW125 592 - 593 - 594 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 595 - 596 -923.6 - SF7BW125 to SF10BW125 597 - 598 -923.8 - SF7BW125 to SF10BW125 599 - 600 -924.0 - SF7BW125 to SF10BW125 601 - 602 -924.2 - SF7BW125 to SF10BW125 603 - 604 -924.4 - SF7BW125 to SF10BW125 605 - 606 -924.6 - SF7BW125 to SF10BW125 607 - 608 - 609 -(% style="color:#037691" %)** Downlink:** 610 - 611 -Uplink channels 1-8 (RX1) 612 - 613 -923.2 - SF10BW125 (RX2) 614 - 615 - 616 - 617 -=== 2.7.6 KR920-923 (KR920) === 618 - 619 -Default channel: 620 - 621 -922.1 - SF7BW125 to SF12BW125 622 - 623 -922.3 - SF7BW125 to SF12BW125 624 - 625 -922.5 - SF7BW125 to SF12BW125 626 - 627 - 628 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 629 - 630 -922.1 - SF7BW125 to SF12BW125 631 - 632 -922.3 - SF7BW125 to SF12BW125 633 - 634 -922.5 - SF7BW125 to SF12BW125 635 - 636 -922.7 - SF7BW125 to SF12BW125 637 - 638 -922.9 - SF7BW125 to SF12BW125 639 - 640 -923.1 - SF7BW125 to SF12BW125 641 - 642 -923.3 - SF7BW125 to SF12BW125 643 - 644 - 645 -(% style="color:#037691" %)**Downlink:** 646 - 647 -Uplink channels 1-7(RX1) 648 - 649 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 650 - 651 - 652 - 653 -=== 2.7.7 IN865-867 (IN865) === 654 - 655 -(% style="color:#037691" %)** Uplink:** 656 - 657 -865.0625 - SF7BW125 to SF12BW125 658 - 659 -865.4025 - SF7BW125 to SF12BW125 660 - 661 -865.9850 - SF7BW125 to SF12BW125 662 - 663 - 664 -(% style="color:#037691" %) **Downlink:** 665 - 666 -Uplink channels 1-3 (RX1) 667 - 668 -866.550 - SF10BW125 (RX2) 669 - 670 - 671 - 672 - 673 -== 2.8 LED Indicator == 674 - 675 -The LSE01 has an internal LED which is to show the status of different state. 676 - 677 -* Blink once when device power on. 678 -* Solid ON for 5 seconds once device successful Join the network. 679 -* Blink once when device transmit a packet. 680 - 681 -== 2.9 Installation in Soil == 682 - 683 -**Measurement the soil surface** 684 - 685 - 686 -[[image:1654506634463-199.png]] 687 - 688 688 ((( 689 -((( 690 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 627 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 691 691 ))) 692 -))) 693 693 694 694 695 - 696 -[[image:1654506665940-119.png]] 697 - 698 698 ((( 699 - Dig aholewithdiameter>20CM.632 +The battery is designed to last for several years depends on the actually use environment and update interval. 700 700 ))) 701 701 702 -((( 703 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 704 -))) 705 705 706 - 707 -== 2.10 Firmware Change Log == 708 - 709 709 ((( 710 - **Firmware downloadlink:**637 +The battery related documents as below: 711 711 ))) 712 712 713 - (((714 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]715 - )))640 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 641 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 642 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 716 716 717 717 ((( 718 - 645 +[[image:image-20220708140453-6.png]] 719 719 ))) 720 720 721 -((( 722 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 723 -))) 724 724 725 -((( 726 - 727 -))) 728 728 729 -((( 730 -**V1.0.** 731 -))) 650 +=== 2.9.2 Power consumption Analyze === 732 732 733 733 ((( 734 - Release653 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 735 735 ))) 736 736 737 737 738 -== 2.11 Battery Analysis == 739 - 740 -=== 2.11.1 Battery Type === 741 - 742 742 ((( 743 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.658 +Instruction to use as below: 744 744 ))) 745 745 746 746 ((( 747 - Thebatterys designedlastforrethan5 years fortheSN50.662 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 748 748 ))) 749 749 665 + 750 750 ((( 751 -((( 752 -The battery-related documents are as below: 667 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 753 753 ))) 754 -))) 755 755 756 756 * ((( 757 - [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],671 +Product Model 758 758 ))) 759 759 * ((( 760 - [[Lithium-ThionylChloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],674 +Uplink Interval 761 761 ))) 762 762 * ((( 763 - [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]677 +Working Mode 764 764 ))) 765 765 766 - [[image:image-20220610172436-1.png]] 680 +((( 681 +And the Life expectation in difference case will be shown on the right. 682 +))) 767 767 684 +[[image:image-20220708141352-7.jpeg]] 768 768 769 769 770 -=== 2.11.2 Battery Note === 771 771 688 +=== 2.9.3 Battery Note === 689 + 772 772 ((( 773 773 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 774 774 ))) ... ... @@ -775,302 +775,176 @@ 775 775 776 776 777 777 778 -=== 2. 11.3Replace the battery ===696 +=== 2.9.4 Replace the battery === 779 779 780 780 ((( 781 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.699 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 782 782 ))) 783 783 702 + 703 + 704 += 3. Access NB-IoT Module = 705 + 784 784 ((( 785 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.707 +Users can directly access the AT command set of the NB-IoT module. 786 786 ))) 787 787 788 788 ((( 789 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)711 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 790 790 ))) 791 791 714 +[[image:1657261278785-153.png]] 792 792 793 793 794 -= 3. Using the AT Commands = 795 795 796 -= =3.1AccessAT Commands ==718 += 4. Using the AT Commands = 797 797 720 +== 4.1 Access AT Commands == 798 798 799 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.722 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 800 800 801 -[[image:1654501986557-872.png||height="391" width="800"]] 802 802 725 +AT+<CMD>? : Help on <CMD> 803 803 804 - Orifyouhavebelowboard,usebelowconnection:727 +AT+<CMD> : Run <CMD> 805 805 729 +AT+<CMD>=<value> : Set the value 806 806 807 - [[image:1654502005655-729.png||height="503"width="801"]]731 +AT+<CMD>=? : Get the value 808 808 809 809 810 - 811 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 812 - 813 - 814 - [[image:1654502050864-459.png||height="564" width="806"]] 815 - 816 - 817 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 818 - 819 - 820 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 821 - 822 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 823 - 824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 825 - 826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 827 - 828 - 829 829 (% style="color:#037691" %)**General Commands**(%%) 830 830 831 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention736 +AT : Attention 832 832 833 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help738 +AT? : Short Help 834 834 835 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset740 +ATZ : MCU Reset 836 836 837 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval742 +AT+TDC : Application Data Transmission Interval 838 838 744 +AT+CFG : Print all configurations 839 839 840 - (%style="color:#037691"%)**Keys,IDsand EUIs management**746 +AT+CFGMOD : Working mode selection 841 841 842 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI748 +AT+INTMOD : Set the trigger interrupt mode 843 843 844 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey750 +AT+5VT : Set extend the time of 5V power 845 845 846 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key752 +AT+PRO : Choose agreement 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress754 +AT+WEIGRE : Get weight or set weight to 0 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI756 +AT+WEIGAP : Get or Set the GapValue of weight 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)758 +AT+RXDL : Extend the sending and receiving time 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network760 +AT+CNTFAC : Get or set counting parameters 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode762 +AT+SERVADDR : Server Address 857 857 858 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 859 859 860 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network765 +(% style="color:#037691" %)**COAP Management** 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode767 +AT+URI : Resource parameters 863 863 864 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 865 865 866 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format770 +(% style="color:#037691" %)**UDP Management** 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat772 +AT+CFM : Upload confirmation mode (only valid for UDP) 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 871 871 872 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data775 +(% style="color:#037691" %)**MQTT Management** 873 873 777 +AT+CLIENT : Get or Set MQTT client 874 874 875 - (%style="color:#037691"%)**LoRaNetworkManagement**779 +AT+UNAME : Get or Set MQTT Username 876 876 877 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate781 +AT+PWD : Get or Set MQTT password 878 878 879 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA783 +AT+PUBTOPIC : Get or Set MQTT publish topic 880 880 881 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting785 +AT+SUBTOPIC : Get or Set MQTT subscription topic 882 882 883 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 884 884 885 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink788 +(% style="color:#037691" %)**Information** 886 886 887 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink790 +AT+FDR : Factory Data Reset 888 888 889 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1792 +AT+PWORD : Serial Access Password 890 890 891 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 892 892 893 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 894 894 895 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1796 += 5. FAQ = 896 896 897 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2798 +== 5.1 How to Upgrade Firmware == 898 898 899 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 900 900 901 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 902 - 903 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 904 - 905 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 906 - 907 - 908 -(% style="color:#037691" %)**Information** 909 - 910 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 911 - 912 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 913 - 914 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 921 - 922 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 923 - 924 - 925 -= 4. FAQ = 926 - 927 -== 4.1 How to change the LoRa Frequency Bands/Region? == 928 - 929 929 ((( 930 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 931 -When downloading the images, choose the required image file for download. 802 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 932 932 ))) 933 933 934 934 ((( 935 - 806 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 936 936 ))) 937 937 938 938 ((( 939 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.810 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 940 940 ))) 941 941 942 -((( 943 - 944 -))) 945 945 946 -((( 947 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 -))) 949 949 950 -((( 951 - 952 -))) 815 +== 5.2 Can I calibrate NSE01 to different soil types? == 953 953 954 954 ((( 955 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.818 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 956 956 ))) 957 957 958 -[[image:image-20220606154726-3.png]] 959 959 822 += 6. Trouble Shooting = 960 960 961 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:824 +== 6.1 Connection problem when uploading firmware == 962 962 963 -* 903.9 - SF7BW125 to SF10BW125 964 -* 904.1 - SF7BW125 to SF10BW125 965 -* 904.3 - SF7BW125 to SF10BW125 966 -* 904.5 - SF7BW125 to SF10BW125 967 -* 904.7 - SF7BW125 to SF10BW125 968 -* 904.9 - SF7BW125 to SF10BW125 969 -* 905.1 - SF7BW125 to SF10BW125 970 -* 905.3 - SF7BW125 to SF10BW125 971 -* 904.6 - SF8BW500 972 972 973 973 ((( 974 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 975 - 976 -* (% style="color:#037691" %)**AT+CHE=2** 977 -* (% style="color:#037691" %)**ATZ** 828 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 978 978 ))) 979 979 831 +(% class="wikigeneratedid" %) 980 980 ((( 981 981 982 - 983 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 984 984 ))) 985 985 986 -((( 987 - 988 -))) 989 989 990 -((( 991 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 -))) 837 +== 6.2 AT Command input doesn't work == 993 993 994 -[[image:image-20220606154825-4.png]] 995 - 996 - 997 -== 4.2 Can I calibrate LSE01 to different soil types? == 998 - 999 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 - 1001 - 1002 -= 5. Trouble Shooting = 1003 - 1004 -== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1005 - 1006 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1007 - 1008 - 1009 -== 5.2 AT Command input doesn't work == 1010 - 1011 1011 ((( 1012 1012 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 -))) 1014 1014 1015 - 1016 -== 5.3 Device rejoin in at the second uplink packet == 1017 - 1018 -(% style="color:#4f81bd" %)**Issue describe as below:** 1019 - 1020 -[[image:1654500909990-784.png]] 1021 - 1022 - 1023 -(% style="color:#4f81bd" %)**Cause for this issue:** 1024 - 1025 -((( 1026 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 842 + 1027 1027 ))) 1028 1028 1029 1029 1030 - (% style="color:#4f81bd"%)**Solution:**846 += 7. Order Info = 1031 1031 1032 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1033 1033 1034 - [[image:1654500929571-736.png||height="458" width="832"]]849 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1035 1035 1036 1036 1037 -= 6. Order Info = 1038 - 1039 - 1040 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 - 1042 - 1043 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 - 1045 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 - 1054 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 - 1056 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 - 1059 1059 (% class="wikigeneratedid" %) 1060 1060 ((( 1061 1061 1062 1062 ))) 1063 1063 1064 -= 7. Packing Info =857 += 8. Packing Info = 1065 1065 1066 1066 ((( 1067 1067 1068 1068 1069 1069 (% style="color:#037691" %)**Package Includes**: 1070 -))) 1071 1071 1072 -* (((1073 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1864 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 865 +* External antenna x 1 1074 1074 ))) 1075 1075 1076 1076 ((( ... ... @@ -1077,24 +1077,19 @@ 1077 1077 1078 1078 1079 1079 (% style="color:#037691" %)**Dimension and weight**: 1080 -))) 1081 1081 1082 -* (((1083 - DeviceSize:cm873 +* Size: 195 x 125 x 55 mm 874 +* Weight: 420g 1084 1084 ))) 1085 -* ((( 1086 -Device Weight: g 1087 -))) 1088 -* ((( 1089 -Package Size / pcs : cm 1090 -))) 1091 -* ((( 1092 -Weight / pcs : g 1093 1093 877 +((( 1094 1094 879 + 880 + 881 + 1095 1095 ))) 1096 1096 1097 -= 8. Support =884 += 9. Support = 1098 1098 1099 1099 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1100 1100 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +83.8 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +61.9 KB - Content