Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,7 +3,9 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,36 +10,35 @@ 10 10 11 11 12 12 13 - 14 -**Table of Contents:** 15 - 16 - 17 - 18 - 19 - 20 - 21 21 = 1. Introduction = 22 22 23 23 == 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 24 25 25 ((( 26 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 27 27 28 -Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 29 29 30 -It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 31 31 32 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 31 +((( 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 33 33 34 -NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 35 - 36 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 37 ))) 38 38 39 + 39 39 [[image:1654503236291-817.png]] 40 40 41 41 42 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 43 43 44 44 45 45 ... ... @@ -57,6 +57,8 @@ 57 57 * IP66 Waterproof Enclosure 58 58 * 4000mAh or 8500mAh Battery for long term use 59 59 61 + 62 + 60 60 == 1.3 Specification == 61 61 62 62 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. ... ... @@ -88,7 +88,7 @@ 88 88 ))) 89 89 90 90 ((( 91 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3. 200BUsingtheATCommands"]].94 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]]. 92 92 ))) 93 93 94 94 ... ... @@ -104,7 +104,7 @@ 104 104 The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 105 105 106 106 107 - (% style="color:blue" %)**Step 1**(%%):110 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 108 108 109 109 Each LSE01 is shipped with a sticker with the default device EUI as below: 110 110 ... ... @@ -125,7 +125,7 @@ 125 125 126 126 127 127 128 - (% style="color:blue" %)**Step 2**(%%): Power on LSE01131 +**Step 2**: Power on LSE01 129 129 130 130 131 131 Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). ... ... @@ -133,7 +133,7 @@ 133 133 [[image:image-20220606163915-7.png]] 134 134 135 135 136 - (% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.139 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 137 137 138 138 [[image:1654504778294-788.png]] 139 139 ... ... @@ -141,104 +141,88 @@ 141 141 142 142 == 2.3 Uplink Payload == 143 143 144 - 145 145 === 2.3.1 MOD~=0(Default Mode) === 146 146 147 147 LSE01 will uplink payload via LoRaWAN with below payload format: 148 148 149 - (((151 + 150 150 Uplink payload includes in total 11 bytes. 151 - )))153 + 152 152 153 -(% border="1" cellspacing="10" style="background-color:#ffff cc; width:500px" %)154 -|((( 155 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 156 +|=((( 155 155 **Size** 156 156 157 157 **(bytes)** 158 -)))|**2**|**2**|**2**|**2**|**2**|**1** 159 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +)))|=(% style="width: 46px;" %)**2**|=(% style="width: 160px;" %)**2**|=(% style="width: 104px;" %)**2**|=(% style="width: 126px;" %)**2**|=(% style="width: 159px;" %)**2**|=(% style="width: 114px;" %)**1** 161 +|**Value**|(% style="width:46px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:160px" %)((( 160 160 Temperature 161 161 162 162 (Reserve, Ignore now) 163 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 165 +)))|(% style="width:104px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:126px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:114px" %)((( 164 164 MOD & Digital Interrupt 165 165 166 166 (Optional) 167 167 ))) 168 168 171 +[[image:1654504881641-514.png]] 172 + 173 + 174 + 169 169 === 2.3.2 MOD~=1(Original value) === 170 170 171 171 This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 172 172 173 -(% border="1" cellspacing="10" style="background-color:#ffff cc; width:500px" %)174 -|((( 179 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 180 +|=((( 175 175 **Size** 176 176 177 177 **(bytes)** 178 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 179 179 |**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 180 Temperature 181 181 182 182 (Reserve, Ignore now) 183 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture" ]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((189 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 184 MOD & Digital Interrupt 185 185 186 186 (Optional) 187 187 ))) 188 188 195 +[[image:1654504907647-967.png]] 196 + 197 + 198 + 189 189 === 2.3.3 Battery Info === 190 190 191 -((( 192 192 Check the battery voltage for LSE01. 193 -))) 194 194 195 -((( 196 196 Ex1: 0x0B45 = 2885mV 197 -))) 198 198 199 -((( 200 200 Ex2: 0x0B49 = 2889mV 201 -))) 202 202 203 203 204 204 205 205 === 2.3.4 Soil Moisture === 206 206 207 -((( 208 208 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 -))) 210 210 211 -((( 212 212 For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 213 -))) 214 214 215 -((( 216 - 217 -))) 218 218 219 -((( 220 220 (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 221 -))) 222 222 223 223 224 224 225 225 === 2.3.5 Soil Temperature === 226 226 227 -((( 228 228 Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 -))) 230 230 231 -((( 232 232 **Example**: 233 -))) 234 234 235 -((( 236 236 If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 237 -))) 238 238 239 -((( 240 240 If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 -))) 242 242 243 243 244 244 ... ... @@ -273,7 +273,7 @@ 273 273 mod=(bytes[10]>>7)&0x01=1. 274 274 275 275 276 - **Downlink Command:**263 +Downlink Command: 277 277 278 278 If payload = 0x0A00, workmode=0 279 279 ... ... @@ -288,21 +288,19 @@ 288 288 289 289 [[image:1654505570700-128.png]] 290 290 291 -((( 292 292 The payload decoder function for TTN is here: 293 -))) 294 294 295 -((( 296 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 297 -))) 280 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 298 298 299 299 300 300 == 2.4 Uplink Interval == 301 301 302 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]285 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: 303 303 287 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]] 304 304 305 305 290 + 306 306 == 2.5 Downlink Payload == 307 307 308 308 By default, LSE50 prints the downlink payload to console port. ... ... @@ -310,44 +310,24 @@ 310 310 [[image:image-20220606165544-8.png]] 311 311 312 312 313 -((( 314 -(% style="color:blue" %)**Examples:** 315 -))) 298 +**Examples:** 316 316 317 -((( 318 - 319 -))) 320 320 321 -* ((( 322 -(% style="color:blue" %)**Set TDC** 323 -))) 301 +* **Set TDC** 324 324 325 -((( 326 326 If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 -))) 328 328 329 -((( 330 330 Payload: 01 00 00 1E TDC=30S 331 -))) 332 332 333 -((( 334 334 Payload: 01 00 00 3C TDC=60S 335 -))) 336 336 337 -((( 338 - 339 -))) 340 340 341 -* ((( 342 -(% style="color:blue" %)**Reset** 343 -))) 310 +* **Reset** 344 344 345 -((( 346 346 If payload = 0x04FF, it will reset the LSE01 347 -))) 348 348 349 349 350 -* (% style="color:blue" %)**CFM**315 +* **CFM** 351 351 352 352 Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 353 353 ... ... @@ -355,21 +355,12 @@ 355 355 356 356 == 2.6 Show Data in DataCake IoT Server == 357 357 358 -((( 359 359 [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 360 -))) 361 361 362 -((( 363 - 364 -))) 365 365 366 -((( 367 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 368 -))) 326 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 369 369 370 -((( 371 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 372 -))) 328 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 373 373 374 374 375 375 [[image:1654505857935-743.png]] ... ... @@ -377,12 +377,11 @@ 377 377 378 378 [[image:1654505874829-548.png]] 379 379 336 +Step 3: Create an account or log in Datacake. 380 380 381 - (% style="color:blue" %)**Step3**(%%)**:**Create an accountor log inDatacake.338 +Step 4: Search the LSE01 and add DevEUI. 382 382 383 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 384 384 385 - 386 386 [[image:1654505905236-553.png]] 387 387 388 388 ... ... @@ -692,7 +692,6 @@ 692 692 ))) 693 693 694 694 695 - 696 696 [[image:1654506665940-119.png]] 697 697 698 698 ((( ... ... @@ -754,16 +754,16 @@ 754 754 ))) 755 755 756 756 * ((( 757 -[[Battery Dimension>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],711 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 758 758 ))) 759 759 * ((( 760 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/ index.php?dir=datasheet/Battery/]],714 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 761 761 ))) 762 762 * ((( 763 -[[Lithium-ion Battery-Capacitor datasheet>>http s://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]717 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 764 764 ))) 765 765 766 - [[image:image-202206 10172436-1.png]]720 + [[image:image-20220606171726-9.png]] 767 767 768 768 769 769 ... ... @@ -798,13 +798,13 @@ 798 798 799 799 LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 800 800 801 -[[image:1654501986557-872.png ||height="391" width="800"]]755 +[[image:1654501986557-872.png]] 802 802 803 803 804 804 Or if you have below board, use below connection: 805 805 806 806 807 -[[image:1654502005655-729.png ||height="503" width="801"]]761 +[[image:1654502005655-729.png]] 808 808 809 809 810 810 ... ... @@ -811,10 +811,10 @@ 811 811 In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 812 812 813 813 814 - [[image:1654502050864-459.png ||height="564" width="806"]]768 + [[image:1654502050864-459.png]] 815 815 816 816 817 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>http s://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]771 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 818 818 819 819 820 820 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -926,38 +926,20 @@ 926 926 927 927 == 4.1 How to change the LoRa Frequency Bands/Region? == 928 928 929 -((( 930 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]]. 931 931 When downloading the images, choose the required image file for download. 932 -))) 933 933 934 -((( 935 - 936 -))) 937 937 938 -((( 939 939 How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 940 -))) 941 941 942 -((( 943 - 944 -))) 945 945 946 -((( 947 947 You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 -))) 949 949 950 -((( 951 - 952 -))) 953 953 954 -((( 955 955 For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 956 -))) 957 957 958 958 [[image:image-20220606154726-3.png]] 959 959 960 - 961 961 When you use the TTN network, the US915 frequency bands use are: 962 962 963 963 * 903.9 - SF7BW125 to SF10BW125 ... ... @@ -970,47 +970,37 @@ 970 970 * 905.3 - SF7BW125 to SF10BW125 971 971 * 904.6 - SF8BW500 972 972 973 -((( 974 974 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 975 975 976 -* (% style="color:#037691" %)**AT+CHE=2** 977 -* (% style="color:#037691" %)**ATZ** 911 +(% class="box infomessage" %) 912 +((( 913 +**AT+CHE=2** 978 978 ))) 979 979 916 +(% class="box infomessage" %) 980 980 ((( 981 - 918 +**ATZ** 919 +))) 982 982 983 983 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 984 -))) 985 985 986 -((( 987 - 988 -))) 989 989 990 -((( 991 991 The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 -))) 993 993 994 994 [[image:image-20220606154825-4.png]] 995 995 996 996 997 -== 4.2 Can I calibrate LSE01 to different soil types? == 998 998 999 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 - 1001 - 1002 1002 = 5. Trouble Shooting = 1003 1003 1004 -== 5.1 Why I can 't join TTN in US915 / AU915 bands? ==932 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1005 1005 1006 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. End DeviceATCommandsand Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.934 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1007 1007 1008 1008 1009 -== 5.2 AT Command input doesn 't work ==937 +== 5.2 AT Command input doesn’t work == 1010 1010 1011 -((( 1012 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 -))) 939 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1014 1014 1015 1015 1016 1016 == 5.3 Device rejoin in at the second uplink packet == ... ... @@ -1022,9 +1022,7 @@ 1022 1022 1023 1023 (% style="color:#4f81bd" %)**Cause for this issue:** 1024 1024 1025 -((( 1026 1026 The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1027 -))) 1028 1028 1029 1029 1030 1030 (% style="color:#4f81bd" %)**Solution: ** ... ... @@ -1031,7 +1031,7 @@ 1031 1031 1032 1032 All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1033 1033 1034 -[[image:1654500929571-736.png ||height="458" width="832"]]958 +[[image:1654500929571-736.png]] 1035 1035 1036 1036 1037 1037 = 6. Order Info = ... ... @@ -1064,9 +1064,7 @@ 1064 1064 = 7. Packing Info = 1065 1065 1066 1066 ((( 1067 - 1068 - 1069 -(% style="color:#037691" %)**Package Includes**: 991 +**Package Includes**: 1070 1070 ))) 1071 1071 1072 1072 * ((( ... ... @@ -1075,8 +1075,10 @@ 1075 1075 1076 1076 ((( 1077 1077 1000 +))) 1078 1078 1079 -(% style="color:#037691" %)**Dimension and weight**: 1002 +((( 1003 +**Dimension and weight**: 1080 1080 ))) 1081 1081 1082 1082 * ((( ... ... @@ -1091,6 +1091,7 @@ 1091 1091 * ((( 1092 1092 Weight / pcs : g 1093 1093 1018 + 1094 1094 1095 1095 ))) 1096 1096 ... ... @@ -1098,3 +1098,5 @@ 1098 1098 1099 1099 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1100 1100 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1026 + 1027 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content