Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 48 added, 0 removed)
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
- image-20220709110451-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -NS E01-NB-IoTSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,16 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 16 {{toc/}} ... ... @@ -20,767 +20,655 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 17 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==19 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 26 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 27 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 28 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 29 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 30 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 36 +[[image:1657327959271-447.png]] 44 44 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 48 49 49 50 - [[image:1654503236291-817.png]]40 +== 1.2 Features == 51 51 52 52 53 -[[image:1654503265560-120.png]] 54 - 55 - 56 - 57 -== 1.2 Features == 58 - 59 -* LoRaWAN 1.0.3 Class A 43 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86545 +* Distance Detection by Ultrasonic technology 46 +* Flat object range 280mm - 7500mm 47 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 48 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 53 +* Micro SIM card slot for NB-IoT SIM 54 +* 8500mAh Battery for long term use 70 70 71 -== 1.3 Specification == 72 72 73 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 75 - [[image:image-20220606162220-5.png]]58 +== 1.3 Specification == 76 76 77 77 61 +(% style="color:#037691" %)**Common DC Characteristics:** 78 78 79 -== 1.4 Applications == 63 +* Supply Voltage: 2.1v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 80 80 81 - *SmartAgriculture66 +(% style="color:#037691" %)**NB-IoT Spec:** 82 82 83 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 84 - 68 +* - B1 @H-FDD: 2100MHz 69 +* - B3 @H-FDD: 1800MHz 70 +* - B8 @H-FDD: 900MHz 71 +* - B5 @H-FDD: 850MHz 72 +* - B20 @H-FDD: 800MHz 73 +* - B28 @H-FDD: 700MHz 85 85 86 - ==1.5 FirmwareChangelog==75 +(% style="color:#037691" %)**Battery:** 87 87 77 +* Li/SOCI2 un-chargeable battery 78 +* Capacity: 8500mAh 79 +* Self Discharge: <1% / Year @ 25°C 80 +* Max continuously current: 130mA 81 +* Max boost current: 2A, 1 second 88 88 89 - **LSE01v1.0 :**Release83 +(% style="color:#037691" %)**Power Consumption** 90 90 85 +* STOP Mode: 10uA @ 3.3v 86 +* Max transmit power: 350mA@3.3v 91 91 92 92 93 -= 2. Configure LSE01 to connect to LoRaWAN network = 94 94 95 -== 2.1Howitworks ==90 +== 1.4 Applications == 96 96 97 -((( 98 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 99 -))) 92 +* Smart Buildings & Home Automation 93 +* Logistics and Supply Chain Management 94 +* Smart Metering 95 +* Smart Agriculture 96 +* Smart Cities 97 +* Smart Factory 100 100 101 -((( 102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 103 -))) 99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 + 104 104 105 105 103 +== 1.5 Pin Definitions == 106 106 107 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 108 108 109 - Following is an example for how to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.106 +[[image:1657328609906-564.png]] 110 110 111 111 112 -[[image:1654503992078-669.png]] 113 113 110 += 2. Use NDDS75 to communicate with IoT Server = 114 114 115 - TheLG308is already set toconnected to [[TTN network>>url:https://console.cloud.thethings.network/]],sowhat we need to now is configure the TTN server.112 +== 2.1 How it works == 116 116 117 - 118 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 119 - 120 -Each LSE01 is shipped with a sticker with the default device EUI as below: 121 - 122 -[[image:image-20220606163732-6.jpeg]] 123 - 124 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 125 - 126 -**Add APP EUI in the application** 127 - 128 - 129 -[[image:1654504596150-405.png]] 130 - 131 - 132 - 133 -**Add APP KEY and DEV EUI** 134 - 135 -[[image:1654504683289-357.png]] 136 - 137 - 138 - 139 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 140 - 141 - 142 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 143 - 144 -[[image:image-20220606163915-7.png]] 145 - 146 - 147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 148 - 149 -[[image:1654504778294-788.png]] 150 - 151 - 152 - 153 -== 2.3 Uplink Payload == 154 - 155 - 156 -=== 2.3.1 MOD~=0(Default Mode) === 157 - 158 -LSE01 will uplink payload via LoRaWAN with below payload format: 159 - 160 160 ((( 161 - Uplinkpayload includesin total11bytes.115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 162 162 ))) 163 163 164 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 165 -|((( 166 -**Size** 167 167 168 -**(bytes)** 169 -)))|**2**|**2**|**2**|**2**|**2**|**1** 170 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 171 -Temperature 172 - 173 -(Reserve, Ignore now) 174 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 175 -MOD & Digital Interrupt 176 - 177 -(Optional) 178 -))) 179 - 180 -=== 2.3.2 MOD~=1(Original value) === 181 - 182 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 183 - 184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 -|((( 186 -**Size** 187 - 188 -**(bytes)** 189 -)))|**2**|**2**|**2**|**2**|**2**|**1** 190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 -Temperature 192 - 193 -(Reserve, Ignore now) 194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 195 -MOD & Digital Interrupt 196 - 197 -(Optional) 198 -))) 199 - 200 -=== 2.3.3 Battery Info === 201 - 202 202 ((( 203 - CheckthebatteryvoltageforLSE01.120 +The diagram below shows the working flow in default firmware of NDDS75: 204 204 ))) 205 205 206 206 ((( 207 - Ex1:0x0B45 = 2885mV124 + 208 208 ))) 209 209 127 +[[image:1657328659945-416.png]] 128 + 210 210 ((( 211 - Ex2:0x0B49 = 2889mV130 + 212 212 ))) 213 213 214 214 134 +== 2.2 Configure the NDDS75 == 215 215 216 -=== 2.3.4 Soil Moisture === 217 217 218 -((( 219 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 220 -))) 137 +=== 2.2.1 Test Requirement === 221 221 222 222 ((( 223 - Forexample,ifthe datayouget fromthe register is __0x05 0xDC__,themoisturecontentin thesoil is140 +To use NDDS75 in your city, make sure meet below requirements: 224 224 ))) 225 225 226 - (((227 - 228 - )))143 +* Your local operator has already distributed a NB-IoT Network there. 144 +* The local NB-IoT network used the band that NSE01 supports. 145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 229 229 230 230 ((( 231 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 232 232 ))) 233 233 234 234 152 +[[image:1657328756309-230.png]] 235 235 236 -=== 2.3.5 Soil Temperature === 237 237 238 -((( 239 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 240 -))) 241 241 242 -((( 243 -**Example**: 244 -))) 156 +=== 2.2.2 Insert SIM card === 245 245 246 246 ((( 247 -I fpayloadis 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100 = 2.61 °C159 +Insert the NB-IoT Card get from your provider. 248 248 ))) 249 249 250 250 ((( 251 - IfpayloadisFF7EH:((FF7E&0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C163 +User need to take out the NB-IoT module and insert the SIM card like below: 252 252 ))) 253 253 254 254 167 +[[image:1657328884227-504.png]] 255 255 256 -=== 2.3.6 Soil Conductivity (EC) === 257 257 258 -((( 259 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 260 -))) 261 261 262 -((( 263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 264 -))) 171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 265 265 266 266 ((( 267 -Generally, the EC value of irrigation water is less than 800uS / cm. 268 -))) 269 - 270 270 ((( 271 - 175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 272 272 ))) 273 - 274 -((( 275 - 276 276 ))) 277 277 278 - ===2.3.7MOD ===179 +[[image:image-20220709092052-2.png]] 279 279 280 - Firmware versionat least v2.1 supportschanging mode.181 +**Connection:** 281 281 282 - Forexample,bytes[10]=90183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 283 283 284 - mod=(bytes[10]>>7)&0x01=1.185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 285 285 187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 286 286 287 -**Downlink Command:** 288 288 289 -I fpayload= 0x0A00,workmode=0190 +In the PC, use below serial tool settings: 290 290 291 -If** **payload =** **0x0A01, workmode=1 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 292 292 293 - 294 - 295 -=== 2.3.8 Decode payload in The Things Network === 296 - 297 -While using TTN network, you can add the payload format to decode the payload. 298 - 299 - 300 -[[image:1654505570700-128.png]] 301 - 302 302 ((( 303 - The payloaddecoderfunction forTTNis here:199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 304 304 ))) 305 305 202 +[[image:1657329814315-101.png]] 203 + 306 306 ((( 307 - LSE01TTNPayloadDecoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 308 308 ))) 309 309 310 310 311 -== 2.4 Uplink Interval == 312 312 313 - TheLSE01 by default uplink the sensor data every20 minutes. Usercan change this interval by ATCommandorLoRaWAN Downlink Command. See thislink:[[Change Uplink Interval>>doc:Main.EndDevice AT Commands and DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]210 +=== 2.2.4 Use CoAP protocol to uplink data === 314 314 212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 315 315 316 316 317 -== 2.5 Downlink Payload == 318 - 319 -By default, LSE50 prints the downlink payload to console port. 320 - 321 -[[image:image-20220606165544-8.png]] 322 - 323 - 324 324 ((( 325 - (%style="color:blue"%)**Examples:**216 +**Use below commands:** 326 326 ))) 327 327 328 -((( 329 - 219 +* ((( 220 +(% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 330 330 ))) 331 - 332 332 * ((( 333 -(% style="color:blue" %)**Set TDC**223 +(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 334 334 ))) 335 - 336 -((( 337 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 338 -))) 339 - 340 -((( 341 -Payload: 01 00 00 1E TDC=30S 342 -))) 343 - 344 -((( 345 -Payload: 01 00 00 3C TDC=60S 346 -))) 347 - 348 -((( 349 - 350 -))) 351 - 352 352 * ((( 353 -(% style="color:blue" %)**Re set**226 +(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 354 354 ))) 355 355 356 356 ((( 357 - Ifpayload= 0x04FF,itwillresettheLSE01230 +For parameter description, please refer to AT command set 358 358 ))) 359 359 233 +[[image:1657330452568-615.png]] 360 360 361 -* (% style="color:blue" %)**CFM** 362 362 363 - DownlinkPayload:05000001, Set AT+CFM=1or05000000,setAT+CFM=0236 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 364 364 238 +[[image:1657330472797-498.png]] 365 365 366 366 367 -== 2.6 Show Data in DataCake IoT Server == 368 368 369 -((( 370 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 371 -))) 242 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 372 372 373 -((( 374 - 375 -))) 376 376 377 -(( (378 -(% style="color:blue" %)**S tep1**(%%):Besurehatyourdeviceis programmedandproperlyconnectedtothe network atthis time.379 -)) )245 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 247 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/ If the server does not respond, this command is unnecessary 380 380 381 -((( 382 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 383 -))) 249 +[[image:1657330501006-241.png]] 384 384 385 385 386 -[[image:165 4505857935-743.png]]252 +[[image:1657330533775-472.png]] 387 387 388 388 389 -[[image:1654505874829-548.png]] 390 390 256 +=== 2.2.6 Use MQTT protocol to uplink data === 391 391 392 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 393 393 394 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 259 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 261 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 262 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 263 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 264 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 265 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 395 395 267 +[[image:1657249978444-674.png]] 396 396 397 -[[image:1654505905236-553.png]] 398 398 270 +[[image:1657330723006-866.png]] 399 399 400 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 401 401 402 -[[image:1654505925508-181.png]] 273 +((( 274 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 275 +))) 403 403 404 404 405 405 406 -== 2.7 FrequencyPlans==279 +=== 2.2.7 Use TCP protocol to uplink data === 407 407 408 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 409 409 282 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 410 410 411 - ===2.7.1EU863-870 (EU868) ===285 +[[image:image-20220709093918-1.png]] 412 412 413 -(% style="color:#037691" %)** Uplink:** 414 414 415 - 868.1-SF7BW125 to SF12BW125288 +[[image:image-20220709093918-2.png]] 416 416 417 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 418 418 419 -868.5 - SF7BW125 to SF12BW125 420 420 421 - 867.1-SF7BW125toSF12BW125292 +=== 2.2.8 Change Update Interval === 422 422 423 - 867.3-SF7BW125toSF12BW125294 +User can use below command to change the (% style="color:green" %)**uplink interval**. 424 424 425 - 867.5-SF7BW125toSF12BW125296 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 426 426 427 -867.7 - SF7BW125 to SF12BW125 298 +((( 299 +(% style="color:red" %)**NOTE:** 300 +))) 428 428 429 -867.9 - SF7BW125 to SF12BW125 302 +((( 303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 +))) 430 430 431 -868.8 - FSK 432 432 433 433 434 - (% style="color:#037691"%)** Downlink:**308 +== 2.3 Uplink Payload == 435 435 436 - Uplinkchannels1-9(RX1)310 +In this mode, uplink payload includes in total 14 bytes 437 437 438 -869.525 - SF9BW125 (RX2 downlink only) 439 439 313 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 314 +|=(% style="width: 80px;" %)((( 315 +**Size(bytes)** 316 +)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1** 317 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]] 440 440 319 +((( 320 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 321 +))) 441 441 442 -=== 2.7.2 US902-928(US915) === 443 443 444 - Usedin USA, Canada and South America. Default use CHE=2324 +[[image:1657331036973-987.png]] 445 445 446 -(% style="color:#037691" %)**Uplink:** 326 +((( 327 +The payload is ASCII string, representative same HEX: 328 +))) 447 447 448 -903.9 - SF7BW125 to SF10BW125 330 +((( 331 +0x72403155615900640c6c19029200 where: 332 +))) 449 449 450 -904.1 - SF7BW125 to SF10BW125 334 +* ((( 335 +Device ID: 0x724031556159 = 724031556159 336 +))) 337 +* ((( 338 +Version: 0x0064=100=1.0.0 339 +))) 451 451 452 -904.3 - SF7BW125 to SF10BW125 341 +* ((( 342 +BAT: 0x0c6c = 3180 mV = 3.180V 343 +))) 344 +* ((( 345 +Signal: 0x19 = 25 346 +))) 347 +* ((( 348 +Distance: 0x0292= 658 mm 349 +))) 350 +* ((( 351 +Interrupt: 0x00 = 0 453 453 454 -904.5 - SF7BW125 to SF10BW125 455 455 456 -904.7 - SF7BW125 to SF10BW125 457 457 458 -904.9 - SF7BW125 to SF10BW125 355 + 356 +))) 459 459 460 - 905.1- SF7BW125to SF10BW125358 +== 2.4 Payload Explanation and Sensor Interface == 461 461 462 -905.3 - SF7BW125 to SF10BW125 463 463 361 +=== 2.4.1 Device ID === 464 464 465 -(% style="color:#037691" %)**Downlink:** 363 +((( 364 +By default, the Device ID equal to the last 6 bytes of IMEI. 365 +))) 466 466 467 -923.3 - SF7BW500 to SF12BW500 367 +((( 368 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 369 +))) 468 468 469 -923.9 - SF7BW500 to SF12BW500 371 +((( 372 +**Example:** 373 +))) 470 470 471 -924.5 - SF7BW500 to SF12BW500 375 +((( 376 +AT+DEUI=A84041F15612 377 +))) 472 472 473 -925.1 - SF7BW500 to SF12BW500 379 +((( 380 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 381 +))) 474 474 475 -925.7 - SF7BW500 to SF12BW500 476 476 477 -926.3 - SF7BW500 to SF12BW500 478 478 479 - 926.9-SF7BW500 toSF12BW500385 +=== 2.4.2 Version Info === 480 480 481 -927.5 - SF7BW500 to SF12BW500 387 +((( 388 +Specify the software version: 0x64=100, means firmware version 1.00. 389 +))) 482 482 483 -923.3 - SF12BW500(RX2 downlink only) 391 +((( 392 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 393 +))) 484 484 485 485 486 486 487 -=== 2. 7.3CN470-510(CN470)===397 +=== 2.4.3 Battery Info === 488 488 489 -Used in China, Default use CHE=1 399 +((( 400 +Ex1: 0x0B45 = 2885mV 401 +))) 490 490 491 -(% style="color:#037691" %)**Uplink:** 403 +((( 404 +Ex2: 0x0B49 = 2889mV 405 +))) 492 492 493 -486.3 - SF7BW125 to SF12BW125 494 494 495 -486.5 - SF7BW125 to SF12BW125 496 496 497 -4 86.7-SF7BW125toSF12BW125409 +=== 2.4.4 Signal Strength === 498 498 499 -486.9 - SF7BW125 to SF12BW125 411 +((( 412 +NB-IoT Network signal Strength. 413 +))) 500 500 501 -487.1 - SF7BW125 to SF12BW125 415 +((( 416 +**Ex1: 0x1d = 29** 417 +))) 502 502 503 -487.3 - SF7BW125 to SF12BW125 419 +((( 420 +(% style="color:blue" %)**0**(%%) -113dBm or less 421 +))) 504 504 505 -487.5 - SF7BW125 to SF12BW125 423 +((( 424 +(% style="color:blue" %)**1**(%%) -111dBm 425 +))) 506 506 507 -487.7 - SF7BW125 to SF12BW125 427 +((( 428 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 429 +))) 508 508 431 +((( 432 +(% style="color:blue" %)**31** (%%) -51dBm or greater 433 +))) 509 509 510 -(% style="color:#037691" %)**Downlink:** 435 +((( 436 +(% style="color:blue" %)**99** (%%) Not known or not detectable 437 +))) 511 511 512 -506.7 - SF7BW125 to SF12BW125 513 513 514 -506.9 - SF7BW125 to SF12BW125 515 515 516 - 507.1- SF7BW125 toSF12BW125441 +=== 2.4.5 Distance === 517 517 518 - 507.3-SF7BW125toSF12BW125443 +Get the distance. Flat object range 280mm - 7500mm. 519 519 520 - 507.5-SF7BW125toSF12BW125445 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 521 521 522 -507.7 - SF7BW125 to SF12BW125 447 +((( 448 +((( 449 +(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 450 +))) 451 +))) 523 523 524 -507.9 - SF7BW125 to SF12BW125 453 +((( 454 + 455 +))) 525 525 526 -508.1 - SF7BW125 to SF12BW125 457 +((( 458 + 459 +))) 527 527 528 - 505.3- SF12BW125(RX2 downlinkonly)461 +=== 2.4.6 Digital Interrupt === 529 529 463 +((( 464 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 465 +))) 530 530 467 +((( 468 +The command is: 469 +))) 531 531 532 -=== 2.7.4 AU915-928(AU915) === 471 +((( 472 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 473 +))) 533 533 534 -Default use CHE=2 535 535 536 -(% style="color:#037691" %)**Uplink:** 476 +((( 477 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 478 +))) 537 537 538 -916.8 - SF7BW125 to SF12BW125 539 539 540 -917.0 - SF7BW125 to SF12BW125 481 +((( 482 +Example: 483 +))) 541 541 542 -917.2 - SF7BW125 to SF12BW125 485 +((( 486 +0x(00): Normal uplink packet. 487 +))) 543 543 544 -917.4 - SF7BW125 to SF12BW125 489 +((( 490 +0x(01): Interrupt Uplink Packet. 491 +))) 545 545 546 -917.6 - SF7BW125 to SF12BW125 547 547 548 -917.8 - SF7BW125 to SF12BW125 549 549 550 - 918.0- SF7BW125 toSF12BW125495 +=== 2.4.7 +5V Output === 551 551 552 -918.2 - SF7BW125 to SF12BW125 497 +((( 498 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 499 +))) 553 553 554 554 555 -(% style="color:#037691" %)**Downlink:** 502 +((( 503 +The 5V output time can be controlled by AT Command. 504 +))) 556 556 557 -923.3 - SF7BW500 to SF12BW500 506 +((( 507 +(% style="color:blue" %)**AT+5VT=1000** 508 +))) 558 558 559 -923.9 - SF7BW500 to SF12BW500 510 +((( 511 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 512 +))) 560 560 561 -924.5 - SF7BW500 to SF12BW500 562 562 563 -925.1 - SF7BW500 to SF12BW500 564 564 565 - 925.7 - SF7BW500toSF12BW500516 +== 2.5 Downlink Payload == 566 566 567 - 926.3-SF7BW500toSF12BW500518 +By default, NDDS75 prints the downlink payload to console port. 568 568 569 - 926.9-SF7BW500to SF12BW500520 +[[image:image-20220709100028-1.png]] 570 570 571 -927.5 - SF7BW500 to SF12BW500 572 572 573 -923.3 - SF12BW500(RX2 downlink only) 523 +((( 524 +(% style="color:blue" %)**Examples:** 525 +))) 574 574 527 +((( 528 + 529 +))) 575 575 531 +* ((( 532 +(% style="color:blue" %)**Set TDC** 533 +))) 576 576 577 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 535 +((( 536 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 537 +))) 578 578 579 -(% style="color:#037691" %)**Default Uplink channel:** 539 +((( 540 +Payload: 01 00 00 1E TDC=30S 541 +))) 580 580 581 -923.2 - SF7BW125 to SF10BW125 543 +((( 544 +Payload: 01 00 00 3C TDC=60S 545 +))) 582 582 583 -923.4 - SF7BW125 to SF10BW125 547 +((( 548 + 549 +))) 584 584 551 +* ((( 552 +(% style="color:blue" %)**Reset** 553 +))) 585 585 586 -(% style="color:#037691" %)**Additional Uplink Channel**: 555 +((( 556 +If payload = 0x04FF, it will reset the NDDS75 557 +))) 587 587 588 -(OTAA mode, channel added by JoinAccept message) 589 589 590 -(% style="color: #037691" %)**AS920~~AS923 for Japan,Malaysia, Singapore**:560 +* (% style="color:blue" %)**INTMOD** 591 591 592 -922.2 - SF7BW125 to SF10BW125 562 +((( 563 +Downlink Payload: 06000003, Set AT+INTMOD=3 564 +))) 593 593 594 -922.4 - SF7BW125 to SF10BW125 595 595 596 -922.6 - SF7BW125 to SF10BW125 597 597 598 - 922.8-SF7BW125toSF10BW125568 +== 2.6 LED Indicator == 599 599 600 -923.0 - SF7BW125 to SF10BW125 601 601 602 - 922.0-SF7BW125 toSF10BW125571 +The NDDS75 has an internal LED which is to show the status of different state. 603 603 604 604 605 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 574 +* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 575 +* Then the LED will be on for 1 second means device is boot normally. 576 +* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 577 +* For each uplink probe, LED will be on for 500ms. 606 606 607 -923.6 - SF7BW125 to SF10BW125 579 +((( 580 + 581 +))) 608 608 609 -923.8 - SF7BW125 to SF10BW125 610 610 611 -924.0 - SF7BW125 to SF10BW125 612 612 613 - 924.2- SF7BW125toSF10BW125585 +== 2.7 Firmware Change Log == 614 614 615 -924.4 - SF7BW125 to SF10BW125 616 616 617 - 924.6-SF7BW125toSF10BW125588 +Download URL & Firmware Change log 618 618 590 +((( 591 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]] 592 +))) 619 619 620 -(% style="color:#037691" %)** Downlink:** 621 621 622 -Up linkchannels 1-8 (RX1)595 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 623 623 624 -923.2 - SF10BW125 (RX2) 625 625 626 626 599 +== 2.8 Battery Analysis == 627 627 628 -=== 2. 7.6KR920-923(KR920)===601 +=== 2.8.1 Battery Type === 629 629 630 -Default channel: 631 631 632 -922.1 - SF7BW125 to SF12BW125 633 - 634 -922.3 - SF7BW125 to SF12BW125 635 - 636 -922.5 - SF7BW125 to SF12BW125 637 - 638 - 639 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 640 - 641 -922.1 - SF7BW125 to SF12BW125 642 - 643 -922.3 - SF7BW125 to SF12BW125 644 - 645 -922.5 - SF7BW125 to SF12BW125 646 - 647 -922.7 - SF7BW125 to SF12BW125 648 - 649 -922.9 - SF7BW125 to SF12BW125 650 - 651 -923.1 - SF7BW125 to SF12BW125 652 - 653 -923.3 - SF7BW125 to SF12BW125 654 - 655 - 656 -(% style="color:#037691" %)**Downlink:** 657 - 658 -Uplink channels 1-7(RX1) 659 - 660 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 661 - 662 - 663 - 664 -=== 2.7.7 IN865-867 (IN865) === 665 - 666 -(% style="color:#037691" %)** Uplink:** 667 - 668 -865.0625 - SF7BW125 to SF12BW125 669 - 670 -865.4025 - SF7BW125 to SF12BW125 671 - 672 -865.9850 - SF7BW125 to SF12BW125 673 - 674 - 675 -(% style="color:#037691" %) **Downlink:** 676 - 677 -Uplink channels 1-3 (RX1) 678 - 679 -866.550 - SF10BW125 (RX2) 680 - 681 - 682 - 683 - 684 -== 2.8 LED Indicator == 685 - 686 -The LSE01 has an internal LED which is to show the status of different state. 687 - 688 -* Blink once when device power on. 689 -* Solid ON for 5 seconds once device successful Join the network. 690 -* Blink once when device transmit a packet. 691 - 692 - 693 -== 2.9 Installation in Soil == 694 - 695 -**Measurement the soil surface** 696 - 697 - 698 -[[image:1654506634463-199.png]] 699 - 700 700 ((( 701 -((( 702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 605 +The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 703 703 ))) 704 -))) 705 705 706 - 707 - 708 -[[image:1654506665940-119.png]] 709 - 710 710 ((( 711 - Dig aholewithdiameter>20CM.609 +The battery is designed to last for several years depends on the actually use environment and update interval. 712 712 ))) 713 713 714 714 ((( 715 - Horizontal insert theprobetothesoilnd filltheholefor longtermmeasurement.613 +The battery related documents as below: 716 716 ))) 717 717 616 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 617 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 618 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 718 718 719 -== 2.10 Firmware Change Log == 720 - 721 721 ((( 722 - **Firmwaredownload link:**621 +[[image:image-20220709101450-2.png]] 723 723 ))) 724 724 725 -((( 726 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 727 -))) 728 728 729 -((( 730 - 731 -))) 732 732 733 -((( 734 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 735 -))) 626 +=== 2.8.2 Power consumption Analyze === 736 736 737 737 ((( 738 - 629 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 739 739 ))) 740 740 741 -((( 742 -**V1.0.** 743 -))) 744 744 745 745 ((( 746 - Release634 +Instruction to use as below: 747 747 ))) 748 748 749 - 750 -== 2.11 Battery Analysis == 751 - 752 -=== 2.11.1 Battery Type === 753 - 754 754 ((( 755 - TheLSE01 batteryisa combinationof a 4000mAh Li/SOCI2 Batteryand a Super Capacitor. Thebatterys non-rechargeablebatterytypewithalowischargerate(<2% perear). Thistype of batteryiscommonly usedIoTdevices suchas water meter.638 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 756 756 ))) 757 757 758 -((( 759 -The battery is designed to last for more than 5 years for the LSN50. 760 -))) 761 761 762 762 ((( 763 -((( 764 -The battery-related documents are as below: 643 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 765 765 ))) 766 -))) 767 767 768 768 * ((( 769 - [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],647 +Product Model 770 770 ))) 771 771 * ((( 772 - [[Lithium-ThionylChloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],650 +Uplink Interval 773 773 ))) 774 774 * ((( 775 - [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]653 +Working Mode 776 776 ))) 777 777 778 - [[image:image-20220610172436-1.png]] 656 +((( 657 +And the Life expectation in difference case will be shown on the right. 658 +))) 779 779 660 +[[image:image-20220709110451-3.png]] 780 780 781 781 782 -=== 2.11.2 Battery Note === 783 783 664 +=== 2.8.3 Battery Note === 665 + 784 784 ((( 785 785 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 786 786 ))) ... ... @@ -787,302 +787,169 @@ 787 787 788 788 789 789 790 -=== 2. 11.3Replace the battery ===672 +=== 2.8.4 Replace the battery === 791 791 792 792 ((( 793 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.675 +The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 794 794 ))) 795 795 678 + 679 + 680 += 3. Access NB-IoT Module = 681 + 796 796 ((( 797 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.683 +Users can directly access the AT command set of the NB-IoT module. 798 798 ))) 799 799 800 800 ((( 801 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)687 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 802 802 ))) 803 803 690 +[[image:1657333200519-600.png]] 804 804 805 805 806 -= 3. Using the AT Commands = 807 807 808 -= =3.1AccessAT Commands ==694 += 4. Using the AT Commands = 809 809 696 +== 4.1 Access AT Commands == 810 810 811 - LSE01supportsATCommandsetn the stock firmware. You can usea USBtoTL adaptero connectto LSE01 forusing ATcommand,asbelow.698 +See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 812 812 813 -[[image:1654501986557-872.png||height="391" width="800"]] 814 814 701 +AT+<CMD>? : Help on <CMD> 815 815 816 - Orifyouhavebelowboard,usebelowconnection:703 +AT+<CMD> : Run <CMD> 817 817 705 +AT+<CMD>=<value> : Set the value 818 818 819 - [[image:1654502005655-729.png||height="503"width="801"]]707 +AT+<CMD>=? : Get the value 820 820 821 821 822 - 823 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 824 - 825 - 826 - [[image:1654502050864-459.png||height="564" width="806"]] 827 - 828 - 829 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 830 - 831 - 832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 833 - 834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 835 - 836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 837 - 838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 839 - 840 - 841 841 (% style="color:#037691" %)**General Commands**(%%) 842 842 843 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention712 +AT : Attention 844 844 845 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help714 +AT? : Short Help 846 846 847 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset716 +ATZ : MCU Reset 848 848 849 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval718 +AT+TDC : Application Data Transmission Interval 850 850 720 +AT+CFG : Print all configurations 851 851 852 - (%style="color:#037691"%)**Keys,IDsand EUIs management**722 +AT+CFGMOD : Working mode selection 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI724 +AT+INTMOD : Set the trigger interrupt mode 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey726 +AT+5VT : Set extend the time of 5V power 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key728 +AT+PRO : Choose agreement 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress730 +AT+WEIGRE : Get weight or set weight to 0 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI732 +AT+WEIGAP : Get or Set the GapValue of weight 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)734 +AT+RXDL : Extend the sending and receiving time 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network736 +AT+CNTFAC : Get or set counting parameters 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode738 +AT+SERVADDR : Server Address 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 871 871 872 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network741 +(% style="color:#037691" %)**COAP Management** 873 873 874 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode743 +AT+URI : Resource parameters 875 875 876 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 877 877 878 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format746 +(% style="color:#037691" %)**UDP Management** 879 879 880 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat748 +AT+CFM : Upload confirmation mode (only valid for UDP) 881 881 882 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 883 883 884 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data751 +(% style="color:#037691" %)**MQTT Management** 885 885 753 +AT+CLIENT : Get or Set MQTT client 886 886 887 - (%style="color:#037691"%)**LoRaNetworkManagement**755 +AT+UNAME : Get or Set MQTT Username 888 888 889 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate757 +AT+PWD : Get or Set MQTT password 890 890 891 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA759 +AT+PUBTOPIC : Get or Set MQTT publish topic 892 892 893 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting761 +AT+SUBTOPIC : Get or Set MQTT subscription topic 894 894 895 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 896 896 897 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink764 +(% style="color:#037691" %)**Information** 898 898 899 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink766 +AT+FDR : Factory Data Reset 900 900 901 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1768 +AT+PWORD : Serial Access Password 902 902 903 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 904 904 905 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 906 906 907 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1772 += 5. FAQ = 908 908 909 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2774 +== 5.1 How to Upgrade Firmware == 910 910 911 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 912 912 913 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 914 - 915 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 916 - 917 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 918 - 919 - 920 -(% style="color:#037691" %)**Information** 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 925 - 926 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 927 - 928 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 929 - 930 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 931 - 932 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 933 - 934 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 935 - 936 - 937 -= 4. FAQ = 938 - 939 -== 4.1 How to change the LoRa Frequency Bands/Region? == 940 - 941 941 ((( 942 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 943 -When downloading the images, choose the required image file for download. 778 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 944 944 ))) 945 945 946 946 ((( 947 - 782 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 948 948 ))) 949 949 950 950 ((( 951 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.786 +(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update. 952 952 ))) 953 953 954 -((( 955 - 956 -))) 957 957 958 -((( 959 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 960 -))) 961 961 962 -((( 963 - 964 -))) 791 += 6. Trouble Shooting = 965 965 966 -((( 967 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 968 -))) 793 +== 6.1 Connection problem when uploading firmware == 969 969 970 -[[image:image-20220606154726-3.png]] 971 971 972 - 973 -When you use the TTN network, the US915 frequency bands use are: 974 - 975 -* 903.9 - SF7BW125 to SF10BW125 976 -* 904.1 - SF7BW125 to SF10BW125 977 -* 904.3 - SF7BW125 to SF10BW125 978 -* 904.5 - SF7BW125 to SF10BW125 979 -* 904.7 - SF7BW125 to SF10BW125 980 -* 904.9 - SF7BW125 to SF10BW125 981 -* 905.1 - SF7BW125 to SF10BW125 982 -* 905.3 - SF7BW125 to SF10BW125 983 -* 904.6 - SF8BW500 984 - 985 985 ((( 986 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 987 - 988 -* (% style="color:#037691" %)**AT+CHE=2** 989 -* (% style="color:#037691" %)**ATZ** 797 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 990 990 ))) 991 991 800 +(% class="wikigeneratedid" %) 992 992 ((( 993 993 994 - 995 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 996 996 ))) 997 997 998 -((( 999 - 1000 -))) 1001 1001 1002 -((( 1003 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1004 -))) 806 +== 6.2 AT Command input doesn't work == 1005 1005 1006 -[[image:image-20220606154825-4.png]] 1007 - 1008 - 1009 -== 4.2 Can I calibrate LSE01 to different soil types? == 1010 - 1011 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1012 - 1013 - 1014 -= 5. Trouble Shooting = 1015 - 1016 -== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1017 - 1018 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1019 - 1020 - 1021 -== 5.2 AT Command input doesn't work == 1022 - 1023 1023 ((( 1024 1024 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1025 -))) 1026 1026 1027 - 1028 -== 5.3 Device rejoin in at the second uplink packet == 1029 - 1030 -(% style="color:#4f81bd" %)**Issue describe as below:** 1031 - 1032 -[[image:1654500909990-784.png]] 1033 - 1034 - 1035 -(% style="color:#4f81bd" %)**Cause for this issue:** 1036 - 1037 -((( 1038 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 811 + 1039 1039 ))) 1040 1040 1041 1041 1042 - (% style="color:#4f81bd"%)**Solution:**815 += 7. Order Info = 1043 1043 1044 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1045 1045 1046 - [[image:1654500929571-736.png||height="458" width="832"]]818 +Part Number**:** (% style="color:#4f81bd" %)**NSDDS75** 1047 1047 1048 1048 1049 -= 6. Order Info = 1050 - 1051 - 1052 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1053 - 1054 - 1055 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1056 - 1057 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1058 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1059 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1060 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1061 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1062 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1063 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1064 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1065 - 1066 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1067 - 1068 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1069 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1070 - 1071 1071 (% class="wikigeneratedid" %) 1072 1072 ((( 1073 1073 1074 1074 ))) 1075 1075 1076 -= 7. Packing Info =826 += 8. Packing Info = 1077 1077 1078 1078 ((( 1079 1079 1080 1080 1081 1081 (% style="color:#037691" %)**Package Includes**: 1082 -))) 1083 1083 1084 -* (((1085 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1833 +* NSE01 NB-IoT Distance Detect Sensor Node x 1 834 +* External antenna x 1 1086 1086 ))) 1087 1087 1088 1088 ((( ... ... @@ -1089,24 +1089,22 @@ 1089 1089 1090 1090 1091 1091 (% style="color:#037691" %)**Dimension and weight**: 1092 -))) 1093 1093 1094 -* ((( 1095 -Device Size: cm 842 + 843 +* Device Size: 13.0 x 5 x 4.5 cm 844 +* Device Weight: 150g 845 +* Package Size / pcs : 15 x 12x 5.5 cm 846 +* Weight / pcs : 220g 1096 1096 ))) 1097 -* ((( 1098 -Device Weight: g 1099 -))) 1100 -* ((( 1101 -Package Size / pcs : cm 1102 -))) 1103 -* ((( 1104 -Weight / pcs : g 1105 1105 849 +((( 1106 1106 851 + 852 + 853 + 1107 1107 ))) 1108 1108 1109 -= 8. Support =856 += 9. Support = 1110 1110 1111 1111 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1112 1112 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.5 KB - Content
- image-20220709110451-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +611.5 KB - Content