<
From version < 42.1 >
edited by Xiaoling
on 2022/07/08 09:52
To version < 64.4 >
edited by Xiaoling
on 2022/07/08 14:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -13,70 +13,78 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
71 -== 1.3 Specification ==
62 +== 1.3  Specification ==
72 72  
64 +
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
73 73  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
75 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
76 76  
77 77  
78 78  
79 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
80 80  
81 81  * Smart Agriculture
82 82  
... ... @@ -83,934 +83,677 @@
83 83  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
84 84  ​
85 85  
86 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
87 87  
88 88  
89 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
90 90  
91 91  
92 92  
93 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
94 94  
95 -== 2.1 How it works ==
103 +== 2.1  How it works ==
96 96  
105 +
97 97  (((
98 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
99 99  )))
100 100  
110 +
101 101  (((
102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
103 103  )))
104 104  
115 +[[image:image-20220708101605-2.png]]
105 105  
117 +(((
118 +
119 +)))
106 106  
107 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
108 108  
109 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
110 110  
123 +== 2.2 ​ Configure the NSE01 ==
111 111  
112 -[[image:1654503992078-669.png]]
113 113  
126 +=== 2.2.1 Test Requirement ===
114 114  
115 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116 116  
129 +To use NSE01 in your city, make sure meet below requirements:
117 117  
118 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
119 119  
120 -Each LSE01 is shipped with a sticker with the default device EUI as below:
121 -
122 -[[image:image-20220606163732-6.jpeg]]
123 -
124 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
125 -
126 -**Add APP EUI in the application**
127 -
128 -
129 -[[image:1654504596150-405.png]]
130 -
131 -
132 -
133 -**Add APP KEY and DEV EUI**
134 -
135 -[[image:1654504683289-357.png]]
136 -
137 -
138 -
139 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
140 -
141 -
142 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
143 -
144 -[[image:image-20220606163915-7.png]]
145 -
146 -
147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
148 -
149 -[[image:1654504778294-788.png]]
150 -
151 -
152 -
153 -== 2.3 Uplink Payload ==
154 -
155 -
156 -=== 2.3.1 MOD~=0(Default Mode) ===
157 -
158 -LSE01 will uplink payload via LoRaWAN with below payload format: 
159 -
160 160  (((
161 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
162 162  )))
163 163  
164 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 -|(((
166 -**Size**
167 167  
168 -**(bytes)**
169 -)))|**2**|**2**|**2**|**2**|**2**|**1**
170 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 -Temperature
140 +[[image:1657249419225-449.png]]
172 172  
173 -(Reserve, Ignore now)
174 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 -MOD & Digital Interrupt
176 176  
177 -(Optional)
178 -)))
179 179  
180 -=== 2.3.2 MOD~=1(Original value) ===
144 +=== 2.2.2 Insert SIM card ===
181 181  
182 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
146 +Insert the NB-IoT Card get from your provider.
183 183  
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
186 -**Size**
148 +User need to take out the NB-IoT module and insert the SIM card like below:
187 187  
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 -Temperature
192 192  
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 -MOD & Digital Interrupt
151 +[[image:1657249468462-536.png]]
196 196  
197 -(Optional)
198 -)))
199 199  
200 -=== 2.3.3 Battery Info ===
201 201  
202 -(((
203 -Check the battery voltage for LSE01.
204 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
205 205  
206 206  (((
207 -Ex1: 0x0B45 = 2885mV
208 -)))
209 -
210 210  (((
211 -Ex2: 0x0B49 = 2889mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
212 212  )))
213 -
214 -
215 -
216 -=== 2.3.4 Soil Moisture ===
217 -
218 -(((
219 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 220  )))
221 221  
222 -(((
223 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
224 -)))
225 225  
226 -(((
227 -
228 -)))
164 +**Connection:**
229 229  
230 -(((
231 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
232 -)))
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
233 233  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
234 234  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
235 235  
236 -=== 2.3.5 Soil Temperature ===
237 237  
238 -(((
239 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
240 -)))
173 +In the PC, use below serial tool settings:
241 241  
242 -(((
243 -**Example**:
244 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
245 245  
246 246  (((
247 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
248 248  )))
249 249  
250 -(((
251 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
252 -)))
185 +[[image:image-20220708110657-3.png]]
253 253  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
254 254  
255 255  
256 -=== 2.3.6 Soil Conductivity (EC) ===
257 257  
258 -(((
259 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
260 -)))
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
261 261  
262 -(((
263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 -)))
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
265 265  
266 -(((
267 -Generally, the EC value of irrigation water is less than 800uS / cm.
268 -)))
269 269  
270 -(((
271 -
272 -)))
196 +**Use below commands:**
273 273  
274 -(((
275 -
276 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
277 277  
278 -=== 2.3.7 MOD ===
202 +For parameter description, please refer to AT command set
279 279  
280 -Firmware version at least v2.1 supports changing mode.
204 +[[image:1657249793983-486.png]]
281 281  
282 -For example, bytes[10]=90
283 283  
284 -mod=(bytes[10]>>7)&0x01=1.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
285 285  
209 +[[image:1657249831934-534.png]]
286 286  
287 -**Downlink Command:**
288 288  
289 -If payload = 0x0A00, workmode=0
290 290  
291 -If** **payload =** **0x0A01, workmode=1
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
292 292  
215 +This feature is supported since firmware version v1.0.1
293 293  
294 294  
295 -=== 2.3.8 ​Decode payload in The Things Network ===
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
296 296  
297 -While using TTN network, you can add the payload format to decode the payload.
222 +[[image:1657249864775-321.png]]
298 298  
299 299  
300 -[[image:1654505570700-128.png]]
225 +[[image:1657249930215-289.png]]
301 301  
302 -(((
303 -The payload decoder function for TTN is here:
304 -)))
305 305  
306 -(((
307 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
308 -)))
309 309  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
310 310  
311 -== 2.4 Uplink Interval ==
231 +This feature is supported since firmware version v110
312 312  
313 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
314 314  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
315 315  
242 +[[image:1657249978444-674.png]]
316 316  
317 -== 2.5 Downlink Payload ==
318 318  
319 -By default, LSE50 prints the downlink payload to console port.
245 +[[image:1657249990869-686.png]]
320 320  
321 -[[image:image-20220606165544-8.png]]
322 322  
323 -
324 324  (((
325 -(% style="color:blue" %)**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
326 326  )))
327 327  
328 -(((
329 -
330 -)))
331 331  
332 -* (((
333 -(% style="color:blue" %)**Set TDC**
334 -)))
335 335  
336 -(((
337 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
338 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
339 339  
340 -(((
341 -Payload:    01 00 00 1E    TDC=30S
342 -)))
256 +This feature is supported since firmware version v110
343 343  
344 -(((
345 -Payload:    01 00 00 3C    TDC=60S
346 -)))
347 347  
348 -(((
349 -
350 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
351 351  
352 -* (((
353 -(% style="color:blue" %)**Reset**
354 -)))
262 +[[image:1657250217799-140.png]]
355 355  
356 -(((
357 -If payload = 0x04FF, it will reset the LSE01
358 -)))
359 359  
265 +[[image:1657250255956-604.png]]
360 360  
361 -* (% style="color:blue" %)**CFM**
362 362  
363 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
364 364  
269 +=== 2.2.8 Change Update Interval ===
365 365  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
366 366  
367 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
368 368  
369 369  (((
370 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
371 371  )))
372 372  
373 373  (((
374 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
375 375  )))
376 376  
377 -(((
378 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
379 -)))
380 380  
381 -(((
382 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
383 -)))
384 384  
285 +== 2.3  Uplink Payload ==
385 385  
386 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
387 387  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
388 388  
389 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
390 390  
391 391  
392 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
298 +[[image:image-20220708111918-4.png]]
393 393  
394 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
395 395  
301 +The payload is ASCII string, representative same HEX:
396 396  
397 -[[image:1654505905236-553.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
398 398  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
399 399  
400 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
401 401  
402 -[[image:1654505925508-181.png]]
315 +== 2.4  Payload Explanation and Sensor Interface ==
403 403  
404 404  
318 +=== 2.4.1  Device ID ===
405 405  
406 -== 2.7 Frequency Plans ==
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
407 407  
408 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
409 409  
324 +**Example:**
410 410  
411 -=== 2.7.1 EU863-870 (EU868) ===
326 +AT+DEUI=A84041F15612
412 412  
413 -(% style="color:#037691" %)** Uplink:**
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
414 414  
415 -868.1 - SF7BW125 to SF12BW125
416 416  
417 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
418 418  
419 -868.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
420 420  
421 -867.1 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
422 422  
423 -867.3 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
424 424  
425 -867.5 - SF7BW125 to SF12BW125
426 426  
427 -867.7 - SF7BW125 to SF12BW125
428 428  
429 -867.9 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
430 430  
431 -868.8 - FSK
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
432 432  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
433 433  
434 -(% style="color:#037691" %)** Downlink:**
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
435 435  
436 -Uplink channels 1-9 (RX1)
437 437  
438 -869.525 - SF9BW125 (RX2 downlink only)
439 439  
356 +=== 2.4.4  Signal Strength ===
440 440  
358 +NB-IoT Network signal Strength.
441 441  
442 -=== 2.7.2 US902-928(US915) ===
360 +**Ex1: 0x1d = 29**
443 443  
444 -Used in USA, Canada and South America. Default use CHE=2
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
445 445  
446 -(% style="color:#037691" %)**Uplink:**
364 +(% style="color:blue" %)**1**(%%)  -111dBm
447 447  
448 -903.9 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
449 449  
450 -904.1 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
451 451  
452 -904.3 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
453 453  
454 -904.5 - SF7BW125 to SF10BW125
455 455  
456 -904.7 - SF7BW125 to SF10BW125
457 457  
458 -904.9 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
459 459  
460 -905.1 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
461 461  
462 -905.3 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
463 463  
384 +(((
385 +
386 +)))
464 464  
465 -(% style="color:#037691" %)**Downlink:**
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
466 466  
467 -923.3 - SF7BW500 to SF12BW500
468 468  
469 -923.9 - SF7BW500 to SF12BW500
470 470  
471 -924.5 - SF7BW500 to SF12BW500
394 +=== 2.4. Soil Temperature ===
472 472  
473 -925.1 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
474 474  
475 -925.7 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
476 476  
477 -926.3 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
478 478  
479 -926.9 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
480 480  
481 -927.5 - SF7BW500 to SF12BW500
482 482  
483 -923.3 - SF12BW500(RX2 downlink only)
484 484  
414 +=== 2.4.7  Soil Conductivity (EC) ===
485 485  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
486 486  
487 -=== 2.7.3 CN470-510 (CN470) ===
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
488 488  
489 -Used in China, Default use CHE=1
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
490 490  
491 -(% style="color:#037691" %)**Uplink:**
428 +(((
429 +
430 +)))
492 492  
493 -486.3 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
494 494  
495 -486.5 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
496 496  
497 -486.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
498 498  
499 -486.9 - SF7BW125 to SF12BW125
440 +The command is:
500 500  
501 -487.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
502 502  
503 -487.3 - SF7BW125 to SF12BW125
504 504  
505 -487.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
506 506  
507 -487.7 - SF7BW125 to SF12BW125
508 508  
448 +Example:
509 509  
510 -(% style="color:#037691" %)**Downlink:**
450 +0x(00): Normal uplink packet.
511 511  
512 -506.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
513 513  
514 -506.9 - SF7BW125 to SF12BW125
515 515  
516 -507.1 - SF7BW125 to SF12BW125
517 517  
518 -507.3 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
519 519  
520 -507.5 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
521 521  
522 -507.7 - SF7BW125 to SF12BW125
523 523  
524 -507.9 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
525 525  
526 -508.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
527 527  
528 -505.3 - SF12BW125 (RX2 downlink only)
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
529 529  
530 530  
531 531  
532 -=== 2.7.4 AU915-928(AU915) ===
469 +== 2.5  Downlink Payload ==
533 533  
534 -Default use CHE=2
471 +By default, NSE01 prints the downlink payload to console port.
535 535  
536 -(% style="color:#037691" %)**Uplink:**
473 +[[image:image-20220708133731-5.png]]
537 537  
538 -916.8 - SF7BW125 to SF12BW125
539 539  
540 -917.0 - SF7BW125 to SF12BW125
476 +(((
477 +(% style="color:blue" %)**Examples:**
478 +)))
541 541  
542 -917.2 - SF7BW125 to SF12BW125
480 +(((
481 +
482 +)))
543 543  
544 -917.4 - SF7BW125 to SF12BW125
484 +* (((
485 +(% style="color:blue" %)**Set TDC**
486 +)))
545 545  
546 -917.6 - SF7BW125 to SF12BW125
488 +(((
489 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
490 +)))
547 547  
548 -917.8 - SF7BW125 to SF12BW125
492 +(((
493 +Payload:    01 00 00 1E    TDC=30S
494 +)))
549 549  
550 -918.0 - SF7BW125 to SF12BW125
496 +(((
497 +Payload:    01 00 00 3C    TDC=60S
498 +)))
551 551  
552 -918.2 - SF7BW125 to SF12BW125
500 +(((
501 +
502 +)))
553 553  
504 +* (((
505 +(% style="color:blue" %)**Reset**
506 +)))
554 554  
555 -(% style="color:#037691" %)**Downlink:**
508 +(((
509 +If payload = 0x04FF, it will reset the NSE01
510 +)))
556 556  
557 -923.3 - SF7BW500 to SF12BW500
558 558  
559 -923.9 - SF7BW500 to SF12BW500
513 +* (% style="color:blue" %)**INTMOD**
560 560  
561 -924.5 - SF7BW500 to SF12BW500
515 +Downlink Payload: 06000003, Set AT+INTMOD=3
562 562  
563 -925.1 - SF7BW500 to SF12BW500
564 564  
565 -925.7 - SF7BW500 to SF12BW500
566 566  
567 -926.3 - SF7BW500 to SF12BW500
519 +== 2. ​LED Indicator ==
568 568  
569 -926.9 - SF7BW500 to SF12BW500
521 +(((
522 +The NSE01 has an internal LED which is to show the status of different state.
570 570  
571 -927.5 - SF7BW500 to SF12BW500
572 572  
573 -923.3 - SF12BW500(RX2 downlink only)
525 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
526 +* Then the LED will be on for 1 second means device is boot normally.
527 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
528 +* For each uplink probe, LED will be on for 500ms.
529 +)))
574 574  
575 575  
576 576  
577 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
578 578  
579 -(% style="color:#037691" %)**Default Uplink channel:**
534 +== 2.7  Installation in Soil ==
580 580  
581 -923.2 - SF7BW125 to SF10BW125
536 +__**Measurement the soil surface**__
582 582  
583 -923.4 - SF7BW125 to SF10BW125
538 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
584 584  
540 +[[image:1657259653666-883.png]] ​
585 585  
586 -(% style="color:#037691" %)**Additional Uplink Channel**:
587 587  
588 -(OTAA mode, channel added by JoinAccept message)
543 +(((
544 +
589 589  
590 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
546 +(((
547 +Dig a hole with diameter > 20CM.
548 +)))
591 591  
592 -922.2 - SF7BW125 to SF10BW125
550 +(((
551 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
552 +)))
553 +)))
593 593  
594 -922.4 - SF7BW125 to SF10BW125
555 +[[image:1654506665940-119.png]]
595 595  
596 -922.6 - SF7BW125 to SF10BW125
557 +(((
558 +
559 +)))
597 597  
598 -922.8 - SF7BW125 to SF10BW125
599 599  
600 -923.0 - SF7BW125 to SF10BW125
562 +== 2. Firmware Change Log ==
601 601  
602 -922.0 - SF7BW125 to SF10BW125
603 603  
565 +Download URL & Firmware Change log
604 604  
605 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
567 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
606 606  
607 -923.6 - SF7BW125 to SF10BW125
608 608  
609 -923.8 - SF7BW125 to SF10BW125
570 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
610 610  
611 -924.0 - SF7BW125 to SF10BW125
612 612  
613 -924.2 - SF7BW125 to SF10BW125
614 614  
615 -924.4 - SF7BW125 to SF10BW125
574 +== 2. Battery Analysis ==
616 616  
617 -924.6 - SF7BW125 to SF10BW125
576 +=== 2.9.1  ​Battery Type ===
618 618  
619 619  
620 -(% style="color:#037691" %)** Downlink:**
579 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
621 621  
622 -Uplink channels 1-8 (RX1)
623 623  
624 -923.2 - SF10BW125 (RX2)
582 +The battery is designed to last for several years depends on the actually use environment and update interval. 
625 625  
626 626  
585 +The battery related documents as below:
627 627  
628 -=== 2.7.6 KR920-923 (KR920) ===
587 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
588 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
629 629  
630 -Default channel:
631 -
632 -922.1 - SF7BW125 to SF12BW125
633 -
634 -922.3 - SF7BW125 to SF12BW125
635 -
636 -922.5 - SF7BW125 to SF12BW125
637 -
638 -
639 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
640 -
641 -922.1 - SF7BW125 to SF12BW125
642 -
643 -922.3 - SF7BW125 to SF12BW125
644 -
645 -922.5 - SF7BW125 to SF12BW125
646 -
647 -922.7 - SF7BW125 to SF12BW125
648 -
649 -922.9 - SF7BW125 to SF12BW125
650 -
651 -923.1 - SF7BW125 to SF12BW125
652 -
653 -923.3 - SF7BW125 to SF12BW125
654 -
655 -
656 -(% style="color:#037691" %)**Downlink:**
657 -
658 -Uplink channels 1-7(RX1)
659 -
660 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
661 -
662 -
663 -
664 -=== 2.7.7 IN865-867 (IN865) ===
665 -
666 -(% style="color:#037691" %)** Uplink:**
667 -
668 -865.0625 - SF7BW125 to SF12BW125
669 -
670 -865.4025 - SF7BW125 to SF12BW125
671 -
672 -865.9850 - SF7BW125 to SF12BW125
673 -
674 -
675 -(% style="color:#037691" %) **Downlink:**
676 -
677 -Uplink channels 1-3 (RX1)
678 -
679 -866.550 - SF10BW125 (RX2)
680 -
681 -
682 -
683 -
684 -== 2.8 LED Indicator ==
685 -
686 -The LSE01 has an internal LED which is to show the status of different state.
687 -
688 -* Blink once when device power on.
689 -* Solid ON for 5 seconds once device successful Join the network.
690 -* Blink once when device transmit a packet.
691 -
692 -
693 -== 2.9 Installation in Soil ==
694 -
695 -**Measurement the soil surface**
696 -
697 -
698 -[[image:1654506634463-199.png]] ​
699 -
700 700  (((
701 -(((
702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
592 +[[image:image-20220708140453-6.png]]
703 703  )))
704 -)))
705 705  
706 706  
707 707  
708 -[[image:1654506665940-119.png]]
597 +=== 2.9.2  Power consumption Analyze ===
709 709  
710 710  (((
711 -Dig a hole with diameter > 20CM.
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
712 712  )))
713 713  
714 -(((
715 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
716 -)))
717 717  
718 -
719 -== 2.10 ​Firmware Change Log ==
720 -
721 721  (((
722 -**Firmware download link:**
605 +Instruction to use as below:
723 723  )))
724 724  
725 725  (((
726 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
609 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
727 727  )))
728 728  
729 -(((
730 -
731 -)))
732 732  
733 733  (((
734 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
614 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
735 735  )))
736 736  
737 -(((
738 -
617 +* (((
618 +Product Model
739 739  )))
740 -
741 -(((
742 -**V1.0.**
620 +* (((
621 +Uplink Interval
743 743  )))
623 +* (((
624 +Working Mode
625 +)))
744 744  
745 745  (((
746 -Release
628 +And the Life expectation in difference case will be shown on the right.
747 747  )))
748 748  
631 +[[image:image-20220708141352-7.jpeg]]
749 749  
750 -== 2.11 ​Battery Analysis ==
751 751  
752 -=== 2.11.1 ​Battery Type ===
753 753  
754 -(((
755 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
756 -)))
635 +=== 2.9.3  ​Battery Note ===
757 757  
758 758  (((
759 -The battery is designed to last for more than 5 years for the LSN50.
638 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
760 760  )))
761 761  
762 -(((
763 -(((
764 -The battery-related documents are as below:
765 -)))
766 -)))
767 767  
768 -* (((
769 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
770 -)))
771 -* (((
772 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
773 -)))
774 -* (((
775 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
776 -)))
777 777  
778 - [[image:image-20220610172436-1.png]]
643 +=== 2.9.4  Replace the battery ===
779 779  
780 -
781 -
782 -=== 2.11.2 ​Battery Note ===
783 -
784 784  (((
785 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
646 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
786 786  )))
787 787  
788 788  
789 789  
790 -=== 2.11.3 Replace the battery ===
651 += 3. ​ Access NB-IoT Module =
791 791  
792 792  (((
793 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
654 +Users can directly access the AT command set of the NB-IoT module.
794 794  )))
795 795  
796 796  (((
797 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
658 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
798 798  )))
799 799  
800 -(((
801 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
802 -)))
661 +[[image:1657261278785-153.png]]
803 803  
804 804  
805 805  
806 -= 3. Using the AT Commands =
665 += 4.  Using the AT Commands =
807 807  
808 -== 3.1 Access AT Commands ==
667 +== 4.1  Access AT Commands ==
809 809  
669 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
810 810  
811 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
812 812  
813 -[[image:1654501986557-872.png||height="391" width="800"]]
672 +AT+<CMD>?  : Help on <CMD>
814 814  
674 +AT+<CMD>         : Run <CMD>
815 815  
816 -Or if you have below board, use below connection:
676 +AT+<CMD>=<value> : Set the value
817 817  
678 +AT+<CMD>=?  : Get the value
818 818  
819 -[[image:1654502005655-729.png||height="503" width="801"]]
820 820  
821 -
822 -
823 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
824 -
825 -
826 - [[image:1654502050864-459.png||height="564" width="806"]]
827 -
828 -
829 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
830 -
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
835 -
836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
837 -
838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
839 -
840 -
841 841  (% style="color:#037691" %)**General Commands**(%%)      
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
683 +AT  : Attention       
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
685 +AT?  : Short Help     
846 846  
847 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
687 +ATZ  : MCU Reset    
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
689 +AT+TDC  : Application Data Transmission Interval
850 850  
691 +AT+CFG  : Print all configurations
851 851  
852 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
693 +AT+CFGMOD           : Working mode selection
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
695 +AT+INTMOD            : Set the trigger interrupt mode
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
697 +AT+5VT  : Set extend the time of 5V power  
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
699 +AT+PRO  : Choose agreement
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
701 +AT+WEIGRE  : Get weight or set weight to 0
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
703 +AT+WEIGAP  : Get or Set the GapValue of weight
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
705 +AT+RXDL  : Extend the sending and receiving time
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
707 +AT+CNTFAC  : Get or set counting parameters
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
709 +AT+SERVADDR  : Server Address
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
712 +(% style="color:#037691" %)**COAP Management**      
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
714 +AT+URI            : Resource parameters
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
717 +(% style="color:#037691" %)**UDP Management**
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
719 +AT+CFM          : Upload confirmation mode (only valid for UDP)
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
722 +(% style="color:#037691" %)**MQTT Management**
885 885  
724 +AT+CLIENT               : Get or Set MQTT client
886 886  
887 -(% style="color:#037691" %)**LoRa Network Management**
726 +AT+UNAME  : Get or Set MQTT Username
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
728 +AT+PWD                  : Get or Set MQTT password
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
730 +AT+PUBTOPI : Get or Set MQTT publish topic
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
732 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
735 +(% style="color:#037691" %)**Information**          
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
737 +AT+FDR  : Factory Data Reset
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
739 +AT+PWOR : Serial Access Password
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
743 += ​5.  FAQ =
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
745 +== 5.1 How to Upgrade Firmware ==
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
914 -
915 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
916 -
917 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
918 -
919 -
920 -(% style="color:#037691" %)**Information** 
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
933 -
934 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
935 -
936 -
937 -= ​4. FAQ =
938 -
939 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
940 -
941 941  (((
942 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
943 -When downloading the images, choose the required image file for download. ​
749 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
944 944  )))
945 945  
946 946  (((
947 -
753 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
948 948  )))
949 949  
950 950  (((
951 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
757 +Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
952 952  )))
953 953  
954 -(((
955 -
956 -)))
957 957  
958 958  (((
959 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
960 -)))
961 -
962 -(((
963 963  
964 964  )))
965 965  
966 -(((
967 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
968 -)))
969 -
970 -[[image:image-20220606154726-3.png]]
971 -
972 -
973 -When you use the TTN network, the US915 frequency bands use are:
974 -
975 -* 903.9 - SF7BW125 to SF10BW125
976 -* 904.1 - SF7BW125 to SF10BW125
977 -* 904.3 - SF7BW125 to SF10BW125
978 -* 904.5 - SF7BW125 to SF10BW125
979 -* 904.7 - SF7BW125 to SF10BW125
980 -* 904.9 - SF7BW125 to SF10BW125
981 -* 905.1 - SF7BW125 to SF10BW125
982 -* 905.3 - SF7BW125 to SF10BW125
983 -* 904.6 - SF8BW500
984 -
985 -(((
986 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
987 -
988 -* (% style="color:#037691" %)**AT+CHE=2**
989 -* (% style="color:#037691" %)**ATZ**
990 -)))
991 -
992 -(((
993 -
994 -
995 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
996 -)))
997 -
998 -(((
999 -
1000 -)))
1001 -
1002 -(((
1003 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1004 -)))
1005 -
1006 -[[image:image-20220606154825-4.png]]
1007 -
1008 -
1009 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1010 -
1011 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1012 -
1013 -
1014 1014  = 5. Trouble Shooting =
1015 1015  
1016 1016  == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0