Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Content
-
... ... @@ -13,70 +13,78 @@ 13 13 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 20 20 21 21 21 += 1. Introduction = 22 22 23 -= 1. Introduction =23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 24 25 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 - 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 32 32 33 -((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 35 -))) 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 39 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 44 44 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 + 47 47 ))) 48 48 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 54 54 55 55 56 56 57 57 == 1.2 Features == 58 58 59 - * LoRaWAN 1.0.3 Class A60 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 61 61 * Monitor Soil Moisture 62 62 * Monitor Soil Temperature 63 63 * Monitor Soil Conductivity 64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 70 70 71 -== 1.3 Specification == 62 +== 1.3 Specification == 72 72 64 + 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 73 73 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 75 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 76 76 77 77 78 78 79 -== 1.4 Applications == 87 +== 1.4 Applications == 80 80 81 81 * Smart Agriculture 82 82 ... ... @@ -83,726 +83,547 @@ 83 83 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 84 84 85 85 86 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 87 87 88 88 89 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 90 90 91 91 92 92 93 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 94 94 95 -== 2.1 How it works == 103 +== 2.1 How it works == 96 96 105 + 97 97 ((( 98 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 99 99 ))) 100 100 110 + 101 101 ((( 102 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 103 103 ))) 104 104 115 +[[image:image-20220708101605-2.png]] 105 105 117 +((( 118 + 119 +))) 106 106 107 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 108 108 109 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 110 110 123 +== 2.2 Configure the NSE01 == 111 111 112 -[[image:1654503992078-669.png]] 113 113 126 +=== 2.2.1 Test Requirement === 114 114 115 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 116 116 129 +To use NSE01 in your city, make sure meet below requirements: 117 117 118 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 119 119 120 -Each LSE01 is shipped with a sticker with the default device EUI as below: 121 - 122 -[[image:image-20220606163732-6.jpeg]] 123 - 124 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 125 - 126 -**Add APP EUI in the application** 127 - 128 - 129 -[[image:1654504596150-405.png]] 130 - 131 - 132 - 133 -**Add APP KEY and DEV EUI** 134 - 135 -[[image:1654504683289-357.png]] 136 - 137 - 138 - 139 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 140 - 141 - 142 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 143 - 144 -[[image:image-20220606163915-7.png]] 145 - 146 - 147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 148 - 149 -[[image:1654504778294-788.png]] 150 - 151 - 152 - 153 -== 2.3 Uplink Payload == 154 - 155 - 156 -=== 2.3.1 MOD~=0(Default Mode) === 157 - 158 -LSE01 will uplink payload via LoRaWAN with below payload format: 159 - 160 160 ((( 161 - Uplinkpayload includesintotal 11bytes.136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 162 162 ))) 163 163 164 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 165 -|((( 166 -**Size** 167 167 168 -**(bytes)** 169 -)))|**2**|**2**|**2**|**2**|**2**|**1** 170 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 171 -Temperature 140 +[[image:1657249419225-449.png]] 172 172 173 -(Reserve, Ignore now) 174 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 175 -MOD & Digital Interrupt 176 176 177 -(Optional) 178 -))) 179 179 180 -=== 2. 3.2MOD~=1(Originalvalue)===144 +=== 2.2.2 Insert SIM card === 181 181 182 - Thismodecan get the originalAD valueofistureand original conductivity (with temperaturedrift compensation).146 +Insert the NB-IoT Card get from your provider. 183 183 184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 -|((( 186 -**Size** 148 +User need to take out the NB-IoT module and insert the SIM card like below: 187 187 188 -**(bytes)** 189 -)))|**2**|**2**|**2**|**2**|**2**|**1** 190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 -Temperature 192 192 193 -(Reserve, Ignore now) 194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 195 -MOD & Digital Interrupt 151 +[[image:1657249468462-536.png]] 196 196 197 -(Optional) 198 -))) 199 199 200 -=== 2.3.3 Battery Info === 201 201 202 -((( 203 -Check the battery voltage for LSE01. 204 -))) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 205 205 206 206 ((( 207 -Ex1: 0x0B45 = 2885mV 208 -))) 209 - 210 210 ((( 211 -E x2: 0x0B49=2889mV159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 212 212 ))) 213 - 214 - 215 - 216 -=== 2.3.4 Soil Moisture === 217 - 218 -((( 219 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 220 220 ))) 221 221 222 -((( 223 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 224 -))) 225 225 226 -((( 227 - 228 -))) 164 +**Connection:** 229 229 230 -((( 231 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 232 -))) 166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 233 233 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 234 234 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 235 235 236 -=== 2.3.5 Soil Temperature === 237 237 238 -((( 239 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 240 -))) 173 +In the PC, use below serial tool settings: 241 241 242 -((( 243 -**Example**: 244 -))) 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 245 245 246 246 ((( 247 - Ifpayload is0105H:((0x0105&0x8000)>>15===0),temp =0105(H)/100=2.61°C182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 248 248 ))) 249 249 250 -((( 251 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 252 -))) 185 +[[image:image-20220708110657-3.png]] 253 253 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 254 254 255 255 256 -=== 2.3.6 Soil Conductivity (EC) === 257 257 258 -((( 259 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 260 -))) 191 +=== 2.2.4 Use CoAP protocol to uplink data === 261 261 262 -((( 263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 264 -))) 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 265 265 266 -((( 267 -Generally, the EC value of irrigation water is less than 800uS / cm. 268 -))) 269 269 270 -((( 271 - 272 -))) 196 +**Use below commands:** 273 273 274 -(( (275 - 276 -)) )198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 277 277 278 - ===2.3.7MOD===202 +For parameter description, please refer to AT command set 279 279 280 - Firmwareversion at least v2.1 supports changing mode.204 +[[image:1657249793983-486.png]] 281 281 282 -For example, bytes[10]=90 283 283 284 - mod=(bytes[10]>>7)&0x01=1.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 285 285 209 +[[image:1657249831934-534.png]] 286 286 287 -**Downlink Command:** 288 288 289 -If payload = 0x0A00, workmode=0 290 290 291 - If****payload=****0x0A01,workmode=1213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 292 292 215 +This feature is supported since firmware version v1.0.1 293 293 294 294 295 -=== 2.3.8 Decode payload in The Things Network === 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 296 296 297 - While using TTN network, you can add the payload format to decode the payload.222 +[[image:1657249864775-321.png]] 298 298 299 299 300 -[[image:1654 505570700-128.png]]225 +[[image:1657249930215-289.png]] 301 301 302 -((( 303 -The payload decoder function for TTN is here: 304 -))) 305 305 306 -((( 307 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 308 -))) 309 309 229 +=== 2.2.6 Use MQTT protocol to uplink data === 310 310 311 - ==2.4UplinkInterval==231 +This feature is supported since firmware version v110 312 312 313 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 314 314 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 315 315 242 +[[image:1657249978444-674.png]] 316 316 317 -== 2.5 Downlink Payload == 318 318 319 - By default, LSE50rints the downlink payload to console port.245 +[[image:1657249990869-686.png]] 320 320 321 -[[image:image-20220606165544-8.png]] 322 322 323 - 324 324 ((( 325 - (%style="color:blue"%)**Examples:**249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 326 326 ))) 327 327 328 -((( 329 - 330 -))) 331 331 332 -* ((( 333 -(% style="color:blue" %)**Set TDC** 334 -))) 335 335 336 -((( 337 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 338 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 339 339 340 -((( 341 -Payload: 01 00 00 1E TDC=30S 342 -))) 256 +This feature is supported since firmware version v110 343 343 344 -((( 345 -Payload: 01 00 00 3C TDC=60S 346 -))) 347 347 348 -((( 349 - 350 -))) 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 351 351 352 -* ((( 353 -(% style="color:blue" %)**Reset** 354 -))) 262 +[[image:1657250217799-140.png]] 355 355 356 -((( 357 -If payload = 0x04FF, it will reset the LSE01 358 -))) 359 359 265 +[[image:1657250255956-604.png]] 360 360 361 -* (% style="color:blue" %)**CFM** 362 362 363 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 364 364 269 +=== 2.2.8 Change Update Interval === 365 365 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 366 366 367 - ==2.6ShowDatainDataCake IoT Server==273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 368 368 369 369 ((( 370 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:276 +(% style="color:red" %)**NOTE:** 371 371 ))) 372 372 373 373 ((( 374 - 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 375 375 ))) 376 376 377 -((( 378 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 379 -))) 380 380 381 -((( 382 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 383 -))) 384 384 285 +== 2.3 Uplink Payload == 385 385 386 - [[image:1654505857935-743.png]]287 +In this mode, uplink payload includes in total 18 bytes 387 387 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 388 388 389 - [[image:1654505874829-548.png]]295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 390 390 391 391 392 - (% style="color:blue" %)**Step 3**(%%)**:** Create an account or logn Datacake.298 +[[image:image-20220708111918-4.png]] 393 393 394 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 395 395 301 +The payload is ASCII string, representative same HEX: 396 396 397 - [[image:1654505905236-553.png]]303 +0x72403155615900640c7817075e0a8c02f900 where: 398 398 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 399 399 400 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 401 401 402 - [[image:1654505925508-181.png]]315 +== 2.4 Payload Explanation and Sensor Interface == 403 403 404 404 318 +=== 2.4.1 Device ID === 405 405 406 - ==2.7FrequencyPlans==320 +By default, the Device ID equal to the last 6 bytes of IMEI. 407 407 408 - TheLSE01usesOTAAmode and below frequency plansby default. Ifuserwanttouseitwith different frequency plan, pleaserefer the AT command sets.322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 409 409 324 +**Example:** 410 410 411 - === 2.7.1EU863-870(EU868) ===326 +AT+DEUI=A84041F15612 412 412 413 - (%style="color:#037691"%)**Uplink:**328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 414 414 415 -868.1 - SF7BW125 to SF12BW125 416 416 417 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 418 418 419 - 868.5- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 420 420 421 - 867.1-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 422 422 423 - 867.3-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 424 424 425 -867.5 - SF7BW125 to SF12BW125 426 426 427 -867.7 - SF7BW125 to SF12BW125 428 428 429 - 867.9- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 430 430 431 -868.8 - FSK 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 432 432 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 433 433 434 -(% style="color:#037691" %)** Downlink:** 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 435 435 436 -Uplink channels 1-9 (RX1) 437 437 438 -869.525 - SF9BW125 (RX2 downlink only) 439 439 356 +=== 2.4.4 Signal Strength === 440 440 358 +NB-IoT Network signal Strength. 441 441 442 - ===2.7.2 US902-928(US915)===360 +**Ex1: 0x1d = 29** 443 443 444 - UsedinUSA,CanadaandSouthAmerica.Default useCHE=2362 +(% style="color:blue" %)**0**(%%) -113dBm or less 445 445 446 -(% style="color: #037691" %)**Uplink:**364 +(% style="color:blue" %)**1**(%%) -111dBm 447 447 448 - 903.9- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 449 449 450 - 904.1-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 451 451 452 -9 04.3-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 453 453 454 -904.5 - SF7BW125 to SF10BW125 455 455 456 -904.7 - SF7BW125 to SF10BW125 457 457 458 - 904.9-SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 459 459 460 -905.1 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 461 461 462 -905.3 - SF7BW125 to SF10BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 463 463 384 +((( 385 + 386 +))) 464 464 465 -(% style="color:#037691" %)**Downlink:** 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 466 466 467 -923.3 - SF7BW500 to SF12BW500 468 468 469 -923.9 - SF7BW500 to SF12BW500 470 470 471 - 924.5-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 472 472 473 -925.1 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 474 474 475 -925.7 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 476 476 477 -926.3 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 478 478 479 -926.9 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 480 480 481 -927.5 - SF7BW500 to SF12BW500 482 482 483 -923.3 - SF12BW500(RX2 downlink only) 484 484 414 +=== 2.4.7 Soil Conductivity (EC) === 485 485 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 486 486 487 -=== 2.7.3 CN470-510 (CN470) === 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 488 488 489 -Used in China, Default use CHE=1 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 490 490 491 -(% style="color:#037691" %)**Uplink:** 428 +((( 429 + 430 +))) 492 492 493 -486.3 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 494 494 495 -4 86.5-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 496 496 497 - 486.7-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 498 499 - 486.9- SF7BW125 toSF12BW125440 +The command is: 500 500 501 - 487.1-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 502 502 503 -487.3 - SF7BW125 to SF12BW125 504 504 505 - 487.5-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 506 506 507 -487.7 - SF7BW125 to SF12BW125 508 508 448 +Example: 509 509 510 -( %style="color:#037691"%)**Downlink:**450 +0x(00): Normal uplink packet. 511 511 512 - 506.7 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 513 513 514 -506.9 - SF7BW125 to SF12BW125 515 515 516 -507.1 - SF7BW125 to SF12BW125 517 517 518 - 507.3- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 519 519 520 - 507.5-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 521 521 522 -507.7 - SF7BW125 to SF12BW125 523 523 524 -5 07.9-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 525 525 526 - 508.1- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 527 527 528 -50 5.3-SF12BW125(RX2downlinkonly)465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 529 529 530 530 531 531 532 -== =2.7.4 AU915-928(AU915)===469 +== 2.5 Downlink Payload == 533 533 534 - DefaultuseCHE=2471 +By default, NSE01 prints the downlink payload to console port. 535 535 536 - (% style="color:#037691" %)**Uplink:**473 +[[image:image-20220708133731-5.png]] 537 537 538 -916.8 - SF7BW125 to SF12BW125 539 539 540 -917.0 - SF7BW125 to SF12BW125 541 541 542 -917.2 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 543 543 544 -917.4 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 545 545 546 -917.6 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 547 547 548 -917.8 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 549 549 550 -918.0 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 551 551 552 -918.2 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 553 553 501 +((( 502 + 503 +))) 554 554 555 -(% style="color:#037691" %)**Downlink:** 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 556 556 557 -923.3 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 558 558 559 -923.9 - SF7BW500 to SF12BW500 560 560 561 - 924.5-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 562 562 563 - 925.1-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 564 564 565 -925.7 - SF7BW500 to SF12BW500 566 566 567 -926.3 - SF7BW500 to SF12BW500 568 568 569 - 926.9-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 570 570 571 -927.5 - SF7BW500 to SF12BW500 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 572 572 573 -923.3 - SF12BW500(RX2 downlink only) 574 574 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 575 575 576 576 577 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 578 578 579 -(% style="color:#037691" %)**Default Uplink channel:** 580 580 581 - 923.2 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 582 582 583 - 923.4- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 584 584 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 585 585 586 - (% style="color:#037691" %)**Additional UplinkChannel**:541 +[[image:1657259653666-883.png]] 587 587 588 -(OTAA mode, channel added by JoinAccept message) 589 589 590 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 +((( 545 + 591 591 592 -922.2 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 593 593 594 -922.4 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 595 595 596 - 922.6 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 597 597 598 -922.8 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 599 599 600 -923.0 - SF7BW125 to SF10BW125 601 601 602 - 922.0- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 603 603 604 604 605 - (% style="color:#037691"%)**AS923~~AS925 forBrunei,Cambodia, HongKong, Indonesia,Laos, Taiwan, Thailand, Vietnam**:566 +Download URL & Firmware Change log 606 606 607 - 923.6-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 608 608 609 -923.8 - SF7BW125 to SF10BW125 610 610 611 - 924.0- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 612 612 613 -924.2 - SF7BW125 to SF10BW125 614 614 615 -924.4 - SF7BW125 to SF10BW125 616 616 617 - 924.6- SF7BW125toSF10BW125575 +== 2.9 Battery Analysis == 618 618 577 +=== 2.9.1 Battery Type === 619 619 620 -(% style="color:#037691" %)** Downlink:** 621 621 622 - Uplinkchannels1-8(RX1)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 623 623 624 -923.2 - SF10BW125 (RX2) 625 625 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 626 626 627 627 628 - ===2.7.6KR920-923(KR920)===586 +The battery related documents as below: 629 629 630 -Default channel: 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 631 631 632 -922.1 - SF7BW125 to SF12BW125 633 - 634 -922.3 - SF7BW125 to SF12BW125 635 - 636 -922.5 - SF7BW125 to SF12BW125 637 - 638 - 639 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 640 - 641 -922.1 - SF7BW125 to SF12BW125 642 - 643 -922.3 - SF7BW125 to SF12BW125 644 - 645 -922.5 - SF7BW125 to SF12BW125 646 - 647 -922.7 - SF7BW125 to SF12BW125 648 - 649 -922.9 - SF7BW125 to SF12BW125 650 - 651 -923.1 - SF7BW125 to SF12BW125 652 - 653 -923.3 - SF7BW125 to SF12BW125 654 - 655 - 656 -(% style="color:#037691" %)**Downlink:** 657 - 658 -Uplink channels 1-7(RX1) 659 - 660 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 661 - 662 - 663 - 664 -=== 2.7.7 IN865-867 (IN865) === 665 - 666 -(% style="color:#037691" %)** Uplink:** 667 - 668 -865.0625 - SF7BW125 to SF12BW125 669 - 670 -865.4025 - SF7BW125 to SF12BW125 671 - 672 -865.9850 - SF7BW125 to SF12BW125 673 - 674 - 675 -(% style="color:#037691" %) **Downlink:** 676 - 677 -Uplink channels 1-3 (RX1) 678 - 679 -866.550 - SF10BW125 (RX2) 680 - 681 - 682 - 683 - 684 -== 2.8 LED Indicator == 685 - 686 -The LSE01 has an internal LED which is to show the status of different state. 687 - 688 -* Blink once when device power on. 689 -* Solid ON for 5 seconds once device successful Join the network. 690 -* Blink once when device transmit a packet. 691 - 692 - 693 -== 2.9 Installation in Soil == 694 - 695 -**Measurement the soil surface** 696 - 697 - 698 -[[image:1654506634463-199.png]] 699 - 700 700 ((( 701 -((( 702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 703 703 ))) 704 -))) 705 705 706 706 707 707 708 - [[image:1654506665940-119.png]]598 +2.9.2 709 709 710 -((( 711 -Dig a hole with diameter > 20CM. 712 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 713 713 714 -((( 715 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 716 -))) 717 717 603 +Instruction to use as below: 718 718 719 -== 2.10 Firmware Change Log == 720 720 721 -((( 722 -**Firmware download link:** 723 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 724 724 725 -((( 726 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 727 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 728 728 729 -((( 730 - 731 -))) 732 732 733 -((( 734 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 735 -))) 611 +Step 2: Open it and choose 736 736 737 - (((738 - 739 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 740 740 741 -((( 742 -**V1.0.** 743 -))) 617 +And the Life expectation in difference case will be shown on the right. 744 744 745 -((( 746 -Release 747 -))) 748 748 749 749 750 -== 2. 11BatteryAnalysis==621 +=== 2.9.3 Battery Note === 751 751 752 -=== 2.11.1 Battery Type === 753 - 754 754 ((( 755 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 756 -))) 757 - 758 -((( 759 -The battery is designed to last for more than 5 years for the LSN50. 760 -))) 761 - 762 -((( 763 -((( 764 -The battery-related documents are as below: 765 -))) 766 -))) 767 - 768 -* ((( 769 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 770 -))) 771 -* ((( 772 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 773 -))) 774 -* ((( 775 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 776 -))) 777 - 778 - [[image:image-20220610172436-1.png]] 779 - 780 - 781 - 782 -=== 2.11.2 Battery Note === 783 - 784 -((( 785 785 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 786 786 ))) 787 787 788 788 789 789 790 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 791 791 792 -((( 793 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 794 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 795 795 796 -((( 797 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 798 -))) 799 799 800 -((( 801 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 802 -))) 803 803 804 - 805 - 806 806 = 3. Using the AT Commands = 807 807 808 808 == 3.1 Access AT Commands ==
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content