<
From version < 42.1 >
edited by Xiaoling
on 2022/07/08 09:52
To version < 45.5 >
edited by Xiaoling
on 2022/07/08 10:39
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -13,70 +13,82 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
71 -== 1.3 Specification ==
72 72  
63 +
64 +== 1.3  Specification ==
65 +
66 +
67 +(% style="color:#037691" %)**Common DC Characteristics:**
68 +
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
71 +
72 +
73 +(% style="color:#037691" %)**NB-IoT Spec:**
74 +
75 +* - B1 @H-FDD: 2100MHz
76 +* - B3 @H-FDD: 1800MHz
77 +* - B8 @H-FDD: 900MHz
78 +* - B5 @H-FDD: 850MHz
79 +* - B20 @H-FDD: 800MHz
80 +* - B28 @H-FDD: 700MHz
81 +
82 +
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
73 73  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
75 -[[image:image-20220606162220-5.png]]
87 +[[image:image-20220708101224-1.png]]
76 76  
77 77  
78 78  
79 -== ​1.4 Applications ==
91 +== ​1.4  Applications ==
80 80  
81 81  * Smart Agriculture
82 82  
... ... @@ -83,73 +83,210 @@
83 83  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
84 84  ​
85 85  
86 -== 1.5 Firmware Change log ==
98 +== 1.5  Pin Definitions ==
87 87  
88 88  
89 -**LSE01 v1.0 :**  Release
101 +[[image:1657246476176-652.png]]
90 90  
91 91  
92 92  
93 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 += 2.  Use NSE01 to communicate with IoT Server =
94 94  
95 -== 2.1 How it works ==
107 +== 2.1  How it works ==
96 96  
109 +
97 97  (((
98 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
99 99  )))
100 100  
114 +
101 101  (((
102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
116 +The diagram below shows the working flow in default firmware of NSE01:
103 103  )))
104 104  
119 +[[image:image-20220708101605-2.png]]
105 105  
121 +(((
122 +
123 +)))
106 106  
107 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
108 108  
109 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
110 110  
127 +== 2.2 ​ Configure the NSE01 ==
111 111  
112 -[[image:1654503992078-669.png]]
129 +=== 2.2.1 Test Requirement ===
113 113  
114 114  
115 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
132 +To use NSE01 in your city, make sure meet below requirements:
116 116  
134 +* Your local operator has already distributed a NB-IoT Network there.
135 +* The local NB-IoT network used the band that NSE01 supports.
136 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
117 117  
118 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
119 119  
120 -Each LSE01 is shipped with a sticker with the default device EUI as below:
139 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
121 121  
122 -[[image:image-20220606163732-6.jpeg]]
123 123  
124 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.gif]]
125 125  
126 -**Add APP EUI in the application**
127 127  
128 128  
129 -[[image:1654504596150-405.png]]
146 +=== 2.2.2 Insert SIM card ===
130 130  
148 +Insert the NB-IoT Card get from your provider.
131 131  
132 132  
133 -**Add APP KEY and DEV EUI**
151 +User need to take out the NB-IoT module and insert the SIM card like below:
134 134  
135 -[[image:1654504683289-357.png]]
136 136  
154 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image004.gif]]
137 137  
138 138  
139 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
157 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
140 140  
141 141  
142 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
160 +User need to configure NSE01 via serial port to set the **(% style="color:blue" %)Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
143 143  
144 -[[image:image-20220606163915-7.png]]
145 145  
146 146  
147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
148 148  
149 -[[image:1654504778294-788.png]]
165 +Connection:
150 150  
167 +USB TTL GND <~-~-~-~-> GND
151 151  
169 +USB TTL TXD <~-~-~-~-> UART_RXD
152 152  
171 +USB TTL RXD <~-~-~-~-> UART_TXD
172 +
173 +
174 +
175 +In the PC, use below serial tool settings:
176 +
177 +* Baud: **9600**
178 +* Data bits:** 8**
179 +* Stop bits: **1**
180 +* Parity: **None**
181 +* Flow Control: **None**
182 +
183 +
184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the **password: 12345678** to access AT Command input.
185 +
186 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image009.jpg]]
187 +
188 +Note: the valid AT Commands can be found at:
189 +
190 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
191 +
192 +
193 +1.
194 +11.
195 +111. Use CoAP protocol to uplink data 
196 +
197 +
198 +Note: if you don’t have CoAP server, you can refer this link to set up one:
199 +
200 +[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
201 +
202 +
203 +Use below commands:
204 +
205 +* **AT+PRO=1**    ~/~/ Set to use CoAP protocol to uplink
206 +* **AT+SERVADDR=120.24.4.116,5683   **~/~/ to set CoAP server address and port
207 +* **AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"       **~/~/Set COAP resource path
208 +
209 +
210 +For parameter description, please refer to AT command set
211 +
212 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image011.jpg]]
213 +
214 +
215 +After configure the server address and **reset the device** (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
216 +
217 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image013.jpg]]
218 +
219 +1.
220 +11.
221 +111. Use UDP protocol to uplink data(Default protocol)
222 +
223 +
224 +This feature is supported since firmware version v1.0.1
225 +
226 +
227 +* **AT+PRO=2   ** ~/~/ Set to use UDP protocol to uplink
228 +* **AT+SERVADDR=120.24.4.116,5601   **~/~/ to set UDP server address and port
229 +* **AT+CFM=1       **~/~/If the server does not respond, this command is unnecessary
230 +
231 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image015.jpg]]
232 +
233 +
234 +
235 +
236 +
237 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image017.jpg]]
238 +
239 +
240 +1.
241 +11.
242 +111. Use MQTT protocol to uplink data
243 +
244 +
245 +This feature is supported since firmware version v110
246 +
247 +
248 +* **AT+PRO=3   ** ~/~/Set to use MQTT protocol to uplink
249 +* **AT+SERVADDR=120.24.4.116,1883   **~/~/Set MQTT server address and port
250 +* **AT+CLIENT=CLIENT **~/~/Set up the CLIENT of MQTT
251 +* **AT+UNAME=UNAME                           **~/~/Set the username of MQTT
252 +* **AT+PWD=PWD                                      **~/~/Set the password of MQTT
253 +* **AT+PUBTOPIC=NSE01_PUB   **~/~/Set the sending topic of MQTT
254 +* **AT+SUBTOPIC=NSE01_SUB    **~/~/Set the subscription topic of MQTT
255 +
256 +
257 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image019.gif]]
258 +
259 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image021.jpg]]
260 +
261 +
262 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
263 +
264 +
265 +1.
266 +11.
267 +111. Use TCP protocol to uplink data
268 +
269 +
270 +This feature is supported since firmware version v110
271 +
272 +
273 +* **AT+PRO=4   ** ~/~/ Set to use TCP protocol to uplink
274 +* **AT+SERVADDR=120.24.4.116,5600   **~/~/ to set TCP server address and port
275 +
276 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
277 +
278 +
279 +
280 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
281 +
282 +
283 +1.
284 +11.
285 +111. Change Update Interval
286 +
287 +User can use below command to change the **uplink interval**.
288 +
289 +**~ AT+TDC=600      **~/~/ Set Update Interval to 600s
290 +
291 +
292 +**NOTE:**
293 +
294 +1. By default, the device will send an uplink message every 1 hour.
295 +
296 +
297 +
298 +
299 +
300 +
301 +
153 153  == 2.3 Uplink Payload ==
154 154  
155 155  
... ... @@ -689,7 +689,6 @@
689 689  * Solid ON for 5 seconds once device successful Join the network.
690 690  * Blink once when device transmit a packet.
691 691  
692 -
693 693  == 2.9 Installation in Soil ==
694 694  
695 695  **Measurement the soil surface**
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0