<
From version < 41.1 >
edited by Xiaoling
on 2022/06/30 11:23
To version < 65.14 >
edited by Xiaoling
on 2022/07/08 15:51
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,1069 +20,841 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
26 26  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +(((
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  )))
32 32  
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
35 35  )))
36 36  
37 37  (((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
39 39  )))
40 40  
41 41  (((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
43 43  )))
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
70 70  
71 -== 1.3 Specification ==
72 +== 1.3  Specification ==
72 72  
73 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
75 -[[image:image-20220606162220-5.png]]
75 +(% style="color:#037691" %)**Common DC Characteristics:**
76 76  
77 +* Supply Voltage: 2.1v ~~ 3.6v
78 +* Operating Temperature: -40 ~~ 85°C
77 77  
80 +(% style="color:#037691" %)**NB-IoT Spec:**
78 78  
79 -== ​1.4 Applications ==
82 +* - B1 @H-FDD: 2100MHz
83 +* - B3 @H-FDD: 1800MHz
84 +* - B8 @H-FDD: 900MHz
85 +* - B5 @H-FDD: 850MHz
86 +* - B20 @H-FDD: 800MHz
87 +* - B28 @H-FDD: 700MHz
80 80  
81 -* Smart Agriculture
89 +Probe(% style="color:#037691" %)** Specification:**
82 82  
83 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
84 -​
91 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
85 85  
86 -== 1.5 Firmware Change log ==
93 +[[image:image-20220708101224-1.png]]
87 87  
88 88  
89 -**LSE01 v1.0 :**  Release
90 90  
97 +== ​1.4  Applications ==
91 91  
99 +* Smart Agriculture
92 92  
93 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
102 +​
94 94  
95 -== 2.1 How it works ==
104 +== 1.5  Pin Definitions ==
96 96  
97 -(((
98 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
99 -)))
100 100  
101 -(((
102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
103 -)))
107 +[[image:1657246476176-652.png]]
104 104  
105 105  
106 106  
107 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
111 += 2.  Use NSE01 to communicate with IoT Server =
108 108  
109 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
113 +== 2. How it works ==
110 110  
111 111  
112 -[[image:1654503992078-669.png]]
113 -
114 -
115 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116 -
117 -
118 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
119 -
120 -Each LSE01 is shipped with a sticker with the default device EUI as below:
121 -
122 -[[image:image-20220606163732-6.jpeg]]
123 -
124 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
125 -
126 -**Add APP EUI in the application**
127 -
128 -
129 -[[image:1654504596150-405.png]]
130 -
131 -
132 -
133 -**Add APP KEY and DEV EUI**
134 -
135 -[[image:1654504683289-357.png]]
136 -
137 -
138 -
139 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
140 -
141 -
142 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
143 -
144 -[[image:image-20220606163915-7.png]]
145 -
146 -
147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
148 -
149 -[[image:1654504778294-788.png]]
150 -
151 -
152 -
153 -== 2.3 Uplink Payload ==
154 -
155 -
156 -=== 2.3.1 MOD~=0(Default Mode) ===
157 -
158 -LSE01 will uplink payload via LoRaWAN with below payload format: 
159 -
160 160  (((
161 -Uplink payload includes in total 11 bytes.
117 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
162 162  )))
163 163  
164 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 -|(((
166 -**Size**
167 167  
168 -**(bytes)**
169 -)))|**2**|**2**|**2**|**2**|**2**|**1**
170 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 -Temperature
172 -
173 -(Reserve, Ignore now)
174 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 -MOD & Digital Interrupt
176 -
177 -(Optional)
121 +(((
122 +The diagram below shows the working flow in default firmware of NSE01:
178 178  )))
179 179  
180 -=== 2.3.2 MOD~=1(Original value) ===
125 +[[image:image-20220708101605-2.png]]
181 181  
182 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
183 -
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
186 -**Size**
187 -
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 -Temperature
192 -
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 -MOD & Digital Interrupt
196 -
197 -(Optional)
198 -)))
199 -
200 -=== 2.3.3 Battery Info ===
201 -
202 202  (((
203 -Check the battery voltage for LSE01.
128 +
204 204  )))
205 205  
206 -(((
207 -Ex1: 0x0B45 = 2885mV
208 -)))
209 209  
210 -(((
211 -Ex2: 0x0B49 = 2889mV
212 -)))
213 213  
133 +== 2.2 ​ Configure the NSE01 ==
214 214  
215 215  
216 -=== 2.3.4 Soil Moisture ===
136 +=== 2.2.1 Test Requirement ===
217 217  
218 -(((
219 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 -)))
221 221  
222 222  (((
223 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
140 +To use NSE01 in your city, make sure meet below requirements:
224 224  )))
225 225  
226 -(((
227 -
228 -)))
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
229 229  
230 230  (((
231 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
232 232  )))
233 233  
234 234  
152 +[[image:1657249419225-449.png]]
235 235  
236 -=== 2.3.5 Soil Temperature ===
237 237  
238 -(((
239 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
240 -)))
241 241  
242 -(((
243 -**Example**:
244 -)))
156 +=== 2.2.2 Insert SIM card ===
245 245  
246 246  (((
247 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
159 +Insert the NB-IoT Card get from your provider.
248 248  )))
249 249  
250 250  (((
251 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
163 +User need to take out the NB-IoT module and insert the SIM card like below:
252 252  )))
253 253  
254 254  
167 +[[image:1657249468462-536.png]]
255 255  
256 -=== 2.3.6 Soil Conductivity (EC) ===
257 257  
258 -(((
259 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
260 -)))
261 261  
262 -(((
263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 -)))
171 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
265 265  
266 266  (((
267 -Generally, the EC value of irrigation water is less than 800uS / cm.
268 -)))
269 -
270 270  (((
271 -
175 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
272 272  )))
273 -
274 -(((
275 -
276 276  )))
277 277  
278 -=== 2.3.7 MOD ===
279 279  
280 -Firmware version at least v2.1 supports changing mode.
180 +**Connection:**
281 281  
282 -For example, bytes[10]=90
182 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
283 283  
284 -mod=(bytes[10]>>7)&0x01=1.
184 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
285 285  
186 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
286 286  
287 -**Downlink Command:**
288 288  
289 -If payload = 0x0A00, workmode=0
189 +In the PC, use below serial tool settings:
290 290  
291 -If** **payload =** **0x0A01, workmode=1
191 +* Baud:  (% style="color:green" %)**9600**
192 +* Data bits:** (% style="color:green" %)8(%%)**
193 +* Stop bits: (% style="color:green" %)**1**
194 +* Parity:  (% style="color:green" %)**None**
195 +* Flow Control: (% style="color:green" %)**None**
292 292  
293 -
294 -
295 -=== 2.3.8 ​Decode payload in The Things Network ===
296 -
297 -While using TTN network, you can add the payload format to decode the payload.
298 -
299 -
300 -[[image:1654505570700-128.png]]
301 -
302 302  (((
303 -The payload decoder function for TTN is here:
198 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
304 304  )))
305 305  
306 -(((
307 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
308 -)))
201 +[[image:image-20220708110657-3.png]]
309 309  
310 -
311 -== 2.4 Uplink Interval ==
312 -
313 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
314 -
315 -
316 -
317 -== 2.5 Downlink Payload ==
318 -
319 -By default, LSE50 prints the downlink payload to console port.
320 -
321 -[[image:image-20220606165544-8.png]]
322 -
323 -
324 324  (((
325 -(% style="color:blue" %)**Examples:**
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
326 326  )))
327 327  
328 -(((
329 -
330 -)))
331 331  
332 -* (((
333 -(% style="color:blue" %)**Set TDC**
334 -)))
335 335  
336 -(((
337 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
338 -)))
209 +=== 2.2.4 Use CoAP protocol to uplink data ===
339 339  
340 -(((
341 -Payload:    01 00 00 1E    TDC=30S
342 -)))
211 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
343 343  
344 -(((
345 -Payload:    01 00 00 3C    TDC=60S
346 -)))
347 347  
348 -(((
349 -
350 -)))
214 +**Use below commands:**
351 351  
352 -* (((
353 -(% style="color:blue" %)**Reset**
354 -)))
216 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
217 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
218 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
355 355  
356 -(((
357 -If payload = 0x04FF, it will reset the LSE01
358 -)))
220 +For parameter description, please refer to AT command set
359 359  
222 +[[image:1657249793983-486.png]]
360 360  
361 -* (% style="color:blue" %)**CFM**
362 362  
363 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
225 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
364 364  
227 +[[image:1657249831934-534.png]]
365 365  
366 366  
367 -== 2.6 ​Show Data in DataCake IoT Server ==
368 368  
369 -(((
370 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
371 -)))
231 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
372 372  
373 -(((
374 -
375 -)))
233 +This feature is supported since firmware version v1.0.1
376 376  
377 -(((
378 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
379 -)))
380 380  
381 -(((
382 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
383 -)))
236 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
238 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
384 384  
240 +[[image:1657249864775-321.png]]
385 385  
386 -[[image:1654505857935-743.png]]
387 387  
243 +[[image:1657249930215-289.png]]
388 388  
389 -[[image:1654505874829-548.png]]
390 390  
391 391  
392 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
247 +=== 2.2.6 Use MQTT protocol to uplink data ===
393 393  
394 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
249 +This feature is supported since firmware version v110
395 395  
396 396  
397 -[[image:1654505905236-553.png]]
252 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
253 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
254 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
255 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
256 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
257 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
258 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
398 398  
260 +[[image:1657249978444-674.png]]
399 399  
400 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
401 401  
402 -[[image:1654505925508-181.png]]
263 +[[image:1657249990869-686.png]]
403 403  
404 404  
266 +(((
267 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
268 +)))
405 405  
406 -== 2.7 Frequency Plans ==
407 407  
408 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
409 409  
272 +=== 2.2.7 Use TCP protocol to uplink data ===
410 410  
411 -=== 2.7.1 EU863-870 (EU868) ===
274 +This feature is supported since firmware version v110
412 412  
413 -(% style="color:#037691" %)** Uplink:**
414 414  
415 -868.1 - SF7BW125 to SF12BW125
277 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
278 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
416 416  
417 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
280 +[[image:1657250217799-140.png]]
418 418  
419 -868.5 - SF7BW125 to SF12BW125
420 420  
421 -867.1 - SF7BW125 to SF12BW125
283 +[[image:1657250255956-604.png]]
422 422  
423 -867.3 - SF7BW125 to SF12BW125
424 424  
425 -867.5 - SF7BW125 to SF12BW125
426 426  
427 -867.7 - SF7BW125 to SF12BW125
287 +=== 2.2.8 Change Update Interval ===
428 428  
429 -867.9 - SF7BW125 to SF12BW125
289 +User can use below command to change the (% style="color:green" %)**uplink interval**.
430 430  
431 -868.8 - FSK
291 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
432 432  
293 +(((
294 +(% style="color:red" %)**NOTE:**
295 +)))
433 433  
434 -(% style="color:#037691" %)** Downlink:**
297 +(((
298 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
299 +)))
435 435  
436 -Uplink channels 1-9 (RX1)
437 437  
438 -869.525 - SF9BW125 (RX2 downlink only)
439 439  
303 +== 2.3  Uplink Payload ==
440 440  
305 +In this mode, uplink payload includes in total 18 bytes
441 441  
442 -=== 2.7.2 US902-928(US915) ===
307 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
308 +|=(% style="width: 60px;" %)(((
309 +**Size(bytes)**
310 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
311 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
443 443  
444 -Used in USA, Canada and South America. Default use CHE=2
313 +(((
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
315 +)))
445 445  
446 -(% style="color:#037691" %)**Uplink:**
447 447  
448 -903.9 - SF7BW125 to SF10BW125
318 +[[image:image-20220708111918-4.png]]
449 449  
450 -904.1 - SF7BW125 to SF10BW125
451 451  
452 -904.3 - SF7BW125 to SF10BW125
321 +The payload is ASCII string, representative same HEX:
453 453  
454 -904.5 - SF7BW125 to SF10BW125
323 +0x72403155615900640c7817075e0a8c02f900 where:
455 455  
456 -904.7 - SF7BW125 to SF10BW125
325 +* Device ID: 0x 724031556159 = 724031556159
326 +* Version: 0x0064=100=1.0.0
457 457  
458 -904.9 - SF7BW125 to SF10BW125
328 +* BAT: 0x0c78 = 3192 mV = 3.192V
329 +* Singal: 0x17 = 23
330 +* Soil Moisture: 0x075e= 1886 = 18.86  %
331 +* Soil Temperature:0x0a8c =2700=27 °C
332 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
333 +* Interrupt: 0x00 = 0
459 459  
460 -905.1 - SF7BW125 to SF10BW125
461 461  
462 -905.3 - SF7BW125 to SF10BW125
463 463  
464 464  
465 -(% style="color:#037691" %)**Downlink:**
338 +== 2.4  Payload Explanation and Sensor Interface ==
466 466  
467 -923.3 - SF7BW500 to SF12BW500
468 468  
469 -923.9 - SF7BW500 to SF12BW500
341 +=== 2.4.1  Device ID ===
470 470  
471 -924.5 - SF7BW500 to SF12BW500
343 +(((
344 +By default, the Device ID equal to the last 6 bytes of IMEI.
345 +)))
472 472  
473 -925.1 - SF7BW500 to SF12BW500
347 +(((
348 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
349 +)))
474 474  
475 -925.7 - SF7BW500 to SF12BW500
351 +(((
352 +**Example:**
353 +)))
476 476  
477 -926.3 - SF7BW500 to SF12BW500
355 +(((
356 +AT+DEUI=A84041F15612
357 +)))
478 478  
479 -926.9 - SF7BW500 to SF12BW500
359 +(((
360 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
361 +)))
480 480  
481 -927.5 - SF7BW500 to SF12BW500
482 482  
483 -923.3 - SF12BW500(RX2 downlink only)
484 484  
365 +=== 2.4.2  Version Info ===
485 485  
367 +(((
368 +Specify the software version: 0x64=100, means firmware version 1.00.
369 +)))
486 486  
487 -=== 2.7.3 CN470-510 (CN470) ===
371 +(((
372 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
373 +)))
488 488  
489 -Used in China, Default use CHE=1
490 490  
491 -(% style="color:#037691" %)**Uplink:**
492 492  
493 -486.3 - SF7BW125 to SF12BW125
377 +=== 2.4.3  Battery Info ===
494 494  
495 -486.5 - SF7BW125 to SF12BW125
379 +(((
380 +Check the battery voltage for LSE01.
381 +)))
496 496  
497 -486.7 - SF7BW125 to SF12BW125
383 +(((
384 +Ex1: 0x0B45 = 2885mV
385 +)))
498 498  
499 -486.9 - SF7BW125 to SF12BW125
387 +(((
388 +Ex2: 0x0B49 = 2889mV
389 +)))
500 500  
501 -487.1 - SF7BW125 to SF12BW125
502 502  
503 -487.3 - SF7BW125 to SF12BW125
504 504  
505 -487.5 - SF7BW125 to SF12BW125
393 +=== 2.4. Signal Strength ===
506 506  
507 -487.7 - SF7BW125 to SF12BW125
395 +(((
396 +NB-IoT Network signal Strength.
397 +)))
508 508  
399 +(((
400 +**Ex1: 0x1d = 29**
401 +)))
509 509  
510 -(% style="color:#037691" %)**Downlink:**
403 +(((
404 +(% style="color:blue" %)**0**(%%)  -113dBm or less
405 +)))
511 511  
512 -506.7 - SF7BW125 to SF12BW125
407 +(((
408 +(% style="color:blue" %)**1**(%%)  -111dBm
409 +)))
513 513  
514 -506.9 - SF7BW125 to SF12BW125
411 +(((
412 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
413 +)))
515 515  
516 -507.1 - SF7BW125 to SF12BW125
415 +(((
416 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
417 +)))
517 517  
518 -507.3 - SF7BW125 to SF12BW125
419 +(((
420 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
421 +)))
519 519  
520 -507.5 - SF7BW125 to SF12BW125
521 521  
522 -507.7 - SF7BW125 to SF12BW125
523 523  
524 -507.9 - SF7BW125 to SF12BW125
425 +=== 2.4.5  Soil Moisture ===
525 525  
526 -508.1 - SF7BW125 to SF12BW125
427 +(((
428 +(((
429 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
430 +)))
431 +)))
527 527  
528 -505.3 - SF12BW125 (RX2 downlink only)
433 +(((
434 +(((
435 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
436 +)))
437 +)))
529 529  
439 +(((
440 +
441 +)))
530 530  
443 +(((
444 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
445 +)))
531 531  
532 -=== 2.7.4 AU915-928(AU915) ===
533 533  
534 -Default use CHE=2
535 535  
536 -(% style="color:#037691" %)**Uplink:**
449 +=== 2.4.6  Soil Temperature ===
537 537  
538 -916.8 - SF7BW125 to SF12BW125
451 +(((
452 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
453 +)))
539 539  
540 -917.0 - SF7BW125 to SF12BW125
455 +(((
456 +**Example**:
457 +)))
541 541  
542 -917.2 - SF7BW125 to SF12BW125
459 +(((
460 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
461 +)))
543 543  
544 -917.4 - SF7BW125 to SF12BW125
463 +(((
464 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
465 +)))
545 545  
546 -917.6 - SF7BW125 to SF12BW125
547 547  
548 -917.8 - SF7BW125 to SF12BW125
549 549  
550 -918.0 - SF7BW125 to SF12BW125
469 +=== 2.4.7  Soil Conductivity (EC) ===
551 551  
552 -918.2 - SF7BW125 to SF12BW125
471 +(((
472 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
473 +)))
553 553  
475 +(((
476 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
477 +)))
554 554  
555 -(% style="color:#037691" %)**Downlink:**
479 +(((
480 +Generally, the EC value of irrigation water is less than 800uS / cm.
481 +)))
556 556  
557 -923.3 - SF7BW500 to SF12BW500
483 +(((
484 +
485 +)))
558 558  
559 -923.9 - SF7BW500 to SF12BW500
487 +(((
488 +
489 +)))
560 560  
561 -924.5 - SF7BW500 to SF12BW500
491 +=== 2.4. Digital Interrupt ===
562 562  
563 -925.1 - SF7BW500 to SF12BW500
493 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
564 564  
565 -925.7 - SF7BW500 to SF12BW500
495 +The command is:
566 566  
567 -926.3 - SF7BW500 to SF12BW500
497 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
568 568  
569 -926.9 - SF7BW500 to SF12BW500
570 570  
571 -927.5 - SF7BW500 to SF12BW500
500 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
572 572  
573 -923.3 - SF12BW500(RX2 downlink only)
574 574  
503 +Example:
575 575  
505 +0x(00): Normal uplink packet.
576 576  
577 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
507 +0x(01): Interrupt Uplink Packet.
578 578  
579 -(% style="color:#037691" %)**Default Uplink channel:**
580 580  
581 -923.2 - SF7BW125 to SF10BW125
582 582  
583 -923.4 - SF7BW125 to SF10BW125
511 +=== 2.4.9  ​+5V Output ===
584 584  
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
585 585  
586 -(% style="color:#037691" %)**Additional Uplink Channel**:
587 587  
588 -(OTAA mode, channel added by JoinAccept message)
516 +The 5V output time can be controlled by AT Command.
589 589  
590 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
518 +(% style="color:blue" %)**AT+5VT=1000**
591 591  
592 -922.2 - SF7BW125 to SF10BW125
520 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
593 593  
594 -922.4 - SF7BW125 to SF10BW125
595 595  
596 -922.6 - SF7BW125 to SF10BW125
597 597  
598 -922.8 - SF7BW125 to SF10BW125
524 +== 2.5  Downlink Payload ==
599 599  
600 -923.0 - SF7BW125 to SF10BW125
526 +By default, NSE01 prints the downlink payload to console port.
601 601  
602 -922.0 - SF7BW125 to SF10BW125
528 +[[image:image-20220708133731-5.png]]
603 603  
604 604  
605 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
531 +(((
532 +(% style="color:blue" %)**Examples:**
533 +)))
606 606  
607 -923.6 - SF7BW125 to SF10BW125
535 +(((
536 +
537 +)))
608 608  
609 -923.8 - SF7BW125 to SF10BW125
539 +* (((
540 +(% style="color:blue" %)**Set TDC**
541 +)))
610 610  
611 -924.0 - SF7BW125 to SF10BW125
543 +(((
544 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
545 +)))
612 612  
613 -924.2 - SF7BW125 to SF10BW125
547 +(((
548 +Payload:    01 00 00 1E    TDC=30S
549 +)))
614 614  
615 -924.4 - SF7BW125 to SF10BW125
551 +(((
552 +Payload:    01 00 00 3C    TDC=60S
553 +)))
616 616  
617 -924.6 - SF7BW125 to SF10BW125
555 +(((
556 +
557 +)))
618 618  
559 +* (((
560 +(% style="color:blue" %)**Reset**
561 +)))
619 619  
620 -(% style="color:#037691" %)** Downlink:**
563 +(((
564 +If payload = 0x04FF, it will reset the NSE01
565 +)))
621 621  
622 -Uplink channels 1-8 (RX1)
623 623  
624 -923.2 - SF10BW125 (RX2)
568 +* (% style="color:blue" %)**INTMOD**
625 625  
570 +Downlink Payload: 06000003, Set AT+INTMOD=3
626 626  
627 627  
628 -=== 2.7.6 KR920-923 (KR920) ===
629 629  
630 -Default channel:
574 +== 2.6  ​LED Indicator ==
631 631  
632 -922.1 - SF7BW125 to SF12BW125
576 +(((
577 +The NSE01 has an internal LED which is to show the status of different state.
633 633  
634 -922.3 - SF7BW125 to SF12BW125
635 635  
636 -922.5 - SF7BW125 to SF12BW125
580 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
581 +* Then the LED will be on for 1 second means device is boot normally.
582 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
583 +* For each uplink probe, LED will be on for 500ms.
584 +)))
637 637  
638 638  
639 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
640 640  
641 -922.1 - SF7BW125 to SF12BW125
642 642  
643 -922.3 - SF7BW125 to SF12BW125
589 +== 2.7  Installation in Soil ==
644 644  
645 -922.5 - SF7BW125 to SF12BW125
591 +__**Measurement the soil surface**__
646 646  
647 -922.7 - SF7BW125 to SF12BW125
593 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
648 648  
649 -922.9 - SF7BW125 to SF12BW125
595 +[[image:1657259653666-883.png]] ​
650 650  
651 -923.1 - SF7BW125 to SF12BW125
652 652  
653 -923.3 - SF7BW125 to SF12BW125
598 +(((
599 +
654 654  
601 +(((
602 +Dig a hole with diameter > 20CM.
603 +)))
655 655  
656 -(% style="color:#037691" %)**Downlink:**
605 +(((
606 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
607 +)))
608 +)))
657 657  
658 -Uplink channels 1-7(RX1)
610 +[[image:1654506665940-119.png]]
659 659  
660 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
612 +(((
613 +
614 +)))
661 661  
662 662  
617 +== 2.8  ​Firmware Change Log ==
663 663  
664 -=== 2.7.7 IN865-867 (IN865) ===
665 665  
666 -(% style="color:#037691" %)** Uplink:**
620 +Download URL & Firmware Change log
667 667  
668 -865.0625 - SF7BW125 to SF12BW125
622 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
669 669  
670 -865.4025 - SF7BW125 to SF12BW125
671 671  
672 -865.9850 - SF7BW125 to SF12BW125
625 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
673 673  
674 674  
675 -(% style="color:#037691" %) **Downlink:**
676 676  
677 -Uplink channels 1-3 (RX1)
629 +== 2.9  ​Battery Analysis ==
678 678  
679 -866.550 - SF10BW125 (RX2)
631 +=== 2.9.1  ​Battery Type ===
680 680  
681 681  
634 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
682 682  
683 683  
684 -== 2.8 LED Indicator ==
637 +The battery is designed to last for several years depends on the actually use environment and update interval. 
685 685  
686 -The LSE01 has an internal LED which is to show the status of different state.
687 687  
688 -* Blink once when device power on.
689 -* Solid ON for 5 seconds once device successful Join the network.
690 -* Blink once when device transmit a packet.
640 +The battery related documents as below:
691 691  
642 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
643 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
644 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
692 692  
693 -== 2.9 Installation in Soil ==
694 -
695 -**Measurement the soil surface**
696 -
697 -
698 -[[image:1654506634463-199.png]] ​
699 -
700 700  (((
701 -(((
702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
647 +[[image:image-20220708140453-6.png]]
703 703  )))
704 -)))
705 705  
706 706  
707 707  
708 -[[image:1654506665940-119.png]]
652 +=== 2.9.2  Power consumption Analyze ===
709 709  
710 710  (((
711 -Dig a hole with diameter > 20CM.
655 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
712 712  )))
713 713  
714 -(((
715 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
716 -)))
717 717  
718 -
719 -== 2.10 ​Firmware Change Log ==
720 -
721 721  (((
722 -**Firmware download link:**
660 +Instruction to use as below:
723 723  )))
724 724  
725 725  (((
726 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
664 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
727 727  )))
728 728  
729 -(((
730 -
731 -)))
732 732  
733 733  (((
734 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
669 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
735 735  )))
736 736  
737 -(((
738 -
672 +* (((
673 +Product Model
739 739  )))
740 -
741 -(((
742 -**V1.0.**
675 +* (((
676 +Uplink Interval
743 743  )))
678 +* (((
679 +Working Mode
680 +)))
744 744  
745 745  (((
746 -Release
683 +And the Life expectation in difference case will be shown on the right.
747 747  )))
748 748  
686 +[[image:image-20220708141352-7.jpeg]]
749 749  
750 -== 2.11 ​Battery Analysis ==
751 751  
752 -=== 2.11.1 ​Battery Type ===
753 753  
754 -(((
755 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
756 -)))
690 +=== 2.9.3  ​Battery Note ===
757 757  
758 758  (((
759 -The battery is designed to last for more than 5 years for the LSN50.
693 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
760 760  )))
761 761  
762 -(((
763 -(((
764 -The battery-related documents are as below:
765 -)))
766 -)))
767 767  
768 -* (((
769 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
770 -)))
771 -* (((
772 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
773 -)))
774 -* (((
775 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
776 -)))
777 777  
778 - [[image:image-20220610172436-1.png]]
698 +=== 2.9.4  Replace the battery ===
779 779  
780 -
781 -
782 -=== 2.11.2 ​Battery Note ===
783 -
784 784  (((
785 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
701 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
786 786  )))
787 787  
788 788  
789 789  
790 -=== 2.11.3 Replace the battery ===
706 += 3. ​ Access NB-IoT Module =
791 791  
792 792  (((
793 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
709 +Users can directly access the AT command set of the NB-IoT module.
794 794  )))
795 795  
796 796  (((
797 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
713 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
798 798  )))
799 799  
800 -(((
801 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
802 -)))
716 +[[image:1657261278785-153.png]]
803 803  
804 804  
805 805  
806 -= 3. Using the AT Commands =
720 += 4.  Using the AT Commands =
807 807  
808 -== 3.1 Access AT Commands ==
722 +== 4.1  Access AT Commands ==
809 809  
724 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
810 810  
811 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
812 812  
813 -[[image:1654501986557-872.png||height="391" width="800"]]
727 +AT+<CMD>?  : Help on <CMD>
814 814  
729 +AT+<CMD>         : Run <CMD>
815 815  
816 -Or if you have below board, use below connection:
731 +AT+<CMD>=<value> : Set the value
817 817  
733 +AT+<CMD>=?  : Get the value
818 818  
819 -[[image:1654502005655-729.png||height="503" width="801"]]
820 820  
821 -
822 -
823 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
824 -
825 -
826 - [[image:1654502050864-459.png||height="564" width="806"]]
827 -
828 -
829 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
830 -
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
835 -
836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
837 -
838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
839 -
840 -
841 841  (% style="color:#037691" %)**General Commands**(%%)      
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
738 +AT  : Attention       
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
740 +AT?  : Short Help     
846 846  
847 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
742 +ATZ  : MCU Reset    
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
744 +AT+TDC  : Application Data Transmission Interval
850 850  
746 +AT+CFG  : Print all configurations
851 851  
852 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
748 +AT+CFGMOD           : Working mode selection
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
750 +AT+INTMOD            : Set the trigger interrupt mode
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
752 +AT+5VT  : Set extend the time of 5V power  
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
754 +AT+PRO  : Choose agreement
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
756 +AT+WEIGRE  : Get weight or set weight to 0
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
758 +AT+WEIGAP  : Get or Set the GapValue of weight
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
760 +AT+RXDL  : Extend the sending and receiving time
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
762 +AT+CNTFAC  : Get or set counting parameters
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
764 +AT+SERVADDR  : Server Address
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
767 +(% style="color:#037691" %)**COAP Management**      
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
769 +AT+URI            : Resource parameters
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
772 +(% style="color:#037691" %)**UDP Management**
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
774 +AT+CFM          : Upload confirmation mode (only valid for UDP)
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
777 +(% style="color:#037691" %)**MQTT Management**
885 885  
779 +AT+CLIENT               : Get or Set MQTT client
886 886  
887 -(% style="color:#037691" %)**LoRa Network Management**
781 +AT+UNAME  : Get or Set MQTT Username
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
783 +AT+PWD                  : Get or Set MQTT password
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
785 +AT+PUBTOPI : Get or Set MQTT publish topic
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
787 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
790 +(% style="color:#037691" %)**Information**          
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
792 +AT+FDR  : Factory Data Reset
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
794 +AT+PWOR : Serial Access Password
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
798 += ​5.  FAQ =
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
800 +== 5.1 How to Upgrade Firmware ==
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
914 -
915 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
916 -
917 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
918 -
919 -
920 -(% style="color:#037691" %)**Information** 
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
933 -
934 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
935 -
936 -
937 -= ​4. FAQ =
938 -
939 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
940 -
941 941  (((
942 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
943 -When downloading the images, choose the required image file for download. ​
804 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
944 944  )))
945 945  
946 946  (((
947 -
808 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
948 948  )))
949 949  
950 950  (((
951 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
812 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
952 952  )))
953 953  
954 -(((
955 -
956 -)))
957 957  
958 -(((
959 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
960 -)))
961 961  
962 -(((
963 -
964 -)))
817 += 6.  Trouble Shooting =
965 965  
966 -(((
967 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
968 -)))
819 +== 6.1  ​Connection problem when uploading firmware ==
969 969  
970 -[[image:image-20220606154726-3.png]]
971 971  
972 -
973 -When you use the TTN network, the US915 frequency bands use are:
974 -
975 -* 903.9 - SF7BW125 to SF10BW125
976 -* 904.1 - SF7BW125 to SF10BW125
977 -* 904.3 - SF7BW125 to SF10BW125
978 -* 904.5 - SF7BW125 to SF10BW125
979 -* 904.7 - SF7BW125 to SF10BW125
980 -* 904.9 - SF7BW125 to SF10BW125
981 -* 905.1 - SF7BW125 to SF10BW125
982 -* 905.3 - SF7BW125 to SF10BW125
983 -* 904.6 - SF8BW500
984 -
822 +(% class="wikigeneratedid" %)
985 985  (((
986 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
987 -
988 -* (% style="color:#037691" %)**AT+CHE=2**
989 -* (% style="color:#037691" %)**ATZ**
824 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
990 990  )))
991 991  
992 -(((
993 -
994 994  
995 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
996 -)))
997 997  
998 -(((
999 -
1000 -)))
829 +== 6.2  AT Command input doesn't work ==
1001 1001  
1002 1002  (((
1003 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1004 -)))
1005 -
1006 -[[image:image-20220606154825-4.png]]
1007 -
1008 -
1009 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1010 -
1011 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1012 -
1013 -
1014 -= 5. Trouble Shooting =
1015 -
1016 -== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1017 -
1018 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1019 -
1020 -
1021 -== 5.2 AT Command input doesn't work ==
1022 -
1023 -(((
1024 1024  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 1025  )))
1026 1026  
1027 1027  
1028 -== 5.3 Device rejoin in at the second uplink packet ==
1029 1029  
1030 -(% style="color:#4f81bd" %)**Issue describe as below:**
837 += 7. ​ Order Info =
1031 1031  
1032 -[[image:1654500909990-784.png]]
1033 1033  
840 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1034 1034  
1035 -(% style="color:#4f81bd" %)**Cause for this issue:**
1036 1036  
1037 -(((
1038 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1039 -)))
1040 -
1041 -
1042 -(% style="color:#4f81bd" %)**Solution: **
1043 -
1044 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1045 -
1046 -[[image:1654500929571-736.png||height="458" width="832"]]
1047 -
1048 -
1049 -= 6. ​Order Info =
1050 -
1051 -
1052 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 -
1054 -
1055 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 -
1057 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 -
1066 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 -
1068 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 -
1071 1071  (% class="wikigeneratedid" %)
1072 1072  (((
1073 1073  
1074 1074  )))
1075 1075  
1076 -= 7. Packing Info =
848 += 8.  Packing Info =
1077 1077  
1078 1078  (((
1079 1079  
1080 1080  
1081 1081  (% style="color:#037691" %)**Package Includes**:
1082 -)))
1083 1083  
1084 -* (((
1085 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
855 +
856 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
857 +* External antenna x 1
1086 1086  )))
1087 1087  
1088 1088  (((
... ... @@ -1089,24 +1089,20 @@
1089 1089  
1090 1090  
1091 1091  (% style="color:#037691" %)**Dimension and weight**:
1092 -)))
1093 1093  
1094 -* (((
1095 -Device Size: cm
865 +
866 +* Size: 195 x 125 x 55 mm
867 +* Weight:   420g
1096 1096  )))
1097 -* (((
1098 -Device Weight: g
1099 -)))
1100 -* (((
1101 -Package Size / pcs : cm
1102 -)))
1103 -* (((
1104 -Weight / pcs : g
1105 1105  
870 +(((
1106 1106  
872 +
873 +
874 +
1107 1107  )))
1108 1108  
1109 -= 8. Support =
877 += 9.  Support =
1110 1110  
1111 1111  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1112 1112  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0