<
From version < 41.1 >
edited by Xiaoling
on 2022/06/30 11:23
To version < 57.9 >
edited by Xiaoling
on 2022/07/08 12:01
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -13,70 +13,78 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
71 -== 1.3 Specification ==
62 +== 1.3  Specification ==
72 72  
64 +
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
73 73  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
75 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
76 76  
77 77  
78 78  
79 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
80 80  
81 81  * Smart Agriculture
82 82  
... ... @@ -83,122 +83,255 @@
83 83  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
84 84  ​
85 85  
86 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
87 87  
88 88  
89 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
90 90  
91 91  
92 92  
93 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
94 94  
95 -== 2.1 How it works ==
103 +== 2.1  How it works ==
96 96  
105 +
97 97  (((
98 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
99 99  )))
100 100  
110 +
101 101  (((
102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
103 103  )))
104 104  
115 +[[image:image-20220708101605-2.png]]
105 105  
117 +(((
118 +
119 +)))
106 106  
107 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
108 108  
109 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
110 110  
123 +== 2.2 ​ Configure the NSE01 ==
111 111  
112 -[[image:1654503992078-669.png]]
113 113  
126 +=== 2.2.1 Test Requirement ===
114 114  
115 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116 116  
129 +To use NSE01 in your city, make sure meet below requirements:
117 117  
118 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
119 119  
120 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
121 121  
122 -[[image:image-20220606163732-6.jpeg]]
123 123  
124 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
125 125  
126 -**Add APP EUI in the application**
127 127  
128 128  
129 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
130 130  
146 +Insert the NB-IoT Card get from your provider.
131 131  
148 +User need to take out the NB-IoT module and insert the SIM card like below:
132 132  
133 -**Add APP KEY and DEV EUI**
134 134  
135 -[[image:1654504683289-357.png]]
151 +[[image:1657249468462-536.png]]
136 136  
137 137  
138 138  
139 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
140 140  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
141 141  
142 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
143 143  
144 -[[image:image-20220606163915-7.png]]
164 +**Connection:**
145 145  
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
146 146  
147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
148 148  
149 -[[image:1654504778294-788.png]]
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
150 150  
151 151  
173 +In the PC, use below serial tool settings:
152 152  
153 -== 2.3 Uplink Payload ==
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
154 154  
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
155 155  
156 -=== 2.3.1 MOD~=0(Default Mode) ===
185 +[[image:image-20220708110657-3.png]]
157 157  
158 -LSE01 will uplink payload via LoRaWAN with below payload format: 
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
159 159  
189 +
190 +
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
192 +
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194 +
195 +
196 +**Use below commands:**
197 +
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 +
202 +For parameter description, please refer to AT command set
203 +
204 +[[image:1657249793983-486.png]]
205 +
206 +
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208 +
209 +[[image:1657249831934-534.png]]
210 +
211 +
212 +
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214 +
215 +This feature is supported since firmware version v1.0.1
216 +
217 +
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221 +
222 +[[image:1657249864775-321.png]]
223 +
224 +
225 +[[image:1657249930215-289.png]]
226 +
227 +
228 +
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
230 +
231 +This feature is supported since firmware version v110
232 +
233 +
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 +
242 +[[image:1657249978444-674.png]]
243 +
244 +
245 +[[image:1657249990869-686.png]]
246 +
247 +
160 160  (((
161 -Uplink payload includes in total 11 bytes.
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
162 162  )))
163 163  
164 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 -|(((
166 -**Size**
167 167  
168 -**(bytes)**
169 -)))|**2**|**2**|**2**|**2**|**2**|**1**
170 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 -Temperature
172 172  
173 -(Reserve, Ignore now)
174 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 -MOD & Digital Interrupt
254 +=== 2.2.7 Use TCP protocol to uplink data ===
176 176  
177 -(Optional)
178 -)))
256 +This feature is supported since firmware version v110
179 179  
180 -=== 2.3.2 MOD~=1(Original value) ===
181 181  
182 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
183 183  
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
186 -**Size**
262 +[[image:1657250217799-140.png]]
187 187  
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 -Temperature
192 192  
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 -MOD & Digital Interrupt
265 +[[image:1657250255956-604.png]]
196 196  
197 -(Optional)
267 +
268 +
269 +=== 2.2.8 Change Update Interval ===
270 +
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
272 +
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274 +
275 +(((
276 +(% style="color:red" %)**NOTE:**
198 198  )))
199 199  
200 -=== 2.3.3 Battery Info ===
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
201 201  
283 +
284 +
285 +== 2.3  Uplink Payload ==
286 +
287 +In this mode, uplink payload includes in total 18 bytes
288 +
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294 +
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296 +
297 +
298 +[[image:image-20220708111918-4.png]]
299 +
300 +
301 +The payload is ASCII string, representative same HEX:
302 +
303 +0x72403155615900640c7817075e0a8c02f900 where:
304 +
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
307 +
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
314 +
315 +
316 +== 2.4  Payload Explanation and Sensor Interface ==
317 +
318 +
319 +=== 2.4.1  Device ID ===
320 +
321 +By default, the Device ID equal to the last 6 bytes of IMEI.
322 +
323 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
324 +
325 +**Example:**
326 +
327 +AT+DEUI=A84041F15612
328 +
329 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
330 +
331 +
332 +
333 +=== 2.4.2  Version Info ===
334 +
335 +Specify the software version: 0x64=100, means firmware version 1.00.
336 +
337 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
338 +
339 +
340 +
341 +=== 2.4.3  Battery Info ===
342 +
202 202  (((
203 203  Check the battery voltage for LSE01.
204 204  )))
... ... @@ -213,14 +213,32 @@
213 213  
214 214  
215 215  
216 -=== 2.3.4 Soil Moisture ===
357 +=== 2.4.4  Signal Strength ===
217 217  
359 +NB-IoT Network signal Strength.
360 +
361 +**Ex1: 0x1d = 29**
362 +
363 +(% style="color:blue" %)**0**(%%)  -113dBm or less
364 +
365 +(% style="color:blue" %)**1**(%%)  -111dBm
366 +
367 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
368 +
369 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
370 +
371 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
372 +
373 +
374 +
375 +=== 2.4.5  Soil Moisture ===
376 +
218 218  (((
219 219  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 220  )))
221 221  
222 222  (((
223 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
382 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
224 224  )))
225 225  
226 226  (((
... ... @@ -233,10 +233,10 @@
233 233  
234 234  
235 235  
236 -=== 2.3.5 Soil Temperature ===
395 +=== 2.4. Soil Temperature ===
237 237  
238 238  (((
239 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
398 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
240 240  )))
241 241  
242 242  (((
... ... @@ -253,7 +253,7 @@
253 253  
254 254  
255 255  
256 -=== 2.3.6 Soil Conductivity (EC) ===
415 +=== 2.4. Soil Conductivity (EC) ===
257 257  
258 258  (((
259 259  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -260,7 +260,7 @@
260 260  )))
261 261  
262 262  (((
263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 264  )))
265 265  
266 266  (((
... ... @@ -275,39 +275,41 @@
275 275  
276 276  )))
277 277  
278 -=== 2.3.7 MOD ===
437 +=== 2.4. Digital Interrupt ===
279 279  
280 -Firmware version at least v2.1 supports changing mode.
439 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
281 281  
282 -For example, bytes[10]=90
441 +The command is:
283 283  
284 -mod=(bytes[10]>>7)&0x01=1.
443 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
285 285  
286 286  
287 -**Downlink Command:**
446 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
288 288  
289 -If payload = 0x0A00, workmode=0
290 290  
291 -If** **payload =** **0x0A01, workmode=1
449 +Example:
292 292  
451 +0x(00): Normal uplink packet.
293 293  
453 +0x(01): Interrupt Uplink Packet.
294 294  
295 -=== 2.3.8 ​Decode payload in The Things Network ===
296 296  
297 -While using TTN network, you can add the payload format to decode the payload.
298 298  
299 299  
300 -[[image:1654505570700-128.png]]
458 +=== 2.4.9  ​+5V Output ===
301 301  
302 -(((
303 -The payload decoder function for TTN is here:
304 -)))
305 305  
306 -(((
307 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
308 -)))
461 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
309 309  
310 310  
464 +The 5V output time can be controlled by AT Command.
465 +
466 +(% style="color:blue" %)**AT+5VT=1000**
467 +
468 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
469 +
470 +
471 +
311 311  == 2.4 Uplink Interval ==
312 312  
313 313  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
... ... @@ -689,7 +689,6 @@
689 689  * Solid ON for 5 seconds once device successful Join the network.
690 690  * Blink once when device transmit a packet.
691 691  
692 -
693 693  == 2.9 Installation in Soil ==
694 694  
695 695  **Measurement the soil surface**
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0