Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 30 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,771 +20,716 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 16 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 42 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 71 71 72 -== 1.3 Specification == 73 73 74 - MeasureVolume:Baseon thecentra pin ofthe probe, a cylinder with 7cm diameter and10cm height.60 +== 1.3 Specification == 75 75 76 -[[image:image-20220606162220-5.png]] 77 77 63 +(% style="color:#037691" %)**Common DC Characteristics:** 78 78 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 79 79 80 - ==1.4 Applications==68 +(% style="color:#037691" %)**NB-IoT Spec:** 81 81 82 -* Smart Agriculture 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 83 83 84 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 85 - 86 86 87 - ==1.5 FirmwareChangelog==78 +(% style="color:#037691" %)**Battery:** 88 88 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 89 89 90 -**LSE01 v1.0 :** Release 91 91 87 +(% style="color:#037691" %)**Power Consumption** 92 92 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 93 93 94 -= 2. Configure LSE01 to connect to LoRaWAN network = 95 95 96 -== 2.1 How it works == 97 97 98 -((( 99 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 100 -))) 101 101 102 -((( 103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 104 -))) 95 +== 1.4 Applications == 105 105 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 106 106 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 107 107 108 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 109 109 110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 111 111 109 +== 1.5 Pin Definitions == 112 112 113 -[[image:1654503992078-669.png]] 114 114 112 +[[image:1657246476176-652.png]] 115 115 116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 117 117 118 118 119 - (%style="color:blue"%)**Step1**(%%):Createa devicein TTNwiththe OTAAkeys fromLSE01.116 += 2. Use NSE01 to communicate with IoT Server = 120 120 121 - EachLSE01is shippedwitha sticker withthe default device EUI asbelow:118 +== 2.1 How it works == 122 122 123 -[[image:image-20220606163732-6.jpeg]] 124 124 125 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 126 - 127 -**Add APP EUI in the application** 128 - 129 - 130 -[[image:1654504596150-405.png]] 131 - 132 - 133 - 134 -**Add APP KEY and DEV EUI** 135 - 136 -[[image:1654504683289-357.png]] 137 - 138 - 139 - 140 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 141 - 142 - 143 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 144 - 145 -[[image:image-20220606163915-7.png]] 146 - 147 - 148 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 149 - 150 -[[image:1654504778294-788.png]] 151 - 152 - 153 - 154 -== 2.3 Uplink Payload == 155 - 156 - 157 -=== 2.3.1 MOD~=0(Default Mode) === 158 - 159 -LSE01 will uplink payload via LoRaWAN with below payload format: 160 - 161 161 ((( 162 - Uplinkpayload includesin total11bytes.122 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 163 163 ))) 164 164 165 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 166 -|((( 167 -**Size** 168 168 169 -**(bytes)** 170 -)))|**2**|**2**|**2**|**2**|**2**|**1** 171 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 172 -Temperature 173 - 174 -(Reserve, Ignore now) 175 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 176 -MOD & Digital Interrupt 177 - 178 -(Optional) 179 -))) 180 - 181 - 182 -=== 2.3.2 MOD~=1(Original value) === 183 - 184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 185 - 186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 187 -|((( 188 -**Size** 189 - 190 -**(bytes)** 191 -)))|**2**|**2**|**2**|**2**|**2**|**1** 192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 193 -Temperature 194 - 195 -(Reserve, Ignore now) 196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 197 -MOD & Digital Interrupt 198 - 199 -(Optional) 200 -))) 201 - 202 - 203 -=== 2.3.3 Battery Info === 204 - 205 205 ((( 206 - CheckthebatteryvoltageforLSE01.127 +The diagram below shows the working flow in default firmware of NSE01: 207 207 ))) 208 208 209 -((( 210 -Ex1: 0x0B45 = 2885mV 211 -))) 130 +[[image:image-20220708101605-2.png]] 212 212 213 213 ((( 214 -Ex2: 0x0B49 = 2889mV 215 -))) 216 - 217 - 218 - 219 -=== 2.3.4 Soil Moisture === 220 - 221 -((( 222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 223 -))) 224 - 225 -((( 226 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 227 -))) 228 - 229 -((( 230 230 231 231 ))) 232 232 233 -((( 234 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 235 -))) 236 236 237 237 138 +== 2.2 Configure the NSE01 == 238 238 239 -=== 2.3.5 Soil Temperature === 240 240 241 -((( 242 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 243 -))) 141 +=== 2.2.1 Test Requirement === 244 244 245 -((( 246 -**Example**: 247 -))) 248 248 249 249 ((( 250 - If payloadis 0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100 = 2.61 °C145 +To use NSE01 in your city, make sure meet below requirements: 251 251 ))) 252 252 253 - (((254 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C255 - )))148 +* Your local operator has already distributed a NB-IoT Network there. 149 +* The local NB-IoT network used the band that NSE01 supports. 150 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 256 256 257 - 258 - 259 -=== 2.3.6 Soil Conductivity (EC) === 260 - 261 261 ((( 262 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).153 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 263 263 ))) 264 264 265 -((( 266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 267 -))) 268 268 269 -((( 270 -Generally, the EC value of irrigation water is less than 800uS / cm. 271 -))) 157 +[[image:1657249419225-449.png]] 272 272 273 -((( 274 - 275 -))) 276 276 277 -((( 278 - 279 -))) 280 280 281 -=== 2. 3.7MOD===161 +=== 2.2.2 Insert SIM card === 282 282 283 -Firmware version at least v2.1 supports changing mode. 284 - 285 -For example, bytes[10]=90 286 - 287 -mod=(bytes[10]>>7)&0x01=1. 288 - 289 - 290 -**Downlink Command:** 291 - 292 -If payload = 0x0A00, workmode=0 293 - 294 -If** **payload =** **0x0A01, workmode=1 295 - 296 - 297 - 298 -=== 2.3.8 Decode payload in The Things Network === 299 - 300 -While using TTN network, you can add the payload format to decode the payload. 301 - 302 - 303 -[[image:1654505570700-128.png]] 304 - 305 305 ((( 306 - ThepayloaddecoderfunctionforTTNis here:164 +Insert the NB-IoT Card get from your provider. 307 307 ))) 308 308 309 309 ((( 310 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]168 +User need to take out the NB-IoT module and insert the SIM card like below: 311 311 ))) 312 312 313 313 314 - ==2.4Uplink Interval ==172 +[[image:1657249468462-536.png]] 315 315 316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 317 317 318 318 176 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 319 319 320 -== 2.5 Downlink Payload == 321 - 322 -By default, LSE50 prints the downlink payload to console port. 323 - 324 -[[image:image-20220606165544-8.png]] 325 - 326 - 327 327 ((( 328 -(% style="color:blue" %)**Examples:** 329 -))) 330 - 331 331 ((( 332 - 180 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 333 333 ))) 334 - 335 -* ((( 336 -(% style="color:blue" %)**Set TDC** 337 337 ))) 338 338 339 -((( 340 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 341 -))) 342 342 343 -((( 344 -Payload: 01 00 00 1E TDC=30S 345 -))) 185 +**Connection:** 346 346 347 -((( 348 -Payload: 01 00 00 3C TDC=60S 349 -))) 187 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 350 350 351 -((( 352 - 353 -))) 189 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 354 354 355 -* ((( 356 -(% style="color:blue" %)**Reset** 357 -))) 191 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 358 358 359 -((( 360 -If payload = 0x04FF, it will reset the LSE01 361 -))) 362 362 194 +In the PC, use below serial tool settings: 363 363 364 -* (% style="color:blue" %)**CFM** 196 +* Baud: (% style="color:green" %)**9600** 197 +* Data bits:** (% style="color:green" %)8(%%)** 198 +* Stop bits: (% style="color:green" %)**1** 199 +* Parity: (% style="color:green" %)**None** 200 +* Flow Control: (% style="color:green" %)**None** 365 365 366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 367 - 368 - 369 - 370 -== 2.6 Show Data in DataCake IoT Server == 371 - 372 372 ((( 373 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:203 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 374 374 ))) 375 375 376 -((( 377 - 378 -))) 206 +[[image:image-20220708110657-3.png]] 379 379 380 380 ((( 381 -(% style="color: blue" %)**Step 1**(%%):Be surethat your deviceisprogrammed and properlyconnectedtothe networkat thistime.209 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 382 382 ))) 383 383 384 -((( 385 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 386 -))) 387 387 388 388 389 - [[image:1654505857935-743.png]]214 +=== 2.2.4 Use CoAP protocol to uplink data === 390 390 216 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 391 391 392 -[[image:1654505874829-548.png]] 393 393 219 +**Use below commands:** 394 394 395 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 221 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 396 396 397 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01andadd DevEUI.225 +For parameter description, please refer to AT command set 398 398 227 +[[image:1657249793983-486.png]] 399 399 400 -[[image:1654505905236-553.png]] 401 401 230 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 402 402 403 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.232 +[[image:1657249831934-534.png]] 404 404 405 -[[image:1654505925508-181.png]] 406 406 407 407 236 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 408 408 409 - ==2.7 FrequencyPlans==238 +This feature is supported since firmware version v1.0.1 410 410 411 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 412 412 241 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 242 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 243 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 413 413 414 - === 2.7.1EU863-870 (EU868) ===245 +[[image:1657249864775-321.png]] 415 415 416 -(% style="color:#037691" %)** Uplink:** 417 417 418 - 868.1- SF7BW125 to SF12BW125248 +[[image:1657249930215-289.png]] 419 419 420 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 421 421 422 -868.5 - SF7BW125 to SF12BW125 423 423 424 - 867.1-SF7BW125toSF12BW125252 +=== 2.2.6 Use MQTT protocol to uplink data === 425 425 426 - 867.3-SF7BW125toSF12BW125254 +This feature is supported since firmware version v110 427 427 428 -867.5 - SF7BW125 to SF12BW125 429 429 430 -867.7 - SF7BW125 to SF12BW125 257 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 258 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 259 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 260 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 261 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 262 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 263 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 431 431 432 - 867.9SF7BW125 to SF12BW125265 +[[image:1657249978444-674.png]] 433 433 434 -868.8 - FSK 435 435 268 +[[image:1657249990869-686.png]] 436 436 437 -(% style="color:#037691" %)** Downlink:** 438 438 439 -Uplink channels 1-9 (RX1) 271 +((( 272 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 273 +))) 440 440 441 -869.525 - SF9BW125 (RX2 downlink only) 442 442 443 443 277 +=== 2.2.7 Use TCP protocol to uplink data === 444 444 445 - ===2.7.2US902-928(US915)===279 +This feature is supported since firmware version v110 446 446 447 -Used in USA, Canada and South America. Default use CHE=2 448 448 449 -(% style="color:#037691" %)**Uplink:** 282 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 450 450 451 - 903.9 - SF7BW125to SF10BW125285 +[[image:1657250217799-140.png]] 452 452 453 -904.1 - SF7BW125 to SF10BW125 454 454 455 - 904.3 - SF7BW125to SF10BW125288 +[[image:1657250255956-604.png]] 456 456 457 -904.5 - SF7BW125 to SF10BW125 458 458 459 -904.7 - SF7BW125 to SF10BW125 460 460 461 - 904.9-SF7BW125toSF10BW125292 +=== 2.2.8 Change Update Interval === 462 462 463 - 905.1-SF7BW125toSF10BW125294 +User can use below command to change the (% style="color:green" %)**uplink interval**. 464 464 465 - 905.3-SF7BW125toSF10BW125296 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 466 466 298 +((( 299 +(% style="color:red" %)**NOTE:** 300 +))) 467 467 468 -(% style="color:#037691" %)**Downlink:** 302 +((( 303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 +))) 469 469 470 -923.3 - SF7BW500 to SF12BW500 471 471 472 -923.9 - SF7BW500 to SF12BW500 473 473 474 - 924.5-SF7BW500 toSF12BW500308 +== 2.3 Uplink Payload == 475 475 476 - 925.1-SF7BW500toSF12BW500310 +In this mode, uplink payload includes in total 18 bytes 477 477 478 -925.7 - SF7BW500 to SF12BW500 312 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 313 +|=(% style="width: 60px;" %)((( 314 +**Size(bytes)** 315 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 316 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 479 479 480 -926.3 - SF7BW500 to SF12BW500 318 +((( 319 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 320 +))) 481 481 482 -926.9 - SF7BW500 to SF12BW500 483 483 484 - 927.5-SF7BW500 to SF12BW500323 +[[image:image-20220708111918-4.png]] 485 485 486 -923.3 - SF12BW500(RX2 downlink only) 487 487 326 +The payload is ASCII string, representative same HEX: 488 488 328 +0x72403155615900640c7817075e0a8c02f900 where: 489 489 490 -=== 2.7.3 CN470-510 (CN470) === 330 +* Device ID: 0x 724031556159 = 724031556159 331 +* Version: 0x0064=100=1.0.0 491 491 492 -Used in China, Default use CHE=1 333 +* BAT: 0x0c78 = 3192 mV = 3.192V 334 +* Singal: 0x17 = 23 335 +* Soil Moisture: 0x075e= 1886 = 18.86 % 336 +* Soil Temperature:0x0a8c =2700=27 °C 337 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 338 +* Interrupt: 0x00 = 0 493 493 494 - (%style="color:#037691"%)**Uplink:**340 +== 2.4 Payload Explanation and Sensor Interface == 495 495 496 -486.3 - SF7BW125 to SF12BW125 497 497 498 -4 86.5 - SF7BW125toSF12BW125343 +=== 2.4.1 Device ID === 499 499 500 -486.7 - SF7BW125 to SF12BW125 345 +((( 346 +By default, the Device ID equal to the last 6 bytes of IMEI. 347 +))) 501 501 502 -486.9 - SF7BW125 to SF12BW125 349 +((( 350 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 +))) 503 503 504 -487.1 - SF7BW125 to SF12BW125 353 +((( 354 +**Example:** 355 +))) 505 505 506 -487.3 - SF7BW125 to SF12BW125 357 +((( 358 +AT+DEUI=A84041F15612 359 +))) 507 507 508 -487.5 - SF7BW125 to SF12BW125 361 +((( 362 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 +))) 509 509 510 -487.7 - SF7BW125 to SF12BW125 511 511 512 512 513 - (%style="color:#037691" %)**Downlink:**367 +=== 2.4.2 Version Info === 514 514 515 -506.7 - SF7BW125 to SF12BW125 369 +((( 370 +Specify the software version: 0x64=100, means firmware version 1.00. 371 +))) 516 516 517 -506.9 - SF7BW125 to SF12BW125 373 +((( 374 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 +))) 518 518 519 -507.1 - SF7BW125 to SF12BW125 520 520 521 -507.3 - SF7BW125 to SF12BW125 522 522 523 - 507.5- SF7BW125toSF12BW125379 +=== 2.4.3 Battery Info === 524 524 525 -507.7 - SF7BW125 to SF12BW125 381 +((( 382 +Check the battery voltage for LSE01. 383 +))) 526 526 527 -507.9 - SF7BW125 to SF12BW125 385 +((( 386 +Ex1: 0x0B45 = 2885mV 387 +))) 528 528 529 -508.1 - SF7BW125 to SF12BW125 389 +((( 390 +Ex2: 0x0B49 = 2889mV 391 +))) 530 530 531 -505.3 - SF12BW125 (RX2 downlink only) 532 532 533 533 395 +=== 2.4.4 Signal Strength === 534 534 535 -=== 2.7.4 AU915-928(AU915) === 397 +((( 398 +NB-IoT Network signal Strength. 399 +))) 536 536 537 -Default use CHE=2 401 +((( 402 +**Ex1: 0x1d = 29** 403 +))) 538 538 539 -(% style="color:#037691" %)**Uplink:** 405 +((( 406 +(% style="color:blue" %)**0**(%%) -113dBm or less 407 +))) 540 540 541 -916.8 - SF7BW125 to SF12BW125 409 +((( 410 +(% style="color:blue" %)**1**(%%) -111dBm 411 +))) 542 542 543 -917.0 - SF7BW125 to SF12BW125 413 +((( 414 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 +))) 544 544 545 -917.2 - SF7BW125 to SF12BW125 417 +((( 418 +(% style="color:blue" %)**31** (%%) -51dBm or greater 419 +))) 546 546 547 -917.4 - SF7BW125 to SF12BW125 421 +((( 422 +(% style="color:blue" %)**99** (%%) Not known or not detectable 423 +))) 548 548 549 -917.6 - SF7BW125 to SF12BW125 550 550 551 -917.8 - SF7BW125 to SF12BW125 552 552 553 - 918.0- SF7BW125toSF12BW125427 +=== 2.4.5 Soil Moisture === 554 554 555 -918.2 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 432 +))) 433 +))) 556 556 435 +((( 436 +((( 437 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 438 +))) 439 +))) 557 557 558 -(% style="color:#037691" %)**Downlink:** 441 +((( 442 + 443 +))) 559 559 560 -923.3 - SF7BW500 to SF12BW500 445 +((( 446 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 447 +))) 561 561 562 -923.9 - SF7BW500 to SF12BW500 563 563 564 -924.5 - SF7BW500 to SF12BW500 565 565 566 - 925.1-SF7BW500toSF12BW500451 +=== 2.4.6 Soil Temperature === 567 567 568 -925.7 - SF7BW500 to SF12BW500 453 +((( 454 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 455 +))) 569 569 570 -926.3 - SF7BW500 to SF12BW500 457 +((( 458 +**Example**: 459 +))) 571 571 572 -926.9 - SF7BW500 to SF12BW500 461 +((( 462 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 463 +))) 573 573 574 -927.5 - SF7BW500 to SF12BW500 465 +((( 466 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 467 +))) 575 575 576 -923.3 - SF12BW500(RX2 downlink only) 577 577 578 578 471 +=== 2.4.7 Soil Conductivity (EC) === 579 579 580 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 473 +((( 474 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 475 +))) 581 581 582 -(% style="color:#037691" %)**Default Uplink channel:** 477 +((( 478 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 479 +))) 583 583 584 -923.2 - SF7BW125 to SF10BW125 481 +((( 482 +Generally, the EC value of irrigation water is less than 800uS / cm. 483 +))) 585 585 586 -923.4 - SF7BW125 to SF10BW125 485 +((( 486 + 487 +))) 587 587 489 +((( 490 + 491 +))) 588 588 589 - (% style="color:#037691"%)**AdditionalUplink Channel**:493 +=== 2.4.8 Digital Interrupt === 590 590 591 -(OTAA mode, channel added by JoinAccept message) 495 +((( 496 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 +))) 592 592 593 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 499 +((( 500 +The command is: 501 +))) 594 594 595 -922.2 - SF7BW125 to SF10BW125 503 +((( 504 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 +))) 596 596 597 -922.4 - SF7BW125 to SF10BW125 598 598 599 -922.6 - SF7BW125 to SF10BW125 508 +((( 509 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 510 +))) 600 600 601 -922.8 - SF7BW125 to SF10BW125 602 602 603 -923.0 - SF7BW125 to SF10BW125 513 +((( 514 +Example: 515 +))) 604 604 605 -922.0 - SF7BW125 to SF10BW125 517 +((( 518 +0x(00): Normal uplink packet. 519 +))) 606 606 521 +((( 522 +0x(01): Interrupt Uplink Packet. 523 +))) 607 607 608 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 609 609 610 -923.6 - SF7BW125 to SF10BW125 611 611 612 - 923.8- SF7BW125 toSF10BW125527 +=== 2.4.9 +5V Output === 613 613 614 -924.0 - SF7BW125 to SF10BW125 529 +((( 530 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 +))) 615 615 616 -924.2 - SF7BW125 to SF10BW125 617 617 618 -924.4 - SF7BW125 to SF10BW125 534 +((( 535 +The 5V output time can be controlled by AT Command. 536 +))) 619 619 620 -924.6 - SF7BW125 to SF10BW125 538 +((( 539 +(% style="color:blue" %)**AT+5VT=1000** 540 +))) 621 621 542 +((( 543 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 +))) 622 622 623 -(% style="color:#037691" %)** Downlink:** 624 624 625 -Uplink channels 1-8 (RX1) 626 626 627 - 923.2-SF10BW125(RX2)548 +== 2.5 Downlink Payload == 628 628 550 +By default, NSE01 prints the downlink payload to console port. 629 629 552 +[[image:image-20220708133731-5.png]] 630 630 631 -=== 2.7.6 KR920-923 (KR920) === 632 632 633 -Default channel: 555 +((( 556 +(% style="color:blue" %)**Examples:** 557 +))) 634 634 635 -922.1 - SF7BW125 to SF12BW125 559 +((( 560 + 561 +))) 636 636 637 -922.3 - SF7BW125 to SF12BW125 563 +* ((( 564 +(% style="color:blue" %)**Set TDC** 565 +))) 638 638 639 -922.5 - SF7BW125 to SF12BW125 567 +((( 568 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 569 +))) 640 640 571 +((( 572 +Payload: 01 00 00 1E TDC=30S 573 +))) 641 641 642 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 575 +((( 576 +Payload: 01 00 00 3C TDC=60S 577 +))) 643 643 644 -922.1 - SF7BW125 to SF12BW125 579 +((( 580 + 581 +))) 645 645 646 -922.3 - SF7BW125 to SF12BW125 583 +* ((( 584 +(% style="color:blue" %)**Reset** 585 +))) 647 647 648 -922.5 - SF7BW125 to SF12BW125 587 +((( 588 +If payload = 0x04FF, it will reset the NSE01 589 +))) 649 649 650 -922.7 - SF7BW125 to SF12BW125 651 651 652 - 922.9-SF7BW125toSF12BW125592 +* (% style="color:blue" %)**INTMOD** 653 653 654 -923.1 - SF7BW125 to SF12BW125 594 +((( 595 +Downlink Payload: 06000003, Set AT+INTMOD=3 596 +))) 655 655 656 -923.3 - SF7BW125 to SF12BW125 657 657 658 658 659 - (% style="color:#037691"%)**Downlink:**600 +== 2.6 LED Indicator == 660 660 661 -Uplink channels 1-7(RX1) 602 +((( 603 +The NSE01 has an internal LED which is to show the status of different state. 662 662 663 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 664 664 606 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 607 +* Then the LED will be on for 1 second means device is boot normally. 608 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 609 +* For each uplink probe, LED will be on for 500ms. 610 +))) 665 665 666 666 667 -=== 2.7.7 IN865-867 (IN865) === 668 668 669 -(% style="color:#037691" %)** Uplink:** 670 670 671 - 865.0625- SF7BW125to SF12BW125615 +== 2.7 Installation in Soil == 672 672 673 - 865.4025- SF7BW125toSF12BW125617 +__**Measurement the soil surface**__ 674 674 675 -865.9850 - SF7BW125 to SF12BW125 619 +((( 620 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 621 +))) 676 676 623 +[[image:1657259653666-883.png]] 677 677 678 -(% style="color:#037691" %) **Downlink:** 679 679 680 -Uplink channels 1-3 (RX1) 626 +((( 627 + 681 681 682 -866.550 - SF10BW125 (RX2) 629 +((( 630 +Dig a hole with diameter > 20CM. 631 +))) 683 683 633 +((( 634 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 635 +))) 636 +))) 684 684 638 +[[image:1654506665940-119.png]] 685 685 640 +((( 641 + 642 +))) 686 686 687 -== 2.8 LED Indicator == 688 688 689 - TheLSE01has aninternal LEDwhich is to show the status of differentstate.645 +== 2.8 Firmware Change Log == 690 690 691 -* Blink once when device power on. 692 -* Solid ON for 5 seconds once device successful Join the network. 693 -* Blink once when device transmit a packet. 694 694 648 +Download URL & Firmware Change log 695 695 650 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 696 696 697 -== 2.9 Installation in Soil == 698 698 699 - **Measurement the soil surface**653 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 700 700 701 701 702 -[[image:1654506634463-199.png]] 703 703 704 -((( 705 -((( 706 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 707 -))) 708 -))) 657 +== 2.9 Battery Analysis == 709 709 659 +=== 2.9.1 Battery Type === 710 710 711 711 712 -[[image:1654506665940-119.png]] 713 - 714 714 ((( 715 - Diga hole with diameter>20CM.663 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 716 716 ))) 717 717 666 + 718 718 ((( 719 - Horizontalinserttheprobe to thesoil andfilltheholeforlong termmeasurement.668 +The battery is designed to last for several years depends on the actually use environment and update interval. 720 720 ))) 721 721 722 722 723 -== 2.10 Firmware Change Log == 724 - 725 725 ((( 726 - **Firmware downloadlink:**673 +The battery related documents as below: 727 727 ))) 728 728 729 - (((730 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]731 - )))676 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 677 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 732 732 733 733 ((( 734 - 681 +[[image:image-20220708140453-6.png]] 735 735 ))) 736 736 737 -((( 738 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 739 -))) 740 740 741 -((( 742 - 743 -))) 744 744 745 -((( 746 -**V1.0.** 747 -))) 686 +=== 2.9.2 Power consumption Analyze === 748 748 749 749 ((( 750 - Release689 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 751 751 ))) 752 752 753 753 754 -== 2.11 Battery Analysis == 755 - 756 -=== 2.11.1 Battery Type === 757 - 758 758 ((( 759 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.694 +Instruction to use as below: 760 760 ))) 761 761 762 762 ((( 763 - Thebatterys designedlastforrethan5 years fortheSN50.698 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 764 764 ))) 765 765 701 + 766 766 ((( 767 -((( 768 -The battery-related documents are as below: 703 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 769 769 ))) 770 -))) 771 771 772 772 * ((( 773 - [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],707 +Product Model 774 774 ))) 775 775 * ((( 776 - [[Lithium-ThionylChloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],710 +Uplink Interval 777 777 ))) 778 778 * ((( 779 - [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]713 +Working Mode 780 780 ))) 781 781 782 - [[image:image-20220610172436-1.png]] 716 +((( 717 +And the Life expectation in difference case will be shown on the right. 718 +))) 783 783 720 +[[image:image-20220708141352-7.jpeg]] 784 784 785 785 786 -=== 2.11.2 Battery Note === 787 787 724 +=== 2.9.3 Battery Note === 725 + 788 788 ((( 789 789 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 790 790 ))) ... ... @@ -791,302 +791,176 @@ 791 791 792 792 793 793 794 -=== 2. 11.3Replace the battery ===732 +=== 2.9.4 Replace the battery === 795 795 796 796 ((( 797 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.735 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 798 798 ))) 799 799 738 + 739 + 740 += 3. Access NB-IoT Module = 741 + 800 800 ((( 801 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.743 +Users can directly access the AT command set of the NB-IoT module. 802 802 ))) 803 803 804 804 ((( 805 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)747 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 806 806 ))) 807 807 750 +[[image:1657261278785-153.png]] 808 808 809 809 810 -= 3. Using the AT Commands = 811 811 812 -= =3.1AccessAT Commands ==754 += 4. Using the AT Commands = 813 813 756 +== 4.1 Access AT Commands == 814 814 815 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.758 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 816 816 817 -[[image:1654501986557-872.png||height="391" width="800"]] 818 818 761 +AT+<CMD>? : Help on <CMD> 819 819 820 - Orifyouhavebelowboard,usebelowconnection:763 +AT+<CMD> : Run <CMD> 821 821 765 +AT+<CMD>=<value> : Set the value 822 822 823 - [[image:1654502005655-729.png||height="503"width="801"]]767 +AT+<CMD>=? : Get the value 824 824 825 825 826 - 827 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 828 - 829 - 830 - [[image:1654502050864-459.png||height="564" width="806"]] 831 - 832 - 833 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 834 - 835 - 836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 837 - 838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 839 - 840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 841 - 842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 843 - 844 - 845 845 (% style="color:#037691" %)**General Commands**(%%) 846 846 847 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention772 +AT : Attention 848 848 849 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help774 +AT? : Short Help 850 850 851 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset776 +ATZ : MCU Reset 852 852 853 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval778 +AT+TDC : Application Data Transmission Interval 854 854 780 +AT+CFG : Print all configurations 855 855 856 - (%style="color:#037691"%)**Keys,IDsand EUIs management**782 +AT+CFGMOD : Working mode selection 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI784 +AT+INTMOD : Set the trigger interrupt mode 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey786 +AT+5VT : Set extend the time of 5V power 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key788 +AT+PRO : Choose agreement 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress790 +AT+WEIGRE : Get weight or set weight to 0 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI792 +AT+WEIGAP : Get or Set the GapValue of weight 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)794 +AT+RXDL : Extend the sending and receiving time 869 869 870 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network796 +AT+CNTFAC : Get or set counting parameters 871 871 872 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode798 +AT+SERVADDR : Server Address 873 873 874 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 875 875 876 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network801 +(% style="color:#037691" %)**COAP Management** 877 877 878 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode803 +AT+URI : Resource parameters 879 879 880 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 881 881 882 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format806 +(% style="color:#037691" %)**UDP Management** 883 883 884 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat808 +AT+CFM : Upload confirmation mode (only valid for UDP) 885 885 886 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 887 887 888 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data811 +(% style="color:#037691" %)**MQTT Management** 889 889 813 +AT+CLIENT : Get or Set MQTT client 890 890 891 - (%style="color:#037691"%)**LoRaNetworkManagement**815 +AT+UNAME : Get or Set MQTT Username 892 892 893 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate817 +AT+PWD : Get or Set MQTT password 894 894 895 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA819 +AT+PUBTOPIC : Get or Set MQTT publish topic 896 896 897 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting821 +AT+SUBTOPIC : Get or Set MQTT subscription topic 898 898 899 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 900 900 901 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink824 +(% style="color:#037691" %)**Information** 902 902 903 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink826 +AT+FDR : Factory Data Reset 904 904 905 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1828 +AT+PWORD : Serial Access Password 906 906 907 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 908 908 909 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 910 910 911 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1832 += 5. FAQ = 912 912 913 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2834 +== 5.1 How to Upgrade Firmware == 914 914 915 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 916 916 917 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 918 - 919 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 920 - 921 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 922 - 923 - 924 -(% style="color:#037691" %)**Information** 925 - 926 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 927 - 928 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 929 - 930 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 931 - 932 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 933 - 934 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 935 - 936 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 937 - 938 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 939 - 940 - 941 -= 4. FAQ = 942 - 943 -== 4.1 How to change the LoRa Frequency Bands/Region? == 944 - 945 945 ((( 946 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 947 -When downloading the images, choose the required image file for download. 838 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 948 948 ))) 949 949 950 950 ((( 951 - 842 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 952 952 ))) 953 953 954 954 ((( 955 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.846 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 956 956 ))) 957 957 958 -((( 959 - 960 -))) 961 961 962 -((( 963 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 964 -))) 965 965 966 -((( 967 - 968 -))) 851 +== 5.2 Can I calibrate NSE01 to different soil types? == 969 969 970 970 ((( 971 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.854 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 972 972 ))) 973 973 974 -[[image:image-20220606154726-3.png]] 975 975 858 += 6. Trouble Shooting = 976 976 977 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:860 +== 6.1 Connection problem when uploading firmware == 978 978 979 -* 903.9 - SF7BW125 to SF10BW125 980 -* 904.1 - SF7BW125 to SF10BW125 981 -* 904.3 - SF7BW125 to SF10BW125 982 -* 904.5 - SF7BW125 to SF10BW125 983 -* 904.7 - SF7BW125 to SF10BW125 984 -* 904.9 - SF7BW125 to SF10BW125 985 -* 905.1 - SF7BW125 to SF10BW125 986 -* 905.3 - SF7BW125 to SF10BW125 987 -* 904.6 - SF8BW500 988 988 989 989 ((( 990 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 991 - 992 -* (% style="color:#037691" %)**AT+CHE=2** 993 -* (% style="color:#037691" %)**ATZ** 864 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 994 994 ))) 995 995 867 +(% class="wikigeneratedid" %) 996 996 ((( 997 997 998 - 999 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1000 1000 ))) 1001 1001 1002 -((( 1003 - 1004 -))) 1005 1005 1006 -((( 1007 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1008 -))) 873 +== 6.2 AT Command input doesn't work == 1009 1009 1010 -[[image:image-20220606154825-4.png]] 1011 - 1012 - 1013 -== 4.2 Can I calibrate LSE01 to different soil types? == 1014 - 1015 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1016 - 1017 - 1018 -= 5. Trouble Shooting = 1019 - 1020 -== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1021 - 1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.19EightChannelMode||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1023 - 1024 - 1025 -== 5.2 AT Command input doesn't work == 1026 - 1027 1027 ((( 1028 1028 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1029 -))) 1030 1030 1031 - 1032 -== 5.3 Device rejoin in at the second uplink packet == 1033 - 1034 -(% style="color:#4f81bd" %)**Issue describe as below:** 1035 - 1036 -[[image:1654500909990-784.png]] 1037 - 1038 - 1039 -(% style="color:#4f81bd" %)**Cause for this issue:** 1040 - 1041 -((( 1042 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 878 + 1043 1043 ))) 1044 1044 1045 1045 1046 - (% style="color:#4f81bd"%)**Solution:**882 += 7. Order Info = 1047 1047 1048 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1049 1049 1050 - [[image:1654500929571-736.png||height="458" width="832"]]885 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1051 1051 1052 1052 1053 -= 6. Order Info = 1054 - 1055 - 1056 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1057 - 1058 - 1059 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1060 - 1061 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1062 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1063 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1064 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1065 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1066 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1067 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1068 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1069 - 1070 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1071 - 1072 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1073 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1074 - 1075 1075 (% class="wikigeneratedid" %) 1076 1076 ((( 1077 1077 1078 1078 ))) 1079 1079 1080 -= 7. Packing Info =893 += 8. Packing Info = 1081 1081 1082 1082 ((( 1083 1083 1084 1084 1085 1085 (% style="color:#037691" %)**Package Includes**: 1086 -))) 1087 1087 1088 -* (((1089 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1900 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 901 +* External antenna x 1 1090 1090 ))) 1091 1091 1092 1092 ((( ... ... @@ -1093,24 +1093,19 @@ 1093 1093 1094 1094 1095 1095 (% style="color:#037691" %)**Dimension and weight**: 1096 -))) 1097 1097 1098 -* (((1099 - DeviceSize:cm909 +* Size: 195 x 125 x 55 mm 910 +* Weight: 420g 1100 1100 ))) 1101 -* ((( 1102 -Device Weight: g 1103 -))) 1104 -* ((( 1105 -Package Size / pcs : cm 1106 -))) 1107 -* ((( 1108 -Weight / pcs : g 1109 1109 913 +((( 1110 1110 915 + 916 + 917 + 1111 1111 ))) 1112 1112 1113 -= 8. Support =920 += 9. Support = 1114 1114 1115 1115 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1116 1116 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content