Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -13,71 +13,78 @@ 13 13 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 20 20 21 21 21 += 1. Introduction = 22 22 23 -= 1. Introduction =23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 24 25 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 - 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 32 32 33 -((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 35 -))) 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 39 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 44 44 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 + 47 47 ))) 48 48 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 54 54 55 55 56 56 57 57 == 1.2 Features == 58 58 59 - * LoRaWAN 1.0.3 Class A60 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 61 61 * Monitor Soil Moisture 62 62 * Monitor Soil Temperature 63 63 * Monitor Soil Conductivity 64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 70 70 62 +== 1.3 Specification == 71 71 72 -== 1.3 Specification == 73 73 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 74 74 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 75 75 76 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 77 77 78 78 79 79 80 -== 1.4 Applications == 87 +== 1.4 Applications == 81 81 82 82 * Smart Agriculture 83 83 ... ... @@ -84,729 +84,551 @@ 84 84 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 85 85 86 86 87 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 88 88 89 89 90 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 91 91 92 92 93 93 94 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 95 95 96 -== 2.1 How it works == 103 +== 2.1 How it works == 97 97 105 + 98 98 ((( 99 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 100 100 ))) 101 101 110 + 102 102 ((( 103 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 104 104 ))) 105 105 115 +[[image:image-20220708101605-2.png]] 106 106 117 +((( 118 + 119 +))) 107 107 108 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 109 109 110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 111 111 123 +== 2.2 Configure the NSE01 == 112 112 113 -[[image:1654503992078-669.png]] 114 114 126 +=== 2.2.1 Test Requirement === 115 115 116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 117 117 129 +To use NSE01 in your city, make sure meet below requirements: 118 118 119 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 120 120 121 -Each LSE01 is shipped with a sticker with the default device EUI as below: 122 - 123 -[[image:image-20220606163732-6.jpeg]] 124 - 125 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 126 - 127 -**Add APP EUI in the application** 128 - 129 - 130 -[[image:1654504596150-405.png]] 131 - 132 - 133 - 134 -**Add APP KEY and DEV EUI** 135 - 136 -[[image:1654504683289-357.png]] 137 - 138 - 139 - 140 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 141 - 142 - 143 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 144 - 145 -[[image:image-20220606163915-7.png]] 146 - 147 - 148 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 149 - 150 -[[image:1654504778294-788.png]] 151 - 152 - 153 - 154 -== 2.3 Uplink Payload == 155 - 156 - 157 -=== 2.3.1 MOD~=0(Default Mode) === 158 - 159 -LSE01 will uplink payload via LoRaWAN with below payload format: 160 - 161 161 ((( 162 - Uplinkpayload includesintotal 11bytes.136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 163 163 ))) 164 164 165 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 166 -|((( 167 -**Size** 168 168 169 -**(bytes)** 170 -)))|**2**|**2**|**2**|**2**|**2**|**1** 171 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 172 -Temperature 140 +[[image:1657249419225-449.png]] 173 173 174 -(Reserve, Ignore now) 175 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 176 -MOD & Digital Interrupt 177 177 178 -(Optional) 179 -))) 180 180 144 +=== 2.2.2 Insert SIM card === 181 181 182 - ===2.3.2MOD~=1(Originalvalue)===146 +Insert the NB-IoT Card get from your provider. 183 183 184 - Thismodecanget the original AD value ofmoisture andoriginal conductivity(withtemperaturedriftcompensation).148 +User need to take out the NB-IoT module and insert the SIM card like below: 185 185 186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 187 -|((( 188 -**Size** 189 189 190 -**(bytes)** 191 -)))|**2**|**2**|**2**|**2**|**2**|**1** 192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 193 -Temperature 151 +[[image:1657249468462-536.png]] 194 194 195 -(Reserve, Ignore now) 196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 197 -MOD & Digital Interrupt 198 198 199 -(Optional) 200 -))) 201 201 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 202 202 203 -=== 2.3.3 Battery Info === 204 - 205 205 ((( 206 -Check the battery voltage for LSE01. 207 -))) 208 - 209 209 ((( 210 -E x1: 0x0B45=2885mV159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 211 211 ))) 212 - 213 -((( 214 -Ex2: 0x0B49 = 2889mV 215 215 ))) 216 216 217 217 164 +**Connection:** 218 218 219 - ===2.3.4Soil Moisture===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 220 220 221 -((( 222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 223 -))) 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 224 224 225 -((( 226 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 227 -))) 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 228 228 229 -((( 230 - 231 -))) 232 232 233 -((( 234 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 235 -))) 173 +In the PC, use below serial tool settings: 236 236 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 237 237 238 - 239 -=== 2.3.5 Soil Temperature === 240 - 241 241 ((( 242 - Getthe temperatureinthe soil. Thevaluerangeoftheregisteris-4000 - +800(Decimal),dividethis valueby100 toget thetemperatureinthesoil.Forexample,ifthedatayougetfromtheregisteris 0x09 0xEC,the temperaturecontentinthesoilis182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 243 243 ))) 244 244 245 -((( 246 -**Example**: 247 -))) 185 +[[image:image-20220708110657-3.png]] 248 248 249 -((( 250 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 251 -))) 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 252 252 253 -((( 254 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 255 -))) 256 256 257 257 191 +=== 2.2.4 Use CoAP protocol to uplink data === 258 258 259 -= ==2.3.6SoilConductivity (EC) ===193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 260 260 261 -((( 262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 263 -))) 264 264 265 -((( 266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 267 -))) 196 +**Use below commands:** 268 268 269 -(( (270 - Generally, the ECvalueofirrigationwateris lessthan800uS / cm.271 -)) )198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 272 272 273 -((( 274 - 275 -))) 202 +For parameter description, please refer to AT command set 276 276 277 -((( 278 - 279 -))) 204 +[[image:1657249793983-486.png]] 280 280 281 -=== 2.3.7 MOD === 282 282 283 - Firmware versionatleast v2.1 supportschangingmode.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 284 284 285 - For example, bytes[10]=90209 +[[image:1657249831934-534.png]] 286 286 287 -mod=(bytes[10]>>7)&0x01=1. 288 288 289 289 290 - **DownlinkCommand:**213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 291 291 292 - If payload=0x0A00, workmode=0215 +This feature is supported since firmware version v1.0.1 293 293 294 -If** **payload =** **0x0A01, workmode=1 295 295 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 296 296 222 +[[image:1657249864775-321.png]] 297 297 298 -=== 2.3.8 Decode payload in The Things Network === 299 299 300 - While using TTN network, you can add the payload format to decode the payload.225 +[[image:1657249930215-289.png]] 301 301 302 302 303 -[[image:1654505570700-128.png]] 304 304 305 -((( 306 -The payload decoder function for TTN is here: 307 -))) 229 +=== 2.2.6 Use MQTT protocol to uplink data === 308 308 309 -((( 310 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 311 -))) 231 +This feature is supported since firmware version v110 312 312 313 313 314 -== 2.4 Uplink Interval == 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 315 315 316 - The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:[[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]242 +[[image:1657249978444-674.png]] 317 317 318 318 245 +[[image:1657249990869-686.png]] 319 319 320 -== 2.5 Downlink Payload == 321 321 322 -By default, LSE50 prints the downlink payload to console port. 323 - 324 -[[image:image-20220606165544-8.png]] 325 - 326 - 327 327 ((( 328 - (%style="color:blue"%)**Examples:**249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 329 329 ))) 330 330 331 -((( 332 - 333 -))) 334 334 335 -* ((( 336 -(% style="color:blue" %)**Set TDC** 337 -))) 338 338 339 -((( 340 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 341 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 342 342 343 -((( 344 -Payload: 01 00 00 1E TDC=30S 345 -))) 256 +This feature is supported since firmware version v110 346 346 347 -((( 348 -Payload: 01 00 00 3C TDC=60S 349 -))) 350 350 351 -((( 352 - 353 -))) 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 354 354 355 -* ((( 356 -(% style="color:blue" %)**Reset** 357 -))) 262 +[[image:1657250217799-140.png]] 358 358 359 -((( 360 -If payload = 0x04FF, it will reset the LSE01 361 -))) 362 362 265 +[[image:1657250255956-604.png]] 363 363 364 -* (% style="color:blue" %)**CFM** 365 365 366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 367 367 269 +=== 2.2.8 Change Update Interval === 368 368 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 369 369 370 - ==2.6ShowDatainDataCake IoT Server==273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 371 371 372 372 ((( 373 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:276 +(% style="color:red" %)**NOTE:** 374 374 ))) 375 375 376 376 ((( 377 - 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 378 378 ))) 379 379 380 -((( 381 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 382 -))) 383 383 384 -((( 385 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 386 -))) 387 387 285 +== 2.3 Uplink Payload == 388 388 389 - [[image:1654505857935-743.png]]287 +In this mode, uplink payload includes in total 18 bytes 390 390 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 391 391 392 - [[image:1654505874829-548.png]]295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 393 393 394 394 395 - (% style="color:blue" %)**Step 3**(%%)**:** Create an account or logn Datacake.298 +[[image:image-20220708111918-4.png]] 396 396 397 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 398 398 301 +The payload is ASCII string, representative same HEX: 399 399 400 - [[image:1654505905236-553.png]]303 +0x72403155615900640c7817075e0a8c02f900 where: 401 401 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 402 402 403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 404 404 405 - [[image:1654505925508-181.png]]315 +== 2.4 Payload Explanation and Sensor Interface == 406 406 407 407 318 +=== 2.4.1 Device ID === 408 408 409 - ==2.7FrequencyPlans==320 +By default, the Device ID equal to the last 6 bytes of IMEI. 410 410 411 - TheLSE01usesOTAAmode and below frequency plansby default. Ifuserwanttouseitwith different frequency plan, pleaserefer the AT command sets.322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 412 412 324 +**Example:** 413 413 414 - === 2.7.1EU863-870(EU868) ===326 +AT+DEUI=A84041F15612 415 415 416 - (%style="color:#037691"%)**Uplink:**328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 417 417 418 -868.1 - SF7BW125 to SF12BW125 419 419 420 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 421 421 422 - 868.5- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 423 423 424 - 867.1-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 425 425 426 - 867.3-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 427 427 428 -867.5 - SF7BW125 to SF12BW125 429 429 430 -867.7 - SF7BW125 to SF12BW125 431 431 432 - 867.9- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 433 433 434 -868.8 - FSK 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 435 435 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 436 436 437 -(% style="color:#037691" %)** Downlink:** 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 438 438 439 -Uplink channels 1-9 (RX1) 440 440 441 -869.525 - SF9BW125 (RX2 downlink only) 442 442 356 +=== 2.4.4 Signal Strength === 443 443 358 +NB-IoT Network signal Strength. 444 444 445 - ===2.7.2 US902-928(US915)===360 +**Ex1: 0x1d = 29** 446 446 447 - UsedinUSA,CanadaandSouthAmerica.Default useCHE=2362 +(% style="color:blue" %)**0**(%%) -113dBm or less 448 448 449 -(% style="color: #037691" %)**Uplink:**364 +(% style="color:blue" %)**1**(%%) -111dBm 450 450 451 - 903.9- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 452 452 453 - 904.1-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 454 454 455 -9 04.3-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 456 456 457 -904.5 - SF7BW125 to SF10BW125 458 458 459 -904.7 - SF7BW125 to SF10BW125 460 460 461 - 904.9-SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 462 462 463 -905.1 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 464 464 465 -905.3 - SF7BW125 to SF10BW125 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 466 466 384 +((( 385 + 386 +))) 467 467 468 -(% style="color:#037691" %)**Downlink:** 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 469 469 470 -923.3 - SF7BW500 to SF12BW500 471 471 472 -923.9 - SF7BW500 to SF12BW500 473 473 474 - 924.5-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 475 475 476 -925.1 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 477 477 478 -925.7 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 479 479 480 -926.3 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 481 481 482 -926.9 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 483 483 484 -927.5 - SF7BW500 to SF12BW500 485 485 486 -923.3 - SF12BW500(RX2 downlink only) 487 487 414 +=== 2.4.7 Soil Conductivity (EC) === 488 488 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 489 489 490 -=== 2.7.3 CN470-510 (CN470) === 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 491 491 492 -Used in China, Default use CHE=1 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 493 493 494 -(% style="color:#037691" %)**Uplink:** 428 +((( 429 + 430 +))) 495 495 496 -486.3 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 497 497 498 -4 86.5-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 499 499 500 - 486.7-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 501 501 502 - 486.9- SF7BW125 toSF12BW125440 +The command is: 503 503 504 - 487.1-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 505 506 -487.3 - SF7BW125 to SF12BW125 507 507 508 - 487.5-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 509 509 510 -487.7 - SF7BW125 to SF12BW125 511 511 448 +Example: 512 512 513 -( %style="color:#037691"%)**Downlink:**450 +0x(00): Normal uplink packet. 514 514 515 - 506.7 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 516 516 517 -506.9 - SF7BW125 to SF12BW125 518 518 519 -507.1 - SF7BW125 to SF12BW125 520 520 521 - 507.3- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 522 522 523 - 507.5-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 524 524 525 -507.7 - SF7BW125 to SF12BW125 526 526 527 -5 07.9-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 528 528 529 - 508.1- SF7BW125toSF12BW125463 +(% style="color:blue" %)**AT+5VT=1000** 530 530 531 -50 5.3-SF12BW125(RX2downlinkonly)465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 532 532 533 533 534 534 535 -== =2.7.4 AU915-928(AU915)===469 +== 2.5 Downlink Payload == 536 536 537 - DefaultuseCHE=2471 +By default, NSE01 prints the downlink payload to console port. 538 538 539 - (% style="color:#037691" %)**Uplink:**473 +[[image:image-20220708133731-5.png]] 540 540 541 -916.8 - SF7BW125 to SF12BW125 542 542 543 -917.0 - SF7BW125 to SF12BW125 544 544 545 -917.2 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 546 546 547 -917.4 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 548 548 549 -917.6 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 550 550 551 -917.8 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 552 552 553 -918.0 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 554 554 555 -918.2 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 556 556 501 +((( 502 + 503 +))) 557 557 558 -(% style="color:#037691" %)**Downlink:** 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 559 559 560 -923.3 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 561 561 562 -923.9 - SF7BW500 to SF12BW500 563 563 564 - 924.5-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 565 565 566 - 925.1-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 567 567 568 -925.7 - SF7BW500 to SF12BW500 569 569 570 -926.3 - SF7BW500 to SF12BW500 571 571 572 - 926.9-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 573 573 574 -927.5 - SF7BW500 to SF12BW500 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 575 575 576 -923.3 - SF12BW500(RX2 downlink only) 577 577 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 578 578 579 579 580 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 581 581 582 -(% style="color:#037691" %)**Default Uplink channel:** 583 583 584 - 923.2 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 585 585 586 - 923.4- SF7BW125toSF10BW125537 +__**Measurement the soil surface**__ 587 587 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 588 588 589 - (% style="color:#037691" %)**Additional UplinkChannel**:541 +[[image:1657259653666-883.png]] 590 590 591 -(OTAA mode, channel added by JoinAccept message) 592 592 593 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 544 +((( 545 + 594 594 595 -922.2 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 596 596 597 -922.4 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 598 598 599 - 922.6 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 600 600 601 -922.8 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 602 602 603 -923.0 - SF7BW125 to SF10BW125 604 604 605 - 922.0- SF7BW125toSF10BW125563 +== 2.8 Firmware Change Log == 606 606 607 607 608 - (% style="color:#037691"%)**AS923~~AS925 forBrunei,Cambodia, HongKong, Indonesia,Laos, Taiwan, Thailand, Vietnam**:566 +Download URL & Firmware Change log 609 609 610 - 923.6-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 611 611 612 -923.8 - SF7BW125 to SF10BW125 613 613 614 - 924.0- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 615 615 616 -924.2 - SF7BW125 to SF10BW125 617 617 618 -924.4 - SF7BW125 to SF10BW125 619 619 620 - 924.6- SF7BW125toSF10BW125575 +== 2.9 Battery Analysis == 621 621 577 +=== 2.9.1 Battery Type === 622 622 623 -(% style="color:#037691" %)** Downlink:** 624 624 625 - Uplinkchannels1-8(RX1)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 626 626 627 -923.2 - SF10BW125 (RX2) 628 628 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 629 629 630 630 631 - ===2.7.6KR920-923(KR920)===586 +The battery related documents as below: 632 632 633 -Default channel: 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 634 634 635 -922.1 - SF7BW125 to SF12BW125 636 - 637 -922.3 - SF7BW125 to SF12BW125 638 - 639 -922.5 - SF7BW125 to SF12BW125 640 - 641 - 642 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 643 - 644 -922.1 - SF7BW125 to SF12BW125 645 - 646 -922.3 - SF7BW125 to SF12BW125 647 - 648 -922.5 - SF7BW125 to SF12BW125 649 - 650 -922.7 - SF7BW125 to SF12BW125 651 - 652 -922.9 - SF7BW125 to SF12BW125 653 - 654 -923.1 - SF7BW125 to SF12BW125 655 - 656 -923.3 - SF7BW125 to SF12BW125 657 - 658 - 659 -(% style="color:#037691" %)**Downlink:** 660 - 661 -Uplink channels 1-7(RX1) 662 - 663 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 664 - 665 - 666 - 667 -=== 2.7.7 IN865-867 (IN865) === 668 - 669 -(% style="color:#037691" %)** Uplink:** 670 - 671 -865.0625 - SF7BW125 to SF12BW125 672 - 673 -865.4025 - SF7BW125 to SF12BW125 674 - 675 -865.9850 - SF7BW125 to SF12BW125 676 - 677 - 678 -(% style="color:#037691" %) **Downlink:** 679 - 680 -Uplink channels 1-3 (RX1) 681 - 682 -866.550 - SF10BW125 (RX2) 683 - 684 - 685 - 686 - 687 -== 2.8 LED Indicator == 688 - 689 -The LSE01 has an internal LED which is to show the status of different state. 690 - 691 -* Blink once when device power on. 692 -* Solid ON for 5 seconds once device successful Join the network. 693 -* Blink once when device transmit a packet. 694 - 695 - 696 - 697 -== 2.9 Installation in Soil == 698 - 699 -**Measurement the soil surface** 700 - 701 - 702 -[[image:1654506634463-199.png]] 703 - 704 704 ((( 705 -((( 706 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 707 707 ))) 708 -))) 709 709 710 710 711 711 712 - [[image:1654506665940-119.png]]598 +=== 2.9.2 Power consumption Analyze === 713 713 714 -((( 715 -Dig a hole with diameter > 20CM. 716 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 717 717 718 -((( 719 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 720 -))) 721 721 603 +Instruction to use as below: 722 722 723 -== 2.10 Firmware Change Log == 724 724 725 -((( 726 -**Firmware download link:** 727 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 728 728 729 -((( 730 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 731 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 732 732 733 -((( 734 - 735 -))) 736 736 737 -((( 738 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 739 -))) 611 +Step 2: Open it and choose 740 740 741 - (((742 - 743 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 744 744 745 -((( 746 -**V1.0.** 747 -))) 617 +And the Life expectation in difference case will be shown on the right. 748 748 749 -((( 750 -Release 751 -))) 619 +[[image:image-20220708141352-7.jpeg]] 752 752 753 753 754 -== 2.11 Battery Analysis == 755 755 756 -=== 2. 11.1BatteryType ===623 +=== 2.9.3 Battery Note === 757 757 758 758 ((( 759 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 760 -))) 761 - 762 -((( 763 -The battery is designed to last for more than 5 years for the LSN50. 764 -))) 765 - 766 -((( 767 -((( 768 -The battery-related documents are as below: 769 -))) 770 -))) 771 - 772 -* ((( 773 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 774 -))) 775 -* ((( 776 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 777 -))) 778 -* ((( 779 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 780 -))) 781 - 782 - [[image:image-20220610172436-1.png]] 783 - 784 - 785 - 786 -=== 2.11.2 Battery Note === 787 - 788 -((( 789 789 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 790 790 ))) 791 791 792 792 793 793 794 -=== 2. 11.3Replace the battery ===631 +=== 2.9.4 Replace the battery === 795 795 796 796 ((( 797 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.634 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 798 798 ))) 799 799 800 -((( 801 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 802 -))) 803 803 804 -((( 805 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 806 -))) 807 807 808 - 809 - 810 810 = 3. Using the AT Commands = 811 811 812 812 == 3.1 Access AT Commands == ... ... @@ -1019,7 +1019,7 @@ 1019 1019 1020 1020 == 5.1 Why I can't join TTN in US915 / AU915 bands? == 1021 1021 1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>> http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.19EightChannelMode||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.851 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1023 1023 1024 1024 1025 1025 == 5.2 AT Command input doesn't work ==
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content