<
From version < 40.6 >
edited by Xiaoling
on 2022/06/30 11:05
To version < 62.1 >
edited by Xiaoling
on 2022/07/08 14:13
>
Change comment: Uploaded new attachment "image-20220708141352-7.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -13,71 +13,78 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
62 +== 1.3  Specification ==
71 71  
72 -== 1.3 Specification ==
73 73  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
74 74  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
77 77  
78 78  
79 79  
80 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
81 81  
82 82  * Smart Agriculture
83 83  
... ... @@ -84,729 +84,547 @@
84 84  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 85  ​
86 86  
87 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
88 88  
89 89  
90 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
91 91  
92 92  
93 93  
94 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
95 95  
96 -== 2.1 How it works ==
103 +== 2.1  How it works ==
97 97  
105 +
98 98  (((
99 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
100 100  )))
101 101  
110 +
102 102  (((
103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
104 104  )))
105 105  
115 +[[image:image-20220708101605-2.png]]
106 106  
117 +(((
118 +
119 +)))
107 107  
108 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
109 109  
110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
111 111  
123 +== 2.2 ​ Configure the NSE01 ==
112 112  
113 -[[image:1654503992078-669.png]]
114 114  
126 +=== 2.2.1 Test Requirement ===
115 115  
116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
117 117  
129 +To use NSE01 in your city, make sure meet below requirements:
118 118  
119 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
120 120  
121 -Each LSE01 is shipped with a sticker with the default device EUI as below:
122 -
123 -[[image:image-20220606163732-6.jpeg]]
124 -
125 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
126 -
127 -**Add APP EUI in the application**
128 -
129 -
130 -[[image:1654504596150-405.png]]
131 -
132 -
133 -
134 -**Add APP KEY and DEV EUI**
135 -
136 -[[image:1654504683289-357.png]]
137 -
138 -
139 -
140 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
141 -
142 -
143 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
144 -
145 -[[image:image-20220606163915-7.png]]
146 -
147 -
148 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
149 -
150 -[[image:1654504778294-788.png]]
151 -
152 -
153 -
154 -== 2.3 Uplink Payload ==
155 -
156 -
157 -=== 2.3.1 MOD~=0(Default Mode) ===
158 -
159 -LSE01 will uplink payload via LoRaWAN with below payload format: 
160 -
161 161  (((
162 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
163 163  )))
164 164  
165 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 -|(((
167 -**Size**
168 168  
169 -**(bytes)**
170 -)))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 -Temperature
140 +[[image:1657249419225-449.png]]
173 173  
174 -(Reserve, Ignore now)
175 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 -MOD & Digital Interrupt
177 177  
178 -(Optional)
179 -)))
180 180  
144 +=== 2.2.2 Insert SIM card ===
181 181  
182 -=== 2.3.2 MOD~=1(Original value) ===
146 +Insert the NB-IoT Card get from your provider.
183 183  
184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
148 +User need to take out the NB-IoT module and insert the SIM card like below:
185 185  
186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 -|(((
188 -**Size**
189 189  
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 -Temperature
151 +[[image:1657249468462-536.png]]
194 194  
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 -MOD & Digital Interrupt
198 198  
199 -(Optional)
200 -)))
201 201  
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
202 202  
203 -=== 2.3.3 Battery Info ===
204 -
205 205  (((
206 -Check the battery voltage for LSE01.
207 -)))
208 -
209 209  (((
210 -Ex1: 0x0B45 = 2885mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
211 211  )))
212 -
213 -(((
214 -Ex2: 0x0B49 = 2889mV
215 215  )))
216 216  
217 217  
164 +**Connection:**
218 218  
219 -=== 2.3.4 Soil Moisture ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
220 220  
221 -(((
222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 -)))
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
224 224  
225 -(((
226 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
227 -)))
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
228 228  
229 -(((
230 -
231 -)))
232 232  
233 -(((
234 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
235 -)))
173 +In the PC, use below serial tool settings:
236 236  
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
237 237  
238 -
239 -=== 2.3.5 Soil Temperature ===
240 -
241 241  (((
242 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
243 243  )))
244 244  
245 -(((
246 -**Example**:
247 -)))
185 +[[image:image-20220708110657-3.png]]
248 248  
249 -(((
250 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
251 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
252 252  
253 -(((
254 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
255 -)))
256 256  
257 257  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
258 258  
259 -=== 2.3.6 Soil Conductivity (EC) ===
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
260 260  
261 -(((
262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
263 -)))
264 264  
265 -(((
266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
267 -)))
196 +**Use below commands:**
268 268  
269 -(((
270 -Generally, the EC value of irrigation water is less than 800uS / cm.
271 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
272 272  
273 -(((
274 -
275 -)))
202 +For parameter description, please refer to AT command set
276 276  
277 -(((
278 -
279 -)))
204 +[[image:1657249793983-486.png]]
280 280  
281 -=== 2.3.7 MOD ===
282 282  
283 -Firmware version at least v2.1 supports changing mode.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
284 284  
285 -For example, bytes[10]=90
209 +[[image:1657249831934-534.png]]
286 286  
287 -mod=(bytes[10]>>7)&0x01=1.
288 288  
289 289  
290 -**Downlink Command:**
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
291 291  
292 -If payload = 0x0A00, workmode=0
215 +This feature is supported since firmware version v1.0.1
293 293  
294 -If** **payload =** **0x0A01, workmode=1
295 295  
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
296 296  
222 +[[image:1657249864775-321.png]]
297 297  
298 -=== 2.3.8 ​Decode payload in The Things Network ===
299 299  
300 -While using TTN network, you can add the payload format to decode the payload.
225 +[[image:1657249930215-289.png]]
301 301  
302 302  
303 -[[image:1654505570700-128.png]]
304 304  
305 -(((
306 -The payload decoder function for TTN is here:
307 -)))
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
308 308  
309 -(((
310 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
311 -)))
231 +This feature is supported since firmware version v110
312 312  
313 313  
314 -== 2.4 Uplink Interval ==
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
315 315  
316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
242 +[[image:1657249978444-674.png]]
317 317  
318 318  
245 +[[image:1657249990869-686.png]]
319 319  
320 -== 2.5 Downlink Payload ==
321 321  
322 -By default, LSE50 prints the downlink payload to console port.
323 -
324 -[[image:image-20220606165544-8.png]]
325 -
326 -
327 327  (((
328 -(% style="color:blue" %)**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
329 329  )))
330 330  
331 -(((
332 -
333 -)))
334 334  
335 -* (((
336 -(% style="color:blue" %)**Set TDC**
337 -)))
338 338  
339 -(((
340 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
342 342  
343 -(((
344 -Payload:    01 00 00 1E    TDC=30S
345 -)))
256 +This feature is supported since firmware version v110
346 346  
347 -(((
348 -Payload:    01 00 00 3C    TDC=60S
349 -)))
350 350  
351 -(((
352 -
353 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
354 354  
355 -* (((
356 -(% style="color:blue" %)**Reset**
357 -)))
262 +[[image:1657250217799-140.png]]
358 358  
359 -(((
360 -If payload = 0x04FF, it will reset the LSE01
361 -)))
362 362  
265 +[[image:1657250255956-604.png]]
363 363  
364 -* (% style="color:blue" %)**CFM**
365 365  
366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
367 367  
269 +=== 2.2.8 Change Update Interval ===
368 368  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
369 369  
370 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
371 371  
372 372  (((
373 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
374 374  )))
375 375  
376 376  (((
377 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
378 378  )))
379 379  
380 -(((
381 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
382 -)))
383 383  
384 -(((
385 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
386 -)))
387 387  
285 +== 2.3  Uplink Payload ==
388 388  
389 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
390 390  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
391 391  
392 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
393 393  
394 394  
395 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
298 +[[image:image-20220708111918-4.png]]
396 396  
397 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
398 398  
301 +The payload is ASCII string, representative same HEX:
399 399  
400 -[[image:1654505905236-553.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
401 401  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
402 402  
403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
404 404  
405 -[[image:1654505925508-181.png]]
315 +== 2.4  Payload Explanation and Sensor Interface ==
406 406  
407 407  
318 +=== 2.4.1  Device ID ===
408 408  
409 -== 2.7 Frequency Plans ==
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
410 410  
411 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
412 412  
324 +**Example:**
413 413  
414 -=== 2.7.1 EU863-870 (EU868) ===
326 +AT+DEUI=A84041F15612
415 415  
416 -(% style="color:#037691" %)** Uplink:**
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
417 417  
418 -868.1 - SF7BW125 to SF12BW125
419 419  
420 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
421 421  
422 -868.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
423 423  
424 -867.1 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
425 425  
426 -867.3 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
427 427  
428 -867.5 - SF7BW125 to SF12BW125
429 429  
430 -867.7 - SF7BW125 to SF12BW125
431 431  
432 -867.9 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
433 433  
434 -868.8 - FSK
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
435 435  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
436 436  
437 -(% style="color:#037691" %)** Downlink:**
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
438 438  
439 -Uplink channels 1-9 (RX1)
440 440  
441 -869.525 - SF9BW125 (RX2 downlink only)
442 442  
356 +=== 2.4.4  Signal Strength ===
443 443  
358 +NB-IoT Network signal Strength.
444 444  
445 -=== 2.7.2 US902-928(US915) ===
360 +**Ex1: 0x1d = 29**
446 446  
447 -Used in USA, Canada and South America. Default use CHE=2
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
448 448  
449 -(% style="color:#037691" %)**Uplink:**
364 +(% style="color:blue" %)**1**(%%)  -111dBm
450 450  
451 -903.9 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
452 452  
453 -904.1 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
454 454  
455 -904.3 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
456 456  
457 -904.5 - SF7BW125 to SF10BW125
458 458  
459 -904.7 - SF7BW125 to SF10BW125
460 460  
461 -904.9 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
462 462  
463 -905.1 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
464 464  
465 -905.3 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
466 466  
384 +(((
385 +
386 +)))
467 467  
468 -(% style="color:#037691" %)**Downlink:**
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
469 469  
470 -923.3 - SF7BW500 to SF12BW500
471 471  
472 -923.9 - SF7BW500 to SF12BW500
473 473  
474 -924.5 - SF7BW500 to SF12BW500
394 +=== 2.4. Soil Temperature ===
475 475  
476 -925.1 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
477 477  
478 -925.7 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
479 479  
480 -926.3 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
481 481  
482 -926.9 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
483 483  
484 -927.5 - SF7BW500 to SF12BW500
485 485  
486 -923.3 - SF12BW500(RX2 downlink only)
487 487  
414 +=== 2.4.7  Soil Conductivity (EC) ===
488 488  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
489 489  
490 -=== 2.7.3 CN470-510 (CN470) ===
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
491 491  
492 -Used in China, Default use CHE=1
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
493 493  
494 -(% style="color:#037691" %)**Uplink:**
428 +(((
429 +
430 +)))
495 495  
496 -486.3 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
497 497  
498 -486.5 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
499 499  
500 -486.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
501 501  
502 -486.9 - SF7BW125 to SF12BW125
440 +The command is:
503 503  
504 -487.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
505 505  
506 -487.3 - SF7BW125 to SF12BW125
507 507  
508 -487.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
509 509  
510 -487.7 - SF7BW125 to SF12BW125
511 511  
448 +Example:
512 512  
513 -(% style="color:#037691" %)**Downlink:**
450 +0x(00): Normal uplink packet.
514 514  
515 -506.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
516 516  
517 -506.9 - SF7BW125 to SF12BW125
518 518  
519 -507.1 - SF7BW125 to SF12BW125
520 520  
521 -507.3 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
522 522  
523 -507.5 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
524 524  
525 -507.7 - SF7BW125 to SF12BW125
526 526  
527 -507.9 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
528 528  
529 -508.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
530 530  
531 -505.3 - SF12BW125 (RX2 downlink only)
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
532 532  
533 533  
534 534  
535 -=== 2.7.4 AU915-928(AU915) ===
469 +== 2.5  Downlink Payload ==
536 536  
537 -Default use CHE=2
471 +By default, NSE01 prints the downlink payload to console port.
538 538  
539 -(% style="color:#037691" %)**Uplink:**
473 +[[image:image-20220708133731-5.png]]
540 540  
541 -916.8 - SF7BW125 to SF12BW125
542 542  
543 -917.0 - SF7BW125 to SF12BW125
544 544  
545 -917.2 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
546 546  
547 -917.4 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
548 548  
549 -917.6 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
550 550  
551 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
552 552  
553 -918.0 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
554 554  
555 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
556 556  
501 +(((
502 +
503 +)))
557 557  
558 -(% style="color:#037691" %)**Downlink:**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
559 559  
560 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
561 561  
562 -923.9 - SF7BW500 to SF12BW500
563 563  
564 -924.5 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
565 565  
566 -925.1 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
567 567  
568 -925.7 - SF7BW500 to SF12BW500
569 569  
570 -926.3 - SF7BW500 to SF12BW500
571 571  
572 -926.9 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
573 573  
574 -927.5 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
575 575  
576 -923.3 - SF12BW500(RX2 downlink only)
577 577  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
578 578  
579 579  
580 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
581 581  
582 -(% style="color:#037691" %)**Default Uplink channel:**
583 583  
584 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
585 585  
586 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
587 587  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
588 588  
589 -(% style="color:#037691" %)**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
590 590  
591 -(OTAA mode, channel added by JoinAccept message)
592 592  
593 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
594 594  
595 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
596 596  
597 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
598 598  
599 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
600 600  
601 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
602 602  
603 -923.0 - SF7BW125 to SF10BW125
604 604  
605 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
606 606  
607 607  
608 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
609 609  
610 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
611 611  
612 -923.8 - SF7BW125 to SF10BW125
613 613  
614 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
615 615  
616 -924.2 - SF7BW125 to SF10BW125
617 617  
618 -924.4 - SF7BW125 to SF10BW125
619 619  
620 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
621 621  
577 +=== 2.9.1  ​Battery Type ===
622 622  
623 -(% style="color:#037691" %)** Downlink:**
624 624  
625 -Uplink channels 1-8 (RX1)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
626 626  
627 -923.2 - SF10BW125 (RX2)
628 628  
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
629 629  
630 630  
631 -=== 2.7.6 KR920-923 (KR920) ===
586 +The battery related documents as below:
632 632  
633 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
634 634  
635 -922.1 - SF7BW125 to SF12BW125
636 -
637 -922.3 - SF7BW125 to SF12BW125
638 -
639 -922.5 - SF7BW125 to SF12BW125
640 -
641 -
642 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
643 -
644 -922.1 - SF7BW125 to SF12BW125
645 -
646 -922.3 - SF7BW125 to SF12BW125
647 -
648 -922.5 - SF7BW125 to SF12BW125
649 -
650 -922.7 - SF7BW125 to SF12BW125
651 -
652 -922.9 - SF7BW125 to SF12BW125
653 -
654 -923.1 - SF7BW125 to SF12BW125
655 -
656 -923.3 - SF7BW125 to SF12BW125
657 -
658 -
659 -(% style="color:#037691" %)**Downlink:**
660 -
661 -Uplink channels 1-7(RX1)
662 -
663 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
664 -
665 -
666 -
667 -=== 2.7.7 IN865-867 (IN865) ===
668 -
669 -(% style="color:#037691" %)** Uplink:**
670 -
671 -865.0625 - SF7BW125 to SF12BW125
672 -
673 -865.4025 - SF7BW125 to SF12BW125
674 -
675 -865.9850 - SF7BW125 to SF12BW125
676 -
677 -
678 -(% style="color:#037691" %) **Downlink:**
679 -
680 -Uplink channels 1-3 (RX1)
681 -
682 -866.550 - SF10BW125 (RX2)
683 -
684 -
685 -
686 -
687 -== 2.8 LED Indicator ==
688 -
689 -The LSE01 has an internal LED which is to show the status of different state.
690 -
691 -* Blink once when device power on.
692 -* Solid ON for 5 seconds once device successful Join the network.
693 -* Blink once when device transmit a packet.
694 -
695 -
696 -
697 -== 2.9 Installation in Soil ==
698 -
699 -**Measurement the soil surface**
700 -
701 -
702 -[[image:1654506634463-199.png]] ​
703 -
704 704  (((
705 -(((
706 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
707 707  )))
708 -)))
709 709  
710 710  
711 711  
712 -[[image:1654506665940-119.png]]
598 +2.9.
713 713  
714 -(((
715 -Dig a hole with diameter > 20CM.
716 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
717 717  
718 -(((
719 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
720 -)))
721 721  
603 +Instruction to use as below:
722 722  
723 -== 2.10 ​Firmware Change Log ==
724 724  
725 -(((
726 -**Firmware download link:**
727 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
728 728  
729 -(((
730 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
731 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
732 732  
733 -(((
734 -
735 -)))
736 736  
737 -(((
738 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
739 -)))
611 +Step 2: Open it and choose
740 740  
741 -(((
742 -
743 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
744 744  
745 -(((
746 -**V1.0.**
747 -)))
617 +And the Life expectation in difference case will be shown on the right.
748 748  
749 -(((
750 -Release
751 -)))
752 752  
753 753  
754 -== 2.11 ​Battery Analysis ==
621 +=== 2.9.3  ​Battery Note ===
755 755  
756 -=== 2.11.1 ​Battery Type ===
757 -
758 758  (((
759 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
760 -)))
761 -
762 -(((
763 -The battery is designed to last for more than 5 years for the LSN50.
764 -)))
765 -
766 -(((
767 -(((
768 -The battery-related documents are as below:
769 -)))
770 -)))
771 -
772 -* (((
773 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
774 -)))
775 -* (((
776 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
777 -)))
778 -* (((
779 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
780 -)))
781 -
782 - [[image:image-20220610172436-1.png]]
783 -
784 -
785 -
786 -=== 2.11.2 ​Battery Note ===
787 -
788 -(((
789 789  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
790 790  )))
791 791  
792 792  
793 793  
794 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
795 795  
796 -(((
797 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
798 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
799 799  
800 -(((
801 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
802 -)))
803 803  
804 -(((
805 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
806 -)))
807 807  
808 -
809 -
810 810  = 3. ​Using the AT Commands =
811 811  
812 812  == 3.1 Access AT Commands ==
... ... @@ -1019,7 +1019,7 @@
1019 1019  
1020 1020  == 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1021 1021  
1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/#H7.19EightChannelMode||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1023 1023  
1024 1024  
1025 1025  == 5.2 AT Command input doesn't work ==
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0