<
From version < 40.5 >
edited by Xiaoling
on 2022/06/30 10:49
To version < 65.5 >
edited by Xiaoling
on 2022/07/08 15:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,1073 +20,793 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
23 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
44 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
48 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
70 70  
71 71  
72 -== 1.3 Specification ==
73 73  
74 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 +== 1.3  Specification ==
75 75  
76 -[[image:image-20220606162220-5.png]]
77 77  
68 +(% style="color:#037691" %)**Common DC Characteristics:**
78 78  
70 +* Supply Voltage: 2.1v ~~ 3.6v
71 +* Operating Temperature: -40 ~~ 85°C
79 79  
80 -== ​1.4 Applications ==
81 81  
82 -* Smart Agriculture
74 +(% style="color:#037691" %)**NB-IoT Spec:**
83 83  
84 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 -​
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
86 86  
87 -== 1.5 Firmware Change log ==
88 88  
84 +Probe(% style="color:#037691" %)** Specification:**
89 89  
90 -**LSE01 v1.0 :**  Release
86 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
91 91  
88 +[[image:image-20220708101224-1.png]]
92 92  
93 93  
94 -= 2. Configure LSE01 to connect to LoRaWAN network =
95 95  
96 -== 2.1 How it works ==
92 +== 1.4  Applications ==
97 97  
98 -(((
99 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
100 -)))
94 +* Smart Agriculture
101 101  
102 -(((
103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
104 -)))
96 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
97 +​
105 105  
99 +== 1.5  Pin Definitions ==
106 106  
107 107  
108 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 +[[image:1657246476176-652.png]]
109 109  
110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
111 111  
112 112  
113 -[[image:1654503992078-669.png]]
106 += 2.  Use NSE01 to communicate with IoT Server =
114 114  
108 +== 2.1  How it works ==
115 115  
116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
117 117  
111 +(((
112 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
113 +)))
118 118  
119 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
120 120  
121 -Each LSE01 is shipped with a sticker with the default device EUI as below:
116 +(((
117 +The diagram below shows the working flow in default firmware of NSE01:
118 +)))
122 122  
123 -[[image:image-20220606163732-6.jpeg]]
120 +[[image:image-20220708101605-2.png]]
124 124  
125 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
122 +(((
123 +
124 +)))
126 126  
127 -**Add APP EUI in the application**
128 128  
129 129  
130 -[[image:1654504596150-405.png]]
128 +== 2.2 ​ Configure the NSE01 ==
131 131  
132 132  
131 +=== 2.2.1 Test Requirement ===
133 133  
134 -**Add APP KEY and DEV EUI**
135 135  
136 -[[image:1654504683289-357.png]]
134 +To use NSE01 in your city, make sure meet below requirements:
137 137  
136 +* Your local operator has already distributed a NB-IoT Network there.
137 +* The local NB-IoT network used the band that NSE01 supports.
138 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
138 138  
139 -
140 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
141 -
142 -
143 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
144 -
145 -[[image:image-20220606163915-7.png]]
146 -
147 -
148 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
149 -
150 -[[image:1654504778294-788.png]]
151 -
152 -
153 -
154 -== 2.3 Uplink Payload ==
155 -
156 -
157 -=== 2.3.1 MOD~=0(Default Mode) ===
158 -
159 -LSE01 will uplink payload via LoRaWAN with below payload format: 
160 -
161 161  (((
162 -Uplink payload includes in total 11 bytes.
141 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
163 163  )))
164 164  
165 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 -|(((
167 -**Size**
168 168  
169 -**(bytes)**
170 -)))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 -Temperature
145 +[[image:1657249419225-449.png]]
173 173  
174 -(Reserve, Ignore now)
175 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 -MOD & Digital Interrupt
177 177  
178 -(Optional)
179 -)))
180 180  
149 +=== 2.2.2 Insert SIM card ===
181 181  
182 -=== 2.3.2 MOD~=1(Original value) ===
151 +Insert the NB-IoT Card get from your provider.
183 183  
184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
153 +User need to take out the NB-IoT module and insert the SIM card like below:
185 185  
186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 -|(((
188 -**Size**
189 189  
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 -Temperature
156 +[[image:1657249468462-536.png]]
194 194  
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 -MOD & Digital Interrupt
198 198  
199 -(Optional)
200 -)))
201 201  
160 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
202 202  
203 -=== 2.3.3 Battery Info ===
204 -
205 205  (((
206 -Check the battery voltage for LSE01.
207 -)))
208 -
209 209  (((
210 -Ex1: 0x0B45 = 2885mV
164 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
211 211  )))
212 -
213 -(((
214 -Ex2: 0x0B49 = 2889mV
215 215  )))
216 216  
217 217  
169 +**Connection:**
218 218  
219 -=== 2.3.4 Soil Moisture ===
171 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
220 220  
221 -(((
222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 -)))
173 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
224 224  
225 -(((
226 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
227 -)))
175 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
228 228  
229 -(((
230 -
231 -)))
232 232  
233 -(((
234 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
235 -)))
178 +In the PC, use below serial tool settings:
236 236  
180 +* Baud:  (% style="color:green" %)**9600**
181 +* Data bits:** (% style="color:green" %)8(%%)**
182 +* Stop bits: (% style="color:green" %)**1**
183 +* Parity:  (% style="color:green" %)**None**
184 +* Flow Control: (% style="color:green" %)**None**
237 237  
238 -
239 -=== 2.3.5 Soil Temperature ===
240 -
241 241  (((
242 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
187 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
243 243  )))
244 244  
245 -(((
246 -**Example**:
247 -)))
190 +[[image:image-20220708110657-3.png]]
248 248  
249 -(((
250 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
251 -)))
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
252 252  
253 -(((
254 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
255 -)))
256 256  
257 257  
196 +=== 2.2.4 Use CoAP protocol to uplink data ===
258 258  
259 -=== 2.3.6 Soil Conductivity (EC) ===
198 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
260 260  
261 -(((
262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
263 -)))
264 264  
265 -(((
266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
267 -)))
201 +**Use below commands:**
268 268  
269 -(((
270 -Generally, the EC value of irrigation water is less than 800uS / cm.
271 -)))
203 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
204 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
205 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
272 272  
273 -(((
274 -
275 -)))
207 +For parameter description, please refer to AT command set
276 276  
277 -(((
278 -
279 -)))
209 +[[image:1657249793983-486.png]]
280 280  
281 -=== 2.3.7 MOD ===
282 282  
283 -Firmware version at least v2.1 supports changing mode.
212 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
284 284  
285 -For example, bytes[10]=90
214 +[[image:1657249831934-534.png]]
286 286  
287 -mod=(bytes[10]>>7)&0x01=1.
288 288  
289 289  
290 -**Downlink Command:**
218 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
291 291  
292 -If payload = 0x0A00, workmode=0
220 +This feature is supported since firmware version v1.0.1
293 293  
294 -If** **payload =** **0x0A01, workmode=1
295 295  
223 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
224 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
225 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
296 296  
227 +[[image:1657249864775-321.png]]
297 297  
298 -=== 2.3.8 ​Decode payload in The Things Network ===
299 299  
300 -While using TTN network, you can add the payload format to decode the payload.
230 +[[image:1657249930215-289.png]]
301 301  
302 302  
303 -[[image:1654505570700-128.png]]
304 304  
305 -(((
306 -The payload decoder function for TTN is here:
307 -)))
234 +=== 2.2.6 Use MQTT protocol to uplink data ===
308 308  
309 -(((
310 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
311 -)))
236 +This feature is supported since firmware version v110
312 312  
313 313  
314 -== 2.4 Uplink Interval ==
239 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
315 315  
316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
247 +[[image:1657249978444-674.png]]
317 317  
318 318  
250 +[[image:1657249990869-686.png]]
319 319  
320 -== 2.5 Downlink Payload ==
321 321  
322 -By default, LSE50 prints the downlink payload to console port.
323 -
324 -[[image:image-20220606165544-8.png]]
325 -
326 -
327 327  (((
328 -(% style="color:blue" %)**Examples:**
254 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
329 329  )))
330 330  
331 -(((
332 -
333 -)))
334 334  
335 -* (((
336 -(% style="color:blue" %)**Set TDC**
337 -)))
338 338  
339 -(((
340 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 -)))
259 +=== 2.2.7 Use TCP protocol to uplink data ===
342 342  
343 -(((
344 -Payload:    01 00 00 1E    TDC=30S
345 -)))
261 +This feature is supported since firmware version v110
346 346  
347 -(((
348 -Payload:    01 00 00 3C    TDC=60S
349 -)))
350 350  
351 -(((
352 -
353 -)))
264 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
354 354  
355 -* (((
356 -(% style="color:blue" %)**Reset**
357 -)))
267 +[[image:1657250217799-140.png]]
358 358  
359 -(((
360 -If payload = 0x04FF, it will reset the LSE01
361 -)))
362 362  
270 +[[image:1657250255956-604.png]]
363 363  
364 -* (% style="color:blue" %)**CFM**
365 365  
366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
367 367  
274 +=== 2.2.8 Change Update Interval ===
368 368  
276 +User can use below command to change the (% style="color:green" %)**uplink interval**.
369 369  
370 -== 2.6 ​Show Data in DataCake IoT Server ==
278 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
371 371  
372 372  (((
373 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
281 +(% style="color:red" %)**NOTE:**
374 374  )))
375 375  
376 376  (((
377 -
285 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
378 378  )))
379 379  
380 -(((
381 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
382 -)))
383 383  
384 -(((
385 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
386 -)))
387 387  
290 +== 2.3  Uplink Payload ==
388 388  
389 -[[image:1654505857935-743.png]]
292 +In this mode, uplink payload includes in total 18 bytes
390 390  
294 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
295 +|=(% style="width: 50px;" %)(((
296 +**Size(bytes)**
297 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
298 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
391 391  
392 -[[image:1654505874829-548.png]]
300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
393 393  
394 394  
395 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
303 +[[image:image-20220708111918-4.png]]
396 396  
397 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
398 398  
306 +The payload is ASCII string, representative same HEX:
399 399  
400 -[[image:1654505905236-553.png]]
308 +0x72403155615900640c7817075e0a8c02f900 where:
401 401  
310 +* Device ID: 0x 724031556159 = 724031556159
311 +* Version: 0x0064=100=1.0.0
402 402  
403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
313 +* BAT: 0x0c78 = 3192 mV = 3.192V
314 +* Singal: 0x17 = 23
315 +* Soil Moisture: 0x075e= 1886 = 18.86  %
316 +* Soil Temperature:0x0a8c =2700=27 °C
317 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
318 +* Interrupt: 0x00 = 0
404 404  
405 -[[image:1654505925508-181.png]]
406 406  
407 407  
322 +== 2.4  Payload Explanation and Sensor Interface ==
408 408  
409 -== 2.7 Frequency Plans ==
410 410  
411 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
325 +=== 2.4.1  Device ID ===
412 412  
327 +By default, the Device ID equal to the last 6 bytes of IMEI.
413 413  
414 -=== 2.7.1 EU863-870 (EU868) ===
329 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
415 415  
416 -(% style="color:#037691" %)** Uplink:**
331 +**Example:**
417 417  
418 -868.1 - SF7BW125 to SF12BW125
333 +AT+DEUI=A84041F15612
419 419  
420 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
335 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
421 421  
422 -868.5 - SF7BW125 to SF12BW125
423 423  
424 -867.1 - SF7BW125 to SF12BW125
425 425  
426 -867.3 - SF7BW125 to SF12BW125
339 +=== 2.4.2  Version Info ===
427 427  
428 -867.5 - SF7BW125 to SF12BW125
341 +Specify the software version: 0x64=100, means firmware version 1.00.
429 429  
430 -867.7 - SF7BW125 to SF12BW125
343 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
431 431  
432 -867.9 - SF7BW125 to SF12BW125
433 433  
434 -868.8 - FSK
435 435  
347 +=== 2.4.3  Battery Info ===
436 436  
437 -(% style="color:#037691" %)** Downlink:**
349 +(((
350 +Check the battery voltage for LSE01.
351 +)))
438 438  
439 -Uplink channels 1-9 (RX1)
353 +(((
354 +Ex1: 0x0B45 = 2885mV
355 +)))
440 440  
441 -869.525 - SF9BW125 (RX2 downlink only)
357 +(((
358 +Ex2: 0x0B49 = 2889mV
359 +)))
442 442  
443 443  
444 444  
445 -=== 2.7.2 US902-928(US915) ===
363 +=== 2.4. Signal Strength ===
446 446  
447 -Used in USA, Canada and South America. Default use CHE=2
365 +NB-IoT Network signal Strength.
448 448  
449 -(% style="color:#037691" %)**Uplink:**
367 +**Ex1: 0x1d = 29**
450 450  
451 -903.9 - SF7BW125 to SF10BW125
369 +(% style="color:blue" %)**0**(%%)  -113dBm or less
452 452  
453 -904.1 - SF7BW125 to SF10BW125
371 +(% style="color:blue" %)**1**(%%)  -111dBm
454 454  
455 -904.3 - SF7BW125 to SF10BW125
373 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
456 456  
457 -904.5 - SF7BW125 to SF10BW125
375 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
458 458  
459 -904.7 - SF7BW125 to SF10BW125
377 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
460 460  
461 -904.9 - SF7BW125 to SF10BW125
462 462  
463 -905.1 - SF7BW125 to SF10BW125
464 464  
465 -905.3 - SF7BW125 to SF10BW125
381 +=== 2.4.5  Soil Moisture ===
466 466  
383 +(((
384 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
385 +)))
467 467  
468 -(% style="color:#037691" %)**Downlink:**
387 +(((
388 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
389 +)))
469 469  
470 -923.3 - SF7BW500 to SF12BW500
391 +(((
392 +
393 +)))
471 471  
472 -923.9 - SF7BW500 to SF12BW500
395 +(((
396 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
397 +)))
473 473  
474 -924.5 - SF7BW500 to SF12BW500
475 475  
476 -925.1 - SF7BW500 to SF12BW500
477 477  
478 -925.7 - SF7BW500 to SF12BW500
401 +=== 2.4.6  Soil Temperature ===
479 479  
480 -926.3 - SF7BW500 to SF12BW500
403 +(((
404 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
405 +)))
481 481  
482 -926.9 - SF7BW500 to SF12BW500
407 +(((
408 +**Example**:
409 +)))
483 483  
484 -927.5 - SF7BW500 to SF12BW500
411 +(((
412 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
413 +)))
485 485  
486 -923.3 - SF12BW500(RX2 downlink only)
415 +(((
416 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
417 +)))
487 487  
488 488  
489 489  
490 -=== 2.7.3 CN470-510 (CN470) ===
421 +=== 2.4. Soil Conductivity (EC) ===
491 491  
492 -Used in China, Default use CHE=1
423 +(((
424 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
425 +)))
493 493  
494 -(% style="color:#037691" %)**Uplink:**
427 +(((
428 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
429 +)))
495 495  
496 -486.3 - SF7BW125 to SF12BW125
431 +(((
432 +Generally, the EC value of irrigation water is less than 800uS / cm.
433 +)))
497 497  
498 -486.5 - SF7BW125 to SF12BW125
435 +(((
436 +
437 +)))
499 499  
500 -486.7 - SF7BW125 to SF12BW125
439 +(((
440 +
441 +)))
501 501  
502 -486.9 - SF7BW125 to SF12BW125
443 +=== 2.4. Digital Interrupt ===
503 503  
504 -487.1 - SF7BW125 to SF12BW125
445 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
505 505  
506 -487.3 - SF7BW125 to SF12BW125
447 +The command is:
507 507  
508 -487.5 - SF7BW125 to SF12BW125
449 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
509 509  
510 -487.7 - SF7BW125 to SF12BW125
511 511  
452 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
512 512  
513 -(% style="color:#037691" %)**Downlink:**
514 514  
515 -506.7 - SF7BW125 to SF12BW125
455 +Example:
516 516  
517 -506.9 - SF7BW125 to SF12BW125
457 +0x(00): Normal uplink packet.
518 518  
519 -507.1 - SF7BW125 to SF12BW125
459 +0x(01): Interrupt Uplink Packet.
520 520  
521 -507.3 - SF7BW125 to SF12BW125
522 522  
523 -507.5 - SF7BW125 to SF12BW125
524 524  
525 -507.7 - SF7BW125 to SF12BW125
463 +=== 2.4.9  ​+5V Output ===
526 526  
527 -507.9 - SF7BW125 to SF12BW125
465 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
528 528  
529 -508.1 - SF7BW125 to SF12BW125
530 530  
531 -505.3 - SF12BW125 (RX2 downlink only)
468 +The 5V output time can be controlled by AT Command.
532 532  
470 +(% style="color:blue" %)**AT+5VT=1000**
533 533  
472 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
534 534  
535 -=== 2.7.4 AU915-928(AU915) ===
536 536  
537 -Default use CHE=2
538 538  
539 -(% style="color:#037691" %)**Uplink:**
476 +== 2.5  Downlink Payload ==
540 540  
541 -916.8 - SF7BW125 to SF12BW125
478 +By default, NSE01 prints the downlink payload to console port.
542 542  
543 -917.0 - SF7BW125 to SF12BW125
480 +[[image:image-20220708133731-5.png]]
544 544  
545 -917.2 - SF7BW125 to SF12BW125
546 546  
547 -917.4 - SF7BW125 to SF12BW125
483 +(((
484 +(% style="color:blue" %)**Examples:**
485 +)))
548 548  
549 -917.6 - SF7BW125 to SF12BW125
487 +(((
488 +
489 +)))
550 550  
551 -917.8 - SF7BW125 to SF12BW125
491 +* (((
492 +(% style="color:blue" %)**Set TDC**
493 +)))
552 552  
553 -918.0 - SF7BW125 to SF12BW125
495 +(((
496 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
497 +)))
554 554  
555 -918.2 - SF7BW125 to SF12BW125
499 +(((
500 +Payload:    01 00 00 1E    TDC=30S
501 +)))
556 556  
503 +(((
504 +Payload:    01 00 00 3C    TDC=60S
505 +)))
557 557  
558 -(% style="color:#037691" %)**Downlink:**
507 +(((
508 +
509 +)))
559 559  
560 -923.3 - SF7BW500 to SF12BW500
511 +* (((
512 +(% style="color:blue" %)**Reset**
513 +)))
561 561  
562 -923.9 - SF7BW500 to SF12BW500
515 +(((
516 +If payload = 0x04FF, it will reset the NSE01
517 +)))
563 563  
564 -924.5 - SF7BW500 to SF12BW500
565 565  
566 -925.1 - SF7BW500 to SF12BW500
520 +* (% style="color:blue" %)**INTMOD**
567 567  
568 -925.7 - SF7BW500 to SF12BW500
522 +Downlink Payload: 06000003, Set AT+INTMOD=3
569 569  
570 -926.3 - SF7BW500 to SF12BW500
571 571  
572 -926.9 - SF7BW500 to SF12BW500
573 573  
574 -927.5 - SF7BW500 to SF12BW500
526 +== 2. ​LED Indicator ==
575 575  
576 -923.3 - SF12BW500(RX2 downlink only)
528 +(((
529 +The NSE01 has an internal LED which is to show the status of different state.
577 577  
578 578  
532 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
533 +* Then the LED will be on for 1 second means device is boot normally.
534 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
535 +* For each uplink probe, LED will be on for 500ms.
536 +)))
579 579  
580 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
581 581  
582 -(% style="color:#037691" %)**Default Uplink channel:**
583 583  
584 -923.2 - SF7BW125 to SF10BW125
585 585  
586 -923.4 - SF7BW125 to SF10BW125
541 +== 2.7  Installation in Soil ==
587 587  
543 +__**Measurement the soil surface**__
588 588  
589 -(% style="color:#037691" %)**Additional Uplink Channel**:
545 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
590 590  
591 -(OTAA mode, channel added by JoinAccept message)
547 +[[image:1657259653666-883.png]] ​
592 592  
593 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
594 594  
595 -922.2 - SF7BW125 to SF10BW125
550 +(((
551 +
596 596  
597 -922.4 - SF7BW125 to SF10BW125
553 +(((
554 +Dig a hole with diameter > 20CM.
555 +)))
598 598  
599 -922.6 - SF7BW125 to SF10BW125
557 +(((
558 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
559 +)))
560 +)))
600 600  
601 -922.8 - SF7BW125 to SF10BW125
562 +[[image:1654506665940-119.png]]
602 602  
603 -923.0 - SF7BW125 to SF10BW125
564 +(((
565 +
566 +)))
604 604  
605 -922.0 - SF7BW125 to SF10BW125
606 606  
569 +== 2.8  ​Firmware Change Log ==
607 607  
608 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
609 609  
610 -923.6 - SF7BW125 to SF10BW125
572 +Download URL & Firmware Change log
611 611  
612 -923.8 - SF7BW125 to SF10BW125
574 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
613 613  
614 -924.0 - SF7BW125 to SF10BW125
615 615  
616 -924.2 - SF7BW125 to SF10BW125
577 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
617 617  
618 -924.4 - SF7BW125 to SF10BW125
619 619  
620 -924.6 - SF7BW125 to SF10BW125
621 621  
581 +== 2.9  ​Battery Analysis ==
622 622  
623 -(% style="color:#037691" %)** Downlink:**
583 +=== 2.9.1  ​Battery Type ===
624 624  
625 -Uplink channels 1-8 (RX1)
626 626  
627 -923.2 - SF10BW125 (RX2)
586 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
628 628  
629 629  
589 +The battery is designed to last for several years depends on the actually use environment and update interval. 
630 630  
631 -=== 2.7.6 KR920-923 (KR920) ===
632 632  
633 -Default channel:
592 +The battery related documents as below:
634 634  
635 -922.1 - SF7BW125 to SF12BW125
594 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
595 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
596 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
636 636  
637 -922.3 - SF7BW125 to SF12BW125
638 -
639 -922.5 - SF7BW125 to SF12BW125
640 -
641 -
642 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
643 -
644 -922.1 - SF7BW125 to SF12BW125
645 -
646 -922.3 - SF7BW125 to SF12BW125
647 -
648 -922.5 - SF7BW125 to SF12BW125
649 -
650 -922.7 - SF7BW125 to SF12BW125
651 -
652 -922.9 - SF7BW125 to SF12BW125
653 -
654 -923.1 - SF7BW125 to SF12BW125
655 -
656 -923.3 - SF7BW125 to SF12BW125
657 -
658 -
659 -(% style="color:#037691" %)**Downlink:**
660 -
661 -Uplink channels 1-7(RX1)
662 -
663 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
664 -
665 -
666 -
667 -=== 2.7.7 IN865-867 (IN865) ===
668 -
669 -(% style="color:#037691" %)** Uplink:**
670 -
671 -865.0625 - SF7BW125 to SF12BW125
672 -
673 -865.4025 - SF7BW125 to SF12BW125
674 -
675 -865.9850 - SF7BW125 to SF12BW125
676 -
677 -
678 -(% style="color:#037691" %) **Downlink:**
679 -
680 -Uplink channels 1-3 (RX1)
681 -
682 -866.550 - SF10BW125 (RX2)
683 -
684 -
685 -
686 -
687 -== 2.8 LED Indicator ==
688 -
689 -The LSE01 has an internal LED which is to show the status of different state.
690 -
691 -* Blink once when device power on.
692 -* Solid ON for 5 seconds once device successful Join the network.
693 -* Blink once when device transmit a packet.
694 -
695 -
696 -
697 -== 2.9 Installation in Soil ==
698 -
699 -**Measurement the soil surface**
700 -
701 -
702 -[[image:1654506634463-199.png]] ​
703 -
704 704  (((
705 -(((
706 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
599 +[[image:image-20220708140453-6.png]]
707 707  )))
708 -)))
709 709  
710 710  
711 711  
712 -[[image:1654506665940-119.png]]
604 +=== 2.9.2  Power consumption Analyze ===
713 713  
714 714  (((
715 -Dig a hole with diameter > 20CM.
607 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
716 716  )))
717 717  
718 -(((
719 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
720 -)))
721 721  
722 -
723 -== 2.10 ​Firmware Change Log ==
724 -
725 725  (((
726 -**Firmware download link:**
612 +Instruction to use as below:
727 727  )))
728 728  
729 729  (((
730 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
616 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
731 731  )))
732 732  
733 -(((
734 -
735 -)))
736 736  
737 737  (((
738 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
621 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
739 739  )))
740 740  
741 -(((
742 -
624 +* (((
625 +Product Model
743 743  )))
744 -
745 -(((
746 -**V1.0.**
627 +* (((
628 +Uplink Interval
747 747  )))
630 +* (((
631 +Working Mode
632 +)))
748 748  
749 749  (((
750 -Release
635 +And the Life expectation in difference case will be shown on the right.
751 751  )))
752 752  
638 +[[image:image-20220708141352-7.jpeg]]
753 753  
754 -== 2.11 ​Battery Analysis ==
755 755  
756 -=== 2.11.1 ​Battery Type ===
757 757  
758 -(((
759 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
760 -)))
642 +=== 2.9.3  ​Battery Note ===
761 761  
762 762  (((
763 -The battery is designed to last for more than 5 years for the LSN50.
645 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
764 764  )))
765 765  
766 -(((
767 -(((
768 -The battery-related documents are as below:
769 -)))
770 -)))
771 771  
772 -* (((
773 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
774 -)))
775 -* (((
776 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
777 -)))
778 -* (((
779 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
780 -)))
781 781  
782 - [[image:image-20220610172436-1.png]]
650 +=== 2.9.4  Replace the battery ===
783 783  
784 -
785 -
786 -=== 2.11.2 ​Battery Note ===
787 -
788 788  (((
789 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
653 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
790 790  )))
791 791  
792 792  
793 793  
794 -=== 2.11.3 Replace the battery ===
658 += 3. ​ Access NB-IoT Module =
795 795  
796 796  (((
797 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
661 +Users can directly access the AT command set of the NB-IoT module.
798 798  )))
799 799  
800 800  (((
801 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
665 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
802 802  )))
803 803  
804 -(((
805 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
806 -)))
668 +[[image:1657261278785-153.png]]
807 807  
808 808  
809 809  
810 -= 3. Using the AT Commands =
672 += 4.  Using the AT Commands =
811 811  
812 -== 3.1 Access AT Commands ==
674 +== 4.1  Access AT Commands ==
813 813  
676 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
814 814  
815 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
816 816  
817 -[[image:1654501986557-872.png||height="391" width="800"]]
679 +AT+<CMD>?  : Help on <CMD>
818 818  
681 +AT+<CMD>         : Run <CMD>
819 819  
820 -Or if you have below board, use below connection:
683 +AT+<CMD>=<value> : Set the value
821 821  
685 +AT+<CMD>=?  : Get the value
822 822  
823 -[[image:1654502005655-729.png||height="503" width="801"]]
824 824  
825 -
826 -
827 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
828 -
829 -
830 - [[image:1654502050864-459.png||height="564" width="806"]]
831 -
832 -
833 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
834 -
835 -
836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
837 -
838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
839 -
840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
841 -
842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
843 -
844 -
845 845  (% style="color:#037691" %)**General Commands**(%%)      
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
690 +AT  : Attention       
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
692 +AT?  : Short Help     
850 850  
851 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
694 +ATZ  : MCU Reset    
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
696 +AT+TDC  : Application Data Transmission Interval
854 854  
698 +AT+CFG  : Print all configurations
855 855  
856 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
700 +AT+CFGMOD           : Working mode selection
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
702 +AT+INTMOD            : Set the trigger interrupt mode
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
704 +AT+5VT  : Set extend the time of 5V power  
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
706 +AT+PRO  : Choose agreement
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
708 +AT+WEIGRE  : Get weight or set weight to 0
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
710 +AT+WEIGAP  : Get or Set the GapValue of weight
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
712 +AT+RXDL  : Extend the sending and receiving time
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
714 +AT+CNTFAC  : Get or set counting parameters
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
716 +AT+SERVADDR  : Server Address
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
719 +(% style="color:#037691" %)**COAP Management**      
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
721 +AT+URI            : Resource parameters
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
724 +(% style="color:#037691" %)**UDP Management**
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
726 +AT+CFM          : Upload confirmation mode (only valid for UDP)
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
729 +(% style="color:#037691" %)**MQTT Management**
889 889  
731 +AT+CLIENT               : Get or Set MQTT client
890 890  
891 -(% style="color:#037691" %)**LoRa Network Management**
733 +AT+UNAME  : Get or Set MQTT Username
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
735 +AT+PWD                  : Get or Set MQTT password
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
737 +AT+PUBTOPI : Get or Set MQTT publish topic
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
739 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
742 +(% style="color:#037691" %)**Information**          
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
744 +AT+FDR  : Factory Data Reset
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
746 +AT+PWOR : Serial Access Password
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
750 += ​5.  FAQ =
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
752 +== 5.1 How to Upgrade Firmware ==
914 914  
915 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
916 916  
917 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
918 -
919 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
922 -
923 -
924 -(% style="color:#037691" %)**Information** 
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
937 -
938 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
939 -
940 -
941 -= ​4. FAQ =
942 -
943 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
944 -
945 945  (((
946 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
947 -When downloading the images, choose the required image file for download. ​
756 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
948 948  )))
949 949  
950 950  (((
951 -
760 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
952 952  )))
953 953  
954 954  (((
955 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
764 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
956 956  )))
957 957  
958 -(((
959 -
960 -)))
961 961  
962 -(((
963 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
964 -)))
965 965  
966 -(((
967 -
968 -)))
769 += 6.  Trouble Shooting =
969 969  
970 -(((
971 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
972 -)))
771 +== 6.1  ​Connection problem when uploading firmware ==
973 973  
974 -[[image:image-20220606154726-3.png]]
975 975  
976 -
977 -When you use the TTN network, the US915 frequency bands use are:
978 -
979 -* 903.9 - SF7BW125 to SF10BW125
980 -* 904.1 - SF7BW125 to SF10BW125
981 -* 904.3 - SF7BW125 to SF10BW125
982 -* 904.5 - SF7BW125 to SF10BW125
983 -* 904.7 - SF7BW125 to SF10BW125
984 -* 904.9 - SF7BW125 to SF10BW125
985 -* 905.1 - SF7BW125 to SF10BW125
986 -* 905.3 - SF7BW125 to SF10BW125
987 -* 904.6 - SF8BW500
988 -
774 +(% class="wikigeneratedid" %)
989 989  (((
990 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
991 -
992 -* (% style="color:#037691" %)**AT+CHE=2**
993 -* (% style="color:#037691" %)**ATZ**
776 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
994 994  )))
995 995  
996 -(((
997 -
998 998  
999 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1000 -)))
1001 1001  
1002 -(((
1003 -
1004 -)))
781 +== 6.2  AT Command input doesn't work ==
1005 1005  
1006 1006  (((
1007 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
784 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1008 1008  )))
1009 1009  
1010 -[[image:image-20220606154825-4.png]]
1011 1011  
1012 1012  
1013 -== 4.2 Can I calibrate LSE01 to different soil types? ==
789 += 7. Order Info =
1014 1014  
1015 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1016 1016  
792 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1017 1017  
1018 -= 5. Trouble Shooting =
1019 1019  
1020 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1021 -
1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1023 -
1024 -
1025 -== 5.2 AT Command input doesn’t work ==
1026 -
1027 -(((
1028 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 -)))
1030 -
1031 -
1032 -== 5.3 Device rejoin in at the second uplink packet ==
1033 -
1034 -(% style="color:#4f81bd" %)**Issue describe as below:**
1035 -
1036 -[[image:1654500909990-784.png]]
1037 -
1038 -
1039 -(% style="color:#4f81bd" %)**Cause for this issue:**
1040 -
1041 -(((
1042 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1043 -)))
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**Solution: **
1047 -
1048 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1049 -
1050 -[[image:1654500929571-736.png||height="458" width="832"]]
1051 -
1052 -
1053 -= 6. ​Order Info =
1054 -
1055 -
1056 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1057 -
1058 -
1059 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1060 -
1061 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1062 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1063 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1064 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1065 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1066 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1067 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1068 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1069 -
1070 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1071 -
1072 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1073 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1074 -
1075 1075  (% class="wikigeneratedid" %)
1076 1076  (((
1077 1077  
1078 1078  )))
1079 1079  
1080 -= 7. Packing Info =
800 += 8.  Packing Info =
1081 1081  
1082 1082  (((
1083 1083  
1084 1084  
1085 1085  (% style="color:#037691" %)**Package Includes**:
1086 -)))
1087 1087  
1088 -* (((
1089 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
807 +
808 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
809 +* External antenna x 1
1090 1090  )))
1091 1091  
1092 1092  (((
... ... @@ -1093,24 +1093,20 @@
1093 1093  
1094 1094  
1095 1095  (% style="color:#037691" %)**Dimension and weight**:
1096 -)))
1097 1097  
1098 -* (((
1099 -Device Size: cm
817 +
818 +* Size: 195 x 125 x 55 mm
819 +* Weight:   420g
1100 1100  )))
1101 -* (((
1102 -Device Weight: g
1103 -)))
1104 -* (((
1105 -Package Size / pcs : cm
1106 -)))
1107 -* (((
1108 -Weight / pcs : g
1109 1109  
822 +(((
1110 1110  
824 +
825 +
826 +
1111 1111  )))
1112 1112  
1113 -= 8. Support =
829 += 9.  Support =
1114 1114  
1115 1115  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1116 1116  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0