<
From version < 40.5 >
edited by Xiaoling
on 2022/06/30 10:49
To version < 57.8 >
edited by Xiaoling
on 2022/07/08 11:55
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -13,71 +13,78 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
62 +== 1.3  Specification ==
71 71  
72 -== 1.3 Specification ==
73 73  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
74 74  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
77 77  
78 78  
79 79  
80 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
81 81  
82 82  * Smart Agriculture
83 83  
... ... @@ -84,124 +84,255 @@
84 84  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 85  ​
86 86  
87 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
88 88  
89 89  
90 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
91 91  
92 92  
93 93  
94 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
95 95  
96 -== 2.1 How it works ==
103 +== 2.1  How it works ==
97 97  
105 +
98 98  (((
99 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
100 100  )))
101 101  
110 +
102 102  (((
103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
104 104  )))
105 105  
115 +[[image:image-20220708101605-2.png]]
106 106  
117 +(((
118 +
119 +)))
107 107  
108 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
109 109  
110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
111 111  
123 +== 2.2 ​ Configure the NSE01 ==
112 112  
113 -[[image:1654503992078-669.png]]
114 114  
126 +=== 2.2.1 Test Requirement ===
115 115  
116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
117 117  
129 +To use NSE01 in your city, make sure meet below requirements:
118 118  
119 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
120 120  
121 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
122 122  
123 -[[image:image-20220606163732-6.jpeg]]
124 124  
125 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
126 126  
127 -**Add APP EUI in the application**
128 128  
129 129  
130 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
131 131  
146 +Insert the NB-IoT Card get from your provider.
132 132  
148 +User need to take out the NB-IoT module and insert the SIM card like below:
133 133  
134 -**Add APP KEY and DEV EUI**
135 135  
136 -[[image:1654504683289-357.png]]
151 +[[image:1657249468462-536.png]]
137 137  
138 138  
139 139  
140 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
141 141  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
142 142  
143 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
144 144  
145 -[[image:image-20220606163915-7.png]]
164 +**Connection:**
146 146  
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
147 147  
148 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
149 149  
150 -[[image:1654504778294-788.png]]
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
151 151  
152 152  
173 +In the PC, use below serial tool settings:
153 153  
154 -== 2.3 Uplink Payload ==
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
155 155  
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
156 156  
157 -=== 2.3.1 MOD~=0(Default Mode) ===
185 +[[image:image-20220708110657-3.png]]
158 158  
159 -LSE01 will uplink payload via LoRaWAN with below payload format: 
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
160 160  
189 +
190 +
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
192 +
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194 +
195 +
196 +**Use below commands:**
197 +
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 +
202 +For parameter description, please refer to AT command set
203 +
204 +[[image:1657249793983-486.png]]
205 +
206 +
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208 +
209 +[[image:1657249831934-534.png]]
210 +
211 +
212 +
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214 +
215 +This feature is supported since firmware version v1.0.1
216 +
217 +
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221 +
222 +[[image:1657249864775-321.png]]
223 +
224 +
225 +[[image:1657249930215-289.png]]
226 +
227 +
228 +
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
230 +
231 +This feature is supported since firmware version v110
232 +
233 +
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 +
242 +[[image:1657249978444-674.png]]
243 +
244 +
245 +[[image:1657249990869-686.png]]
246 +
247 +
161 161  (((
162 -Uplink payload includes in total 11 bytes.
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
163 163  )))
164 164  
165 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 -|(((
167 -**Size**
168 168  
169 -**(bytes)**
170 -)))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 -Temperature
173 173  
174 -(Reserve, Ignore now)
175 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 -MOD & Digital Interrupt
254 +=== 2.2.7 Use TCP protocol to uplink data ===
177 177  
178 -(Optional)
179 -)))
256 +This feature is supported since firmware version v110
180 180  
181 181  
182 -=== 2.3.2 MOD~=1(Original value) ===
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
183 183  
184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
262 +[[image:1657250217799-140.png]]
185 185  
186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 -|(((
188 -**Size**
189 189  
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 -Temperature
265 +[[image:1657250255956-604.png]]
194 194  
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 -MOD & Digital Interrupt
198 198  
199 -(Optional)
268 +
269 +=== 2.2.8 Change Update Interval ===
270 +
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
272 +
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274 +
275 +(((
276 +(% style="color:red" %)**NOTE:**
200 200  )))
201 201  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
202 202  
203 -=== 2.3.3 Battery Info ===
204 204  
284 +
285 +== 2.3  Uplink Payload ==
286 +
287 +In this mode, uplink payload includes in total 18 bytes
288 +
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294 +
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296 +
297 +
298 +[[image:image-20220708111918-4.png]]
299 +
300 +
301 +The payload is ASCII string, representative same HEX:
302 +
303 +0x72403155615900640c7817075e0a8c02f900 where:
304 +
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
307 +
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
314 +
315 +
316 +== 2.4  Payload Explanation and Sensor Interface ==
317 +
318 +
319 +=== 2.4.1  Device ID ===
320 +
321 +By default, the Device ID equal to the last 6 bytes of IMEI.
322 +
323 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
324 +
325 +**Example:**
326 +
327 +AT+DEUI=A84041F15612
328 +
329 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
330 +
331 +
332 +
333 +=== 2.4.2  Version Info ===
334 +
335 +Specify the software version: 0x64=100, means firmware version 1.00.
336 +
337 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
338 +
339 +
340 +
341 +=== 2.4.3  Battery Info ===
342 +
205 205  (((
206 206  Check the battery voltage for LSE01.
207 207  )))
... ... @@ -216,14 +216,32 @@
216 216  
217 217  
218 218  
219 -=== 2.3.4 Soil Moisture ===
357 +=== 2.4.4  Signal Strength ===
220 220  
359 +NB-IoT Network signal Strength.
360 +
361 +**Ex1: 0x1d = 29**
362 +
363 +(% style="color:blue" %)**0**(%%)  -113dBm or less
364 +
365 +(% style="color:blue" %)**1**(%%)  -111dBm
366 +
367 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
368 +
369 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
370 +
371 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
372 +
373 +
374 +
375 +=== 2.4.5  Soil Moisture ===
376 +
221 221  (((
222 222  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 223  )))
224 224  
225 225  (((
226 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
382 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
227 227  )))
228 228  
229 229  (((
... ... @@ -236,10 +236,10 @@
236 236  
237 237  
238 238  
239 -=== 2.3.5 Soil Temperature ===
395 +=== 2.4. Soil Temperature ===
240 240  
241 241  (((
242 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
398 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
243 243  )))
244 244  
245 245  (((
... ... @@ -256,7 +256,7 @@
256 256  
257 257  
258 258  
259 -=== 2.3.6 Soil Conductivity (EC) ===
415 +=== 2.4. Soil Conductivity (EC) ===
260 260  
261 261  (((
262 262  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -263,7 +263,7 @@
263 263  )))
264 264  
265 265  (((
266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
267 267  )))
268 268  
269 269  (((
... ... @@ -278,39 +278,41 @@
278 278  
279 279  )))
280 280  
281 -=== 2.3.7 MOD ===
437 +=== 2.4. Digital Interrupt ===
282 282  
283 -Firmware version at least v2.1 supports changing mode.
439 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
284 284  
285 -For example, bytes[10]=90
441 +The command is:
286 286  
287 -mod=(bytes[10]>>7)&0x01=1.
443 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
288 288  
289 289  
290 -**Downlink Command:**
446 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
291 291  
292 -If payload = 0x0A00, workmode=0
293 293  
294 -If** **payload =** **0x0A01, workmode=1
449 +Example:
295 295  
451 +0x(00): Normal uplink packet.
296 296  
453 +0x(01): Interrupt Uplink Packet.
297 297  
298 -=== 2.3.8 ​Decode payload in The Things Network ===
299 299  
300 -While using TTN network, you can add the payload format to decode the payload.
301 301  
302 302  
303 -[[image:1654505570700-128.png]]
458 +=== 2.4.9  ​+5V Output ===
304 304  
305 -(((
306 -The payload decoder function for TTN is here:
307 -)))
308 308  
309 -(((
310 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
311 -)))
461 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
312 312  
313 313  
464 +The 5V output time can be controlled by AT Command.
465 +
466 +(% style="color:blue" %)**AT+5VT=1000**
467 +
468 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
469 +
470 +
471 +
314 314  == 2.4 Uplink Interval ==
315 315  
316 316  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
... ... @@ -692,8 +692,6 @@
692 692  * Solid ON for 5 seconds once device successful Join the network.
693 693  * Blink once when device transmit a packet.
694 694  
695 -
696 -
697 697  == 2.9 Installation in Soil ==
698 698  
699 699  **Measurement the soil surface**
... ... @@ -1017,15 +1017,15 @@
1017 1017  
1018 1018  = 5. Trouble Shooting =
1019 1019  
1020 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1176 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1021 1021  
1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1178 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1023 1023  
1024 1024  
1025 -== 5.2 AT Command input doesnt work ==
1181 +== 5.2 AT Command input doesn't work ==
1026 1026  
1027 1027  (((
1028 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1184 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 1029  )))
1030 1030  
1031 1031  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0