Last modified by Mengting Qiu on 2024/04/02 16:44

From version 40.4
edited by Xiaoling
on 2022/06/30 10:48
Change comment: There is no comment for this version
To version 90.2
edited by Xiaoling
on 2022/07/09 09:45
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,19 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
... ... @@ -20,770 +20,723 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
16 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
32 -
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
35 35  )))
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
39 39  )))
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
44 -
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 -)))
48 -
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 60  * Ultra low power consumption
61 -* Monitor Soil Moisture
62 -* Monitor Soil Temperature
63 -* Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
70 70  
58 +== 1.3  Specification ==
71 71  
72 -== 1.3 Specification ==
73 73  
74 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
61 +(% style="color:#037691" %)**Common DC Characteristics:**
75 75  
76 -[[image:image-20220606162220-5.png]]
63 +* Supply Voltage: 2.1v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
77 77  
66 +(% style="color:#037691" %)**NB-IoT Spec:**
78 78  
68 +* - B1 @H-FDD: 2100MHz
69 +* - B3 @H-FDD: 1800MHz
70 +* - B8 @H-FDD: 900MHz
71 +* - B5 @H-FDD: 850MHz
72 +* - B20 @H-FDD: 800MHz
73 +* - B28 @H-FDD: 700MHz
79 79  
80 -== ​1.4 Applications ==
75 +(% style="color:#037691" %)**Battery:**
81 81  
77 +* Li/SOCI2 un-chargeable battery
78 +* Capacity: 8500mAh
79 +* Self Discharge: <1% / Year @ 25°C
80 +* Max continuously current: 130mA
81 +* Max boost current: 2A, 1 second
82 +
83 +(% style="color:#037691" %)**Power Consumption**
84 +
85 +* STOP Mode: 10uA @ 3.3v
86 +* Max transmit power: 350mA@3.3v
87 +
88 +
89 +== ​1.4  Applications ==
90 +
91 +* Smart Buildings & Home Automation
92 +* Logistics and Supply Chain Management
93 +* Smart Metering
82 82  * Smart Agriculture
95 +* Smart Cities
96 +* Smart Factory
83 83  
84 84  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 85  ​
86 86  
87 -== 1.5 Firmware Change log ==
88 88  
89 89  
90 -**LSE01 v1.0 :**  Release
103 +== 1.5  Pin Definitions ==
91 91  
92 92  
106 +[[image:1657328609906-564.png]]
93 93  
94 -= 2. Configure LSE01 to connect to LoRaWAN network =
95 95  
96 -== 2.1 How it works ==
97 97  
110 += 2.  Use NDDS75 to communicate with IoT Server =
111 +
112 +== 2.1  How it works ==
113 +
98 98  (((
99 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
100 100  )))
101 101  
118 +
102 102  (((
103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
120 +The diagram below shows the working flow in default firmware of NDDS75:
104 104  )))
105 105  
123 +(((
124 +
125 +)))
106 106  
127 +[[image:1657328659945-416.png]]
107 107  
108 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
129 +(((
130 +
131 +)))
109 109  
110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
111 111  
134 +== 2.2 ​ Configure the NDDS75 ==
112 112  
113 -[[image:1654503992078-669.png]]
114 114  
137 +=== 2.2.1 Test Requirement ===
115 115  
116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
139 +(((
140 +To use NDDS75 in your city, make sure meet below requirements:
141 +)))
117 117  
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
118 118  
119 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
147 +(((
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 +)))
120 120  
121 -Each LSE01 is shipped with a sticker with the default device EUI as below:
122 122  
123 -[[image:image-20220606163732-6.jpeg]]
152 +[[image:1657328756309-230.png]]
124 124  
125 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
126 126  
127 -**Add APP EUI in the application**
128 128  
156 +=== 2.2.2 Insert SIM card ===
129 129  
130 -[[image:1654504596150-405.png]]
158 +(((
159 +Insert the NB-IoT Card get from your provider.
160 +)))
131 131  
162 +(((
163 +User need to take out the NB-IoT module and insert the SIM card like below:
164 +)))
132 132  
133 133  
134 -**Add APP KEY and DEV EUI**
167 +[[image:1657328884227-504.png]]
135 135  
136 -[[image:1654504683289-357.png]]
137 137  
138 138  
171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
139 139  
140 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
173 +(((
174 +(((
175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
176 +)))
177 +)))
141 141  
179 +[[image:image-20220709092052-2.png]]
142 142  
143 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
181 +**Connection:**
144 144  
145 -[[image:image-20220606163915-7.png]]
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
146 146  
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
147 147  
148 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
149 149  
150 -[[image:1654504778294-788.png]]
151 151  
190 +In the PC, use below serial tool settings:
152 152  
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
153 153  
154 -== 2.3 Uplink Payload ==
155 -
156 -
157 -=== 2.3.1 MOD~=0(Default Mode) ===
158 -
159 -LSE01 will uplink payload via LoRaWAN with below payload format: 
160 -
161 161  (((
162 -Uplink payload includes in total 11 bytes.
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
163 163  )))
164 164  
165 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 -|(((
167 -**Size**
202 +[[image:1657329814315-101.png]]
168 168  
169 -**(bytes)**
170 -)))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 -Temperature
173 -
174 -(Reserve, Ignore now)
175 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 -MOD & Digital Interrupt
177 -
178 -(Optional)
204 +(((
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
179 179  )))
180 180  
181 181  
182 -=== 2.3.2 MOD~=1(Original value) ===
183 183  
184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
185 185  
186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 -|(((
188 -**Size**
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
189 189  
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 -Temperature
194 194  
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 -MOD & Digital Interrupt
215 +**Use below commands:**
198 198  
199 -(Optional)
200 -)))
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 201  
221 +For parameter description, please refer to AT command set
202 202  
203 -=== 2.3.3 Battery Info ===
223 +[[image:1657330452568-615.png]]
204 204  
205 -(((
206 -Check the battery voltage for LSE01.
207 -)))
208 208  
209 -(((
210 -Ex1: 0x0B45 = 2885mV
211 -)))
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
212 212  
213 -(((
214 -Ex2: 0x0B49 = 2889mV
215 -)))
228 +[[image:1657330472797-498.png]]
216 216  
217 217  
218 218  
219 -=== 2.3.4 Soil Moisture ===
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 220  
221 -(((
222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 -)))
224 224  
225 -(((
226 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
227 -)))
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
228 228  
229 -(((
230 -
231 -)))
239 +[[image:1657330501006-241.png]]
232 232  
233 -(((
234 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
235 -)))
236 236  
242 +[[image:1657330533775-472.png]]
237 237  
238 238  
239 -=== 2.3.5 Soil Temperature ===
240 240  
241 -(((
242 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
243 -)))
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
244 244  
245 -(((
246 -**Example**:
247 -)))
248 248  
249 -(((
250 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
251 -)))
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
252 252  
253 -(((
254 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
255 -)))
257 +[[image:1657249978444-674.png]]
256 256  
257 257  
260 +[[image:1657330723006-866.png]]
258 258  
259 -=== 2.3.6 Soil Conductivity (EC) ===
260 260  
261 261  (((
262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
263 263  )))
264 264  
265 -(((
266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
267 -)))
268 268  
269 -(((
270 -Generally, the EC value of irrigation water is less than 800uS / cm.
271 -)))
272 272  
273 -(((
274 -
275 -)))
269 +=== 2.2.7 Use TCP protocol to uplink data ===
276 276  
277 -(((
278 -
279 -)))
280 280  
281 -=== 2.3.7 MOD ===
272 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
282 282  
283 -Firmware version at least v2.1 supports changing mode.
275 +[[image:image-20220709093918-1.png]]
284 284  
285 -For example, bytes[10]=90
286 286  
287 -mod=(bytes[10]>>7)&0x01=1.
278 +[[image:image-20220709093918-2.png]]
288 288  
289 289  
290 -**Downlink Command:**
291 291  
292 -If payload = 0x0A00, workmode=0
282 +=== 2.2.8 Change Update Interval ===
293 293  
294 -If** **payload =** **0x0A01, workmode=1
284 +User can use below command to change the (% style="color:green" %)**uplink interval**.
295 295  
286 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
296 296  
297 -
298 -=== 2.3.8 ​Decode payload in The Things Network ===
299 -
300 -While using TTN network, you can add the payload format to decode the payload.
301 -
302 -
303 -[[image:1654505570700-128.png]]
304 -
305 305  (((
306 -The payload decoder function for TTN is here:
289 +(% style="color:red" %)**NOTE:**
307 307  )))
308 308  
309 309  (((
310 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
311 311  )))
312 312  
313 313  
314 -== 2.4 Uplink Interval ==
315 315  
316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
298 +== 2. Uplink Payload ==
317 317  
300 +In this mode, uplink payload includes in total 14 bytes
318 318  
319 319  
320 -== 2.5 Downlink Payload ==
303 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 +|=(% style="width: 60px;" %)(((
305 +**Size(bytes)**
306 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
307 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
321 321  
322 -By default, LSE50 prints the downlink payload to console port.
309 +(((
310 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 +)))
323 323  
324 -[[image:image-20220606165544-8.png]]
325 325  
314 +[[image:1657331036973-987.png]]
326 326  
327 327  (((
328 -(% style="color:blue" %)**Examples:**
317 +The payload is ASCII string, representative same HEX:
329 329  )))
330 330  
331 331  (((
332 -
321 +0x72403155615900640c6c19029200 where:
333 333  )))
334 334  
335 335  * (((
336 -(% style="color:blue" %)**Set TDC**
325 +Device ID: 0x724031556159 = 724031556159
337 337  )))
338 -
339 -(((
340 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +* (((
328 +Version: 0x0064=100=1.0.0
341 341  )))
342 342  
343 -(((
344 -Payload:    01 00 00 1E    TDC=30S
331 +* (((
332 +BAT: 0x0c6c = 3180 mV = 3.180V
345 345  )))
346 -
347 -(((
348 -Payload:    01 00 00 3C    TDC=60S
334 +* (((
335 +Signal: 0x19 = 25
349 349  )))
350 -
351 -(((
352 -
337 +* (((
338 +Distance: 0x0292= 658 mm
353 353  )))
354 -
355 355  * (((
356 -(% style="color:blue" %)**Reset**
341 +Interrupt: 0x00 = 0
357 357  )))
358 358  
359 -(((
360 -If payload = 0x04FF, it will reset the LSE01
361 -)))
362 362  
363 363  
364 -* (% style="color:blue" %)**CFM**
365 365  
366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
347 +== 2.4  Payload Explanation and Sensor Interface ==
367 367  
368 368  
350 +=== 2.4.1  Device ID ===
369 369  
370 -== 2.6 ​Show Data in DataCake IoT Server ==
352 +(((
353 +By default, the Device ID equal to the last 6 bytes of IMEI.
354 +)))
371 371  
372 372  (((
373 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
374 374  )))
375 375  
376 376  (((
377 -
361 +**Example:**
378 378  )))
379 379  
380 380  (((
381 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
365 +AT+DEUI=A84041F15612
382 382  )))
383 383  
384 384  (((
385 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
386 386  )))
387 387  
388 388  
389 -[[image:1654505857935-743.png]]
390 390  
374 +=== 2.4.2  Version Info ===
391 391  
392 -[[image:1654505874829-548.png]]
376 +(((
377 +Specify the software version: 0x64=100, means firmware version 1.00.
378 +)))
393 393  
380 +(((
381 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
382 +)))
394 394  
395 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
396 396  
397 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
398 398  
386 +=== 2.4.3  Battery Info ===
399 399  
400 -[[image:1654505905236-553.png]]
388 +(((
389 +Check the battery voltage for LSE01.
390 +)))
401 401  
392 +(((
393 +Ex1: 0x0B45 = 2885mV
394 +)))
402 402  
403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
396 +(((
397 +Ex2: 0x0B49 = 2889mV
398 +)))
404 404  
405 -[[image:1654505925508-181.png]]
406 406  
407 407  
402 +=== 2.4.4  Signal Strength ===
408 408  
409 -== 2.7 Frequency Plans ==
404 +(((
405 +NB-IoT Network signal Strength.
406 +)))
410 410  
411 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
408 +(((
409 +**Ex1: 0x1d = 29**
410 +)))
412 412  
412 +(((
413 +(% style="color:blue" %)**0**(%%)  -113dBm or less
414 +)))
413 413  
414 -=== 2.7.1 EU863-870 (EU868) ===
416 +(((
417 +(% style="color:blue" %)**1**(%%)  -111dBm
418 +)))
415 415  
416 -(% style="color:#037691" %)** Uplink:**
420 +(((
421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 +)))
417 417  
418 -868.1 - SF7BW125 to SF12BW125
424 +(((
425 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 +)))
419 419  
420 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
428 +(((
429 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 +)))
421 421  
422 -868.5 - SF7BW125 to SF12BW125
423 423  
424 -867.1 - SF7BW125 to SF12BW125
425 425  
426 -867.3 - SF7BW125 to SF12BW125
434 +=== 2.4.5  Soil Moisture ===
427 427  
428 -867.5 - SF7BW125 to SF12BW125
436 +(((
437 +(((
438 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
439 +)))
440 +)))
429 429  
430 -867.7 - SF7BW125 to SF12BW125
442 +(((
443 +(((
444 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
445 +)))
446 +)))
431 431  
432 -867.9 - SF7BW125 to SF12BW125
448 +(((
449 +
450 +)))
433 433  
434 -868.8 - FSK
452 +(((
453 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
454 +)))
435 435  
436 436  
437 -(% style="color:#037691" %)** Downlink:**
438 438  
439 -Uplink channels 1-9 (RX1)
458 +=== 2.4.6  Soil Temperature ===
440 440  
441 -869.525 - SF9BW125 (RX2 downlink only)
460 +(((
461 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
462 +)))
442 442  
464 +(((
465 +**Example**:
466 +)))
443 443  
468 +(((
469 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
470 +)))
444 444  
445 -=== 2.7.2 US902-928(US915) ===
472 +(((
473 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
474 +)))
446 446  
447 -Used in USA, Canada and South America. Default use CHE=2
448 448  
449 -(% style="color:#037691" %)**Uplink:**
450 450  
451 -903.9 - SF7BW125 to SF10BW125
478 +=== 2.4.7  Soil Conductivity (EC) ===
452 452  
453 -904.1 - SF7BW125 to SF10BW125
480 +(((
481 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
482 +)))
454 454  
455 -904.3 - SF7BW125 to SF10BW125
484 +(((
485 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
486 +)))
456 456  
457 -904.5 - SF7BW125 to SF10BW125
488 +(((
489 +Generally, the EC value of irrigation water is less than 800uS / cm.
490 +)))
458 458  
459 -904.7 - SF7BW125 to SF10BW125
492 +(((
493 +
494 +)))
460 460  
461 -904.9 - SF7BW125 to SF10BW125
496 +(((
497 +
498 +)))
462 462  
463 -905.1 - SF7BW125 to SF10BW125
500 +=== 2.4.8  Digital Interrupt ===
464 464  
465 -905.3 - SF7BW125 to SF10BW125
502 +(((
503 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
504 +)))
466 466  
506 +(((
507 +The command is:
508 +)))
467 467  
468 -(% style="color:#037691" %)**Downlink:**
510 +(((
511 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
512 +)))
469 469  
470 -923.3 - SF7BW500 to SF12BW500
471 471  
472 -923.9 - SF7BW500 to SF12BW500
515 +(((
516 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
517 +)))
473 473  
474 -924.5 - SF7BW500 to SF12BW500
475 475  
476 -925.1 - SF7BW500 to SF12BW500
520 +(((
521 +Example:
522 +)))
477 477  
478 -925.7 - SF7BW500 to SF12BW500
524 +(((
525 +0x(00): Normal uplink packet.
526 +)))
479 479  
480 -926.3 - SF7BW500 to SF12BW500
528 +(((
529 +0x(01): Interrupt Uplink Packet.
530 +)))
481 481  
482 -926.9 - SF7BW500 to SF12BW500
483 483  
484 -927.5 - SF7BW500 to SF12BW500
485 485  
486 -923.3 - SF12BW500(RX2 downlink only)
534 +=== 2.4.9  ​+5V Output ===
487 487  
536 +(((
537 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
538 +)))
488 488  
489 489  
490 -=== 2.7.3 CN470-510 (CN470) ===
541 +(((
542 +The 5V output time can be controlled by AT Command.
543 +)))
491 491  
492 -Used in China, Default use CHE=1
545 +(((
546 +(% style="color:blue" %)**AT+5VT=1000**
547 +)))
493 493  
494 -(% style="color:#037691" %)**Uplink:**
549 +(((
550 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
551 +)))
495 495  
496 -486.3 - SF7BW125 to SF12BW125
497 497  
498 -486.5 - SF7BW125 to SF12BW125
499 499  
500 -486.7 - SF7BW125 to SF12BW125
555 +== 2.5  Downlink Payload ==
501 501  
502 -486.9 - SF7BW125 to SF12BW125
557 +By default, NSE01 prints the downlink payload to console port.
503 503  
504 -487.1 - SF7BW125 to SF12BW125
559 +[[image:image-20220708133731-5.png]]
505 505  
506 -487.3 - SF7BW125 to SF12BW125
507 507  
508 -487.5 - SF7BW125 to SF12BW125
562 +(((
563 +(% style="color:blue" %)**Examples:**
564 +)))
509 509  
510 -487.7 - SF7BW125 to SF12BW125
566 +(((
567 +
568 +)))
511 511  
570 +* (((
571 +(% style="color:blue" %)**Set TDC**
572 +)))
512 512  
513 -(% style="color:#037691" %)**Downlink:**
574 +(((
575 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
576 +)))
514 514  
515 -506.7 - SF7BW125 to SF12BW125
578 +(((
579 +Payload:    01 00 00 1E    TDC=30S
580 +)))
516 516  
517 -506.9 - SF7BW125 to SF12BW125
582 +(((
583 +Payload:    01 00 00 3C    TDC=60S
584 +)))
518 518  
519 -507.1 - SF7BW125 to SF12BW125
586 +(((
587 +
588 +)))
520 520  
521 -507.3 - SF7BW125 to SF12BW125
590 +* (((
591 +(% style="color:blue" %)**Reset**
592 +)))
522 522  
523 -507.5 - SF7BW125 to SF12BW125
594 +(((
595 +If payload = 0x04FF, it will reset the NSE01
596 +)))
524 524  
525 -507.7 - SF7BW125 to SF12BW125
526 526  
527 -507.9 - SF7BW125 to SF12BW125
599 +* (% style="color:blue" %)**INTMOD**
528 528  
529 -508.1 - SF7BW125 to SF12BW125
601 +(((
602 +Downlink Payload: 06000003, Set AT+INTMOD=3
603 +)))
530 530  
531 -505.3 - SF12BW125 (RX2 downlink only)
532 532  
533 533  
607 +== 2.6  ​LED Indicator ==
534 534  
535 -=== 2.7.4 AU915-928(AU915) ===
609 +(((
610 +The NSE01 has an internal LED which is to show the status of different state.
536 536  
537 -Default use CHE=2
538 538  
539 -(% style="color:#037691" %)**Uplink:**
613 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
614 +* Then the LED will be on for 1 second means device is boot normally.
615 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
616 +* For each uplink probe, LED will be on for 500ms.
617 +)))
540 540  
541 -916.8 - SF7BW125 to SF12BW125
542 542  
543 -917.0 - SF7BW125 to SF12BW125
544 544  
545 -917.2 - SF7BW125 to SF12BW125
546 546  
547 -917.4 - SF7BW125 to SF12BW125
622 +== 2.7  Installation in Soil ==
548 548  
549 -917.6 - SF7BW125 to SF12BW125
624 +__**Measurement the soil surface**__
550 550  
551 -917.8 - SF7BW125 to SF12BW125
626 +(((
627 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
628 +)))
552 552  
553 -918.0 - SF7BW125 to SF12BW125
630 +[[image:1657259653666-883.png]] ​
554 554  
555 -918.2 - SF7BW125 to SF12BW125
556 556  
633 +(((
634 +
557 557  
558 -(% style="color:#037691" %)**Downlink:**
636 +(((
637 +Dig a hole with diameter > 20CM.
638 +)))
559 559  
560 -923.3 - SF7BW500 to SF12BW500
640 +(((
641 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
642 +)))
643 +)))
561 561  
562 -923.9 - SF7BW500 to SF12BW500
645 +[[image:1654506665940-119.png]]
563 563  
564 -924.5 - SF7BW500 to SF12BW500
647 +(((
648 +
649 +)))
565 565  
566 -925.1 - SF7BW500 to SF12BW500
567 567  
568 -925.7 - SF7BW500 to SF12BW500
652 +== 2. Firmware Change Log ==
569 569  
570 -926.3 - SF7BW500 to SF12BW500
571 571  
572 -926.9 - SF7BW500 to SF12BW500
655 +Download URL & Firmware Change log
573 573  
574 -927.5 - SF7BW500 to SF12BW500
657 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
575 575  
576 -923.3 - SF12BW500(RX2 downlink only)
577 577  
660 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
578 578  
579 579  
580 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
581 581  
582 -(% style="color:#037691" %)**Default Uplink channel:**
664 +== 2.9  ​Battery Analysis ==
583 583  
584 -923.2 - SF7BW125 to SF10BW125
666 +=== 2.9.1  ​Battery Type ===
585 585  
586 -923.4 - SF7BW125 to SF10BW125
587 587  
588 -
589 -(% style="color:#037691" %)**Additional Uplink Channel**:
590 -
591 -(OTAA mode, channel added by JoinAccept message)
592 -
593 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
594 -
595 -922.2 - SF7BW125 to SF10BW125
596 -
597 -922.4 - SF7BW125 to SF10BW125
598 -
599 -922.6 - SF7BW125 to SF10BW125
600 -
601 -922.8 - SF7BW125 to SF10BW125
602 -
603 -923.0 - SF7BW125 to SF10BW125
604 -
605 -922.0 - SF7BW125 to SF10BW125
606 -
607 -
608 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
609 -
610 -923.6 - SF7BW125 to SF10BW125
611 -
612 -923.8 - SF7BW125 to SF10BW125
613 -
614 -924.0 - SF7BW125 to SF10BW125
615 -
616 -924.2 - SF7BW125 to SF10BW125
617 -
618 -924.4 - SF7BW125 to SF10BW125
619 -
620 -924.6 - SF7BW125 to SF10BW125
621 -
622 -
623 -(% style="color:#037691" %)** Downlink:**
624 -
625 -Uplink channels 1-8 (RX1)
626 -
627 -923.2 - SF10BW125 (RX2)
628 -
629 -
630 -
631 -=== 2.7.6 KR920-923 (KR920) ===
632 -
633 -Default channel:
634 -
635 -922.1 - SF7BW125 to SF12BW125
636 -
637 -922.3 - SF7BW125 to SF12BW125
638 -
639 -922.5 - SF7BW125 to SF12BW125
640 -
641 -
642 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
643 -
644 -922.1 - SF7BW125 to SF12BW125
645 -
646 -922.3 - SF7BW125 to SF12BW125
647 -
648 -922.5 - SF7BW125 to SF12BW125
649 -
650 -922.7 - SF7BW125 to SF12BW125
651 -
652 -922.9 - SF7BW125 to SF12BW125
653 -
654 -923.1 - SF7BW125 to SF12BW125
655 -
656 -923.3 - SF7BW125 to SF12BW125
657 -
658 -
659 -(% style="color:#037691" %)**Downlink:**
660 -
661 -Uplink channels 1-7(RX1)
662 -
663 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
664 -
665 -
666 -
667 -=== 2.7.7 IN865-867 (IN865) ===
668 -
669 -(% style="color:#037691" %)** Uplink:**
670 -
671 -865.0625 - SF7BW125 to SF12BW125
672 -
673 -865.4025 - SF7BW125 to SF12BW125
674 -
675 -865.9850 - SF7BW125 to SF12BW125
676 -
677 -
678 -(% style="color:#037691" %) **Downlink:**
679 -
680 -Uplink channels 1-3 (RX1)
681 -
682 -866.550 - SF10BW125 (RX2)
683 -
684 -
685 -
686 -
687 -== 2.8 LED Indicator ==
688 -
689 -The LSE01 has an internal LED which is to show the status of different state.
690 -
691 -* Blink once when device power on.
692 -* Solid ON for 5 seconds once device successful Join the network.
693 -* Blink once when device transmit a packet.
694 -
695 -
696 -== 2.9 Installation in Soil ==
697 -
698 -**Measurement the soil surface**
699 -
700 -
701 -[[image:1654506634463-199.png]] ​
702 -
703 703  (((
704 -(((
705 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
670 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
706 706  )))
707 -)))
708 708  
709 709  
710 -
711 -[[image:1654506665940-119.png]]
712 -
713 713  (((
714 -Dig a hole with diameter > 20CM.
675 +The battery is designed to last for several years depends on the actually use environment and update interval. 
715 715  )))
716 716  
717 -(((
718 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
719 -)))
720 720  
721 -
722 -== 2.10 ​Firmware Change Log ==
723 -
724 724  (((
725 -**Firmware download link:**
680 +The battery related documents as below:
726 726  )))
727 727  
728 -(((
729 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
730 -)))
683 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
684 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
685 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
731 731  
732 732  (((
733 -
688 +[[image:image-20220708140453-6.png]]
734 734  )))
735 735  
736 -(((
737 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
738 -)))
739 739  
740 -(((
741 -
742 -)))
743 743  
744 -(((
745 -**V1.0.**
746 -)))
693 +=== 2.9.2  Power consumption Analyze ===
747 747  
748 748  (((
749 -Release
696 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
750 750  )))
751 751  
752 752  
753 -== 2.11 ​Battery Analysis ==
754 -
755 -=== 2.11.1 ​Battery Type ===
756 -
757 757  (((
758 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 +Instruction to use as below:
759 759  )))
760 760  
761 761  (((
762 -The battery is designed to last for more than 5 years for the LSN50.
705 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
763 763  )))
764 764  
708 +
765 765  (((
766 -(((
767 -The battery-related documents are as below:
710 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
768 768  )))
769 -)))
770 770  
771 771  * (((
772 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
714 +Product Model
773 773  )))
774 774  * (((
775 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
717 +Uplink Interval
776 776  )))
777 777  * (((
778 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
720 +Working Mode
779 779  )))
780 780  
781 - [[image:image-20220610172436-1.png]]
723 +(((
724 +And the Life expectation in difference case will be shown on the right.
725 +)))
782 782  
727 +[[image:image-20220708141352-7.jpeg]]
783 783  
784 784  
785 -=== 2.11.2 ​Battery Note ===
786 786  
731 +=== 2.9.3  ​Battery Note ===
732 +
787 787  (((
788 788  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
789 789  )))
... ... @@ -790,302 +790,176 @@
790 790  
791 791  
792 792  
793 -=== 2.11.3 Replace the battery ===
739 +=== 2.9. Replace the battery ===
794 794  
795 795  (((
796 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
742 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
797 797  )))
798 798  
745 +
746 +
747 += 3. ​ Access NB-IoT Module =
748 +
799 799  (((
800 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
750 +Users can directly access the AT command set of the NB-IoT module.
801 801  )))
802 802  
803 803  (((
804 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
754 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
805 805  )))
806 806  
757 +[[image:1657261278785-153.png]]
807 807  
808 808  
809 -= 3. ​Using the AT Commands =
810 810  
811 -== 3.1 Access AT Commands ==
761 += 4.  Using the AT Commands =
812 812  
763 +== 4.1  Access AT Commands ==
813 813  
814 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
765 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
815 815  
816 -[[image:1654501986557-872.png||height="391" width="800"]]
817 817  
768 +AT+<CMD>?  : Help on <CMD>
818 818  
819 -Or if you have below board, use below connection:
770 +AT+<CMD>         : Run <CMD>
820 820  
772 +AT+<CMD>=<value> : Set the value
821 821  
822 -[[image:1654502005655-729.png||height="503" width="801"]]
774 +AT+<CMD>=?  : Get the value
823 823  
824 824  
825 -
826 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
827 -
828 -
829 - [[image:1654502050864-459.png||height="564" width="806"]]
830 -
831 -
832 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
833 -
834 -
835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
836 -
837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
838 -
839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
840 -
841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
842 -
843 -
844 844  (% style="color:#037691" %)**General Commands**(%%)      
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
779 +AT  : Attention       
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
781 +AT?  : Short Help     
849 849  
850 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
783 +ATZ  : MCU Reset    
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
785 +AT+TDC  : Application Data Transmission Interval
853 853  
787 +AT+CFG  : Print all configurations
854 854  
855 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
789 +AT+CFGMOD           : Working mode selection
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
791 +AT+INTMOD            : Set the trigger interrupt mode
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
793 +AT+5VT  : Set extend the time of 5V power  
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
795 +AT+PRO  : Choose agreement
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
797 +AT+WEIGRE  : Get weight or set weight to 0
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
799 +AT+WEIGAP  : Get or Set the GapValue of weight
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
801 +AT+RXDL  : Extend the sending and receiving time
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
803 +AT+CNTFAC  : Get or set counting parameters
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
805 +AT+SERVADDR  : Server Address
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
808 +(% style="color:#037691" %)**COAP Management**      
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
810 +AT+URI            : Resource parameters
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
813 +(% style="color:#037691" %)**UDP Management**
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
815 +AT+CFM          : Upload confirmation mode (only valid for UDP)
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
818 +(% style="color:#037691" %)**MQTT Management**
888 888  
820 +AT+CLIENT               : Get or Set MQTT client
889 889  
890 -(% style="color:#037691" %)**LoRa Network Management**
822 +AT+UNAME  : Get or Set MQTT Username
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
824 +AT+PWD                  : Get or Set MQTT password
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
826 +AT+PUBTOPI : Get or Set MQTT publish topic
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
828 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
831 +(% style="color:#037691" %)**Information**          
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
833 +AT+FDR  : Factory Data Reset
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
835 +AT+PWOR : Serial Access Password
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
839 += ​5.  FAQ =
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
841 +== 5.1 How to Upgrade Firmware ==
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
921 -
922 -
923 -(% style="color:#037691" %)**Information** 
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
932 -
933 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
934 -
935 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
936 -
937 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
938 -
939 -
940 -= ​4. FAQ =
941 -
942 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
943 -
944 944  (((
945 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
946 -When downloading the images, choose the required image file for download. ​
845 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
947 947  )))
948 948  
949 949  (((
950 -
849 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
951 951  )))
952 952  
953 953  (((
954 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
853 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
955 955  )))
956 956  
957 -(((
958 -
959 -)))
960 960  
961 -(((
962 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
963 -)))
964 964  
965 -(((
966 -
967 -)))
858 +== 5.2  Can I calibrate NSE01 to different soil types? ==
968 968  
969 969  (((
970 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
861 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
971 971  )))
972 972  
973 -[[image:image-20220606154726-3.png]]
974 974  
865 += 6.  Trouble Shooting =
975 975  
976 -When you use the TTN network, the US915 frequency bands use are:
867 +== 6.1  ​Connection problem when uploading firmware ==
977 977  
978 -* 903.9 - SF7BW125 to SF10BW125
979 -* 904.1 - SF7BW125 to SF10BW125
980 -* 904.3 - SF7BW125 to SF10BW125
981 -* 904.5 - SF7BW125 to SF10BW125
982 -* 904.7 - SF7BW125 to SF10BW125
983 -* 904.9 - SF7BW125 to SF10BW125
984 -* 905.1 - SF7BW125 to SF10BW125
985 -* 905.3 - SF7BW125 to SF10BW125
986 -* 904.6 - SF8BW500
987 987  
988 988  (((
989 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
990 -
991 -* (% style="color:#037691" %)**AT+CHE=2**
992 -* (% style="color:#037691" %)**ATZ**
871 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
993 993  )))
994 994  
874 +(% class="wikigeneratedid" %)
995 995  (((
996 996  
997 -
998 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
999 999  )))
1000 1000  
1001 -(((
1002 -
1003 -)))
1004 1004  
1005 -(((
1006 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1007 -)))
880 +== 6.2  AT Command input doesn't work ==
1008 1008  
1009 -[[image:image-20220606154825-4.png]]
1010 -
1011 -
1012 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1013 -
1014 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1015 -
1016 -
1017 -= 5. Trouble Shooting =
1018 -
1019 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1020 -
1021 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1022 -
1023 -
1024 -== 5.2 AT Command input doesn’t work ==
1025 -
1026 1026  (((
1027 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1028 -)))
883 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 1029  
1030 -
1031 -== 5.3 Device rejoin in at the second uplink packet ==
1032 -
1033 -(% style="color:#4f81bd" %)**Issue describe as below:**
1034 -
1035 -[[image:1654500909990-784.png]]
1036 -
1037 -
1038 -(% style="color:#4f81bd" %)**Cause for this issue:**
1039 -
1040 -(((
1041 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
885 +
1042 1042  )))
1043 1043  
1044 1044  
1045 -(% style="color:#4f81bd" %)**Solution: **
889 += 7. ​ Order Info =
1046 1046  
1047 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1048 1048  
1049 -[[image:1654500929571-736.png||height="458" width="832"]]
892 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1050 1050  
1051 1051  
1052 -= 6. ​Order Info =
1053 -
1054 -
1055 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1056 -
1057 -
1058 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1059 -
1060 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1061 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1062 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1063 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1064 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1065 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1066 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1067 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1068 -
1069 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1070 -
1071 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1072 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1073 -
1074 1074  (% class="wikigeneratedid" %)
1075 1075  (((
1076 1076  
1077 1077  )))
1078 1078  
1079 -= 7. Packing Info =
900 += 8.  Packing Info =
1080 1080  
1081 1081  (((
1082 1082  
1083 1083  
1084 1084  (% style="color:#037691" %)**Package Includes**:
1085 -)))
1086 1086  
1087 -* (((
1088 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
907 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
908 +* External antenna x 1
1089 1089  )))
1090 1090  
1091 1091  (((
... ... @@ -1092,24 +1092,19 @@
1092 1092  
1093 1093  
1094 1094  (% style="color:#037691" %)**Dimension and weight**:
1095 -)))
1096 1096  
1097 -* (((
1098 -Device Size: cm
916 +* Size: 195 x 125 x 55 mm
917 +* Weight:   420g
1099 1099  )))
1100 -* (((
1101 -Device Weight: g
1102 -)))
1103 -* (((
1104 -Package Size / pcs : cm
1105 -)))
1106 -* (((
1107 -Weight / pcs : g
1108 1108  
920 +(((
1109 1109  
922 +
923 +
924 +
1110 1110  )))
1111 1111  
1112 -= 8. Support =
927 += 9.  Support =
1113 1113  
1114 1114  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1115 1115  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content