Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 44 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,774 +20,723 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 16 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 42 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 58 +== 1.3 Specification == 71 71 72 72 73 - ==1.3Specification ==61 +(% style="color:#037691" %)**Common DC Characteristics:** 74 74 75 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 63 +* Supply Voltage: 2.1v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 76 76 77 - [[image:image-20220606162220-5.png]]66 +(% style="color:#037691" %)**NB-IoT Spec:** 78 78 68 +* - B1 @H-FDD: 2100MHz 69 +* - B3 @H-FDD: 1800MHz 70 +* - B8 @H-FDD: 900MHz 71 +* - B5 @H-FDD: 850MHz 72 +* - B20 @H-FDD: 800MHz 73 +* - B28 @H-FDD: 700MHz 79 79 75 +(% style="color:#037691" %)**Battery:** 80 80 81 -== 1.4 Applications == 77 +* Li/SOCI2 un-chargeable battery 78 +* Capacity: 8500mAh 79 +* Self Discharge: <1% / Year @ 25°C 80 +* Max continuously current: 130mA 81 +* Max boost current: 2A, 1 second 82 82 83 +(% style="color:#037691" %)**Power Consumption** 84 + 85 +* STOP Mode: 10uA @ 3.3v 86 +* Max transmit power: 350mA@3.3v 87 + 88 + 89 +== 1.4 Applications == 90 + 91 +* Smart Buildings & Home Automation 92 +* Logistics and Supply Chain Management 93 +* Smart Metering 83 83 * Smart Agriculture 95 +* Smart Cities 96 +* Smart Factory 84 84 85 85 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 86 86 87 87 88 -== 1.5 Firmware Change log == 89 89 90 90 91 - **LSE01v1.0 :**Release103 +== 1.5 Pin Definitions == 92 92 93 93 106 +[[image:1657328609906-564.png]] 94 94 95 -= 2. Configure LSE01 to connect to LoRaWAN network = 96 96 97 -== 2.1 How it works == 98 98 110 += 2. Use NDDS75 to communicate with IoT Server = 111 + 112 +== 2.1 How it works == 113 + 99 99 ((( 100 -The LSE01isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 101 101 ))) 102 102 118 + 103 103 ((( 104 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].120 +The diagram below shows the working flow in default firmware of NDDS75: 105 105 ))) 106 106 123 +((( 124 + 125 +))) 107 107 127 +[[image:1657328659945-416.png]] 108 108 109 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 129 +((( 130 + 131 +))) 110 110 111 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 112 112 134 +== 2.2 Configure the NDDS75 == 113 113 114 -[[image:1654503992078-669.png]] 115 115 137 +=== 2.2.1 Test Requirement === 116 116 117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 139 +((( 140 +To use NDDS75 in your city, make sure meet below requirements: 141 +))) 118 118 143 +* Your local operator has already distributed a NB-IoT Network there. 144 +* The local NB-IoT network used the band that NSE01 supports. 145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 119 119 120 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 147 +((( 148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 149 +))) 121 121 122 -Each LSE01 is shipped with a sticker with the default device EUI as below: 123 123 124 -[[image: image-20220606163732-6.jpeg]]152 +[[image:1657328756309-230.png]] 125 125 126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 127 128 -**Add APP EUI in the application** 129 129 156 +=== 2.2.2 Insert SIM card === 130 130 131 -[[image:1654504596150-405.png]] 158 +((( 159 +Insert the NB-IoT Card get from your provider. 160 +))) 132 132 162 +((( 163 +User need to take out the NB-IoT module and insert the SIM card like below: 164 +))) 133 133 134 134 135 - **Add APP KEYand DEV EUI**167 +[[image:1657328884227-504.png]] 136 136 137 -[[image:1654504683289-357.png]] 138 138 139 139 171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 140 140 141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 173 +((( 174 +((( 175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 176 +))) 177 +))) 142 142 179 +[[image:image-20220709092052-2.png]] 143 143 144 - Put a JumperonJP2 to power onthedevice. ( The Jumper mustbein FLASH position).181 +**Connection:** 145 145 146 - [[image:image-20220606163915-7.png]]183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 147 147 185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 148 148 149 -(% style="color: blue" %)**Step3**(%%)**:**TheLSE01willautojoin to the TTN network.After join success, it will start to upload messages toTTN and you can see the messages in the panel.187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 150 150 151 -[[image:1654504778294-788.png]] 152 152 190 +In the PC, use below serial tool settings: 153 153 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 154 154 155 -== 2.3 Uplink Payload == 156 - 157 - 158 -=== 2.3.1 MOD~=0(Default Mode) === 159 - 160 -LSE01 will uplink payload via LoRaWAN with below payload format: 161 - 162 162 ((( 163 - Uplinkpayloadincludes intotal11bytes.199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 164 164 ))) 165 165 166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 -|((( 168 -**Size** 202 +[[image:1657329814315-101.png]] 169 169 170 -**(bytes)** 171 -)))|**2**|**2**|**2**|**2**|**2**|**1** 172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 -Temperature 174 - 175 -(Reserve, Ignore now) 176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 -MOD & Digital Interrupt 178 - 179 -(Optional) 204 +((( 205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 180 180 ))) 181 181 182 182 183 183 184 -=== 2. 3.2MOD~=1(Originalvalue)===210 +=== 2.2.4 Use CoAP protocol to uplink data === 185 185 186 - Thismodean gettheoriginalADvalue ofmoistureandoriginal conductivity (with temperatureftcompensation).212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 187 187 188 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 189 -|((( 190 -**Size** 191 191 192 -**(bytes)** 193 -)))|**2**|**2**|**2**|**2**|**2**|**1** 194 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 195 -Temperature 215 +**Use below commands:** 196 196 197 -( Reserve,Ignorenow)198 - )))|[[SoilMoisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[SoilTemperature>>||anchor="H2.3.5SoilTemperature"]]|[[SoilConductivity(EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((199 - MOD&Digital Interrupt217 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 200 200 201 -(Optional) 202 -))) 221 +For parameter description, please refer to AT command set 203 203 223 +[[image:1657330452568-615.png]] 204 204 205 205 206 - ===2.3.3BatteryInfo===226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 207 207 208 -((( 209 -Check the battery voltage for LSE01. 210 -))) 228 +[[image:1657330472797-498.png]] 211 211 212 -((( 213 -Ex1: 0x0B45 = 2885mV 214 -))) 215 215 216 -((( 217 -Ex2: 0x0B49 = 2889mV 218 -))) 219 219 232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 220 220 221 221 222 -=== 2.3.4 Soil Moisture === 235 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 223 223 224 -((( 225 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 226 -))) 239 +[[image:1657330501006-241.png]] 227 227 228 -((( 229 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 230 -))) 231 231 232 -((( 233 - 234 -))) 242 +[[image:1657330533775-472.png]] 235 235 236 -((( 237 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 238 -))) 239 239 240 240 246 +=== 2.2.6 Use MQTT protocol to uplink data === 241 241 242 -=== 2.3.5 Soil Temperature === 243 243 244 -((( 245 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 246 -))) 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 247 247 248 -((( 249 -**Example**: 250 -))) 257 +[[image:1657249978444-674.png]] 251 251 252 -((( 253 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 254 -))) 255 255 256 -((( 257 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 258 -))) 260 +[[image:1657330723006-866.png]] 259 259 260 260 261 - 262 -=== 2.3.6 Soil Conductivity (EC) === 263 - 264 264 ((( 265 - Obtain(% style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)in soil or(% style="color:#4f81bd" %)**__solubleion concentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%).Thevaluerangeoftheregisters0-20000(Decimal)( Canbegreaterthan 20000).264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 266 266 ))) 267 267 268 -((( 269 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 270 -))) 271 271 272 -((( 273 -Generally, the EC value of irrigation water is less than 800uS / cm. 274 -))) 275 275 276 -((( 277 - 278 -))) 269 +=== 2.2.7 Use TCP protocol to uplink data === 279 279 280 -((( 281 - 282 -))) 283 283 284 -=== 2.3.7 MOD === 272 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 285 285 286 - Firmwareversionat least v2.1supports changing mode.275 +[[image:image-20220709093918-1.png]] 287 287 288 -For example, bytes[10]=90 289 289 290 -m od=(bytes[10]>>7)&0x01=1.278 +[[image:image-20220709093918-2.png]] 291 291 292 292 293 -**Downlink Command:** 294 294 295 - If payload=0x0A00,workmode=0282 +=== 2.2.8 Change Update Interval === 296 296 297 - If****payload=****0x0A01,workmode=1284 +User can use below command to change the (% style="color:green" %)**uplink interval**. 298 298 286 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 299 299 300 - 301 -=== 2.3.8 Decode payload in The Things Network === 302 - 303 -While using TTN network, you can add the payload format to decode the payload. 304 - 305 - 306 -[[image:1654505570700-128.png]] 307 - 308 308 ((( 309 - Thepayload decoder function forTTN is here:289 +(% style="color:red" %)**NOTE:** 310 310 ))) 311 311 312 312 ((( 313 - LSE01TTN Payload Decoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 314 314 ))) 315 315 316 316 317 -== 2.4 Uplink Interval == 318 318 319 - TheLSE01 by default uplink the sensor data every20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change UplinkInterval>>doc:Main.EndDevice AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]298 +== 2.3 Uplink Payload == 320 320 300 +In this mode, uplink payload includes in total 14 bytes 321 321 322 322 323 -== 2.5 Downlink Payload == 303 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 304 +|=(% style="width: 60px;" %)((( 305 +**Size(bytes)** 306 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 307 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 324 324 325 -By default, LSE50 prints the downlink payload to console port. 309 +((( 310 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 311 +))) 326 326 327 -[[image:image-20220606165544-8.png]] 328 328 314 +[[image:1657331036973-987.png]] 329 329 330 330 ((( 331 - **Examples:**317 +The payload is ASCII string, representative same HEX: 332 332 ))) 333 333 334 334 ((( 335 - 321 +0x72403155615900640c6c19029200 where: 336 336 ))) 337 337 338 338 * ((( 339 - **SetTDC**325 +Device ID: 0x724031556159 = 724031556159 340 340 ))) 341 - 342 -((( 343 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 +* ((( 328 +Version: 0x0064=100=1.0.0 344 344 ))) 345 345 346 -((( 347 - Payload:100001ETDC=30S331 +* ((( 332 +BAT: 0x0c6c = 3180 mV = 3.180V 348 348 ))) 349 - 350 -((( 351 -Payload: 01 00 00 3C TDC=60S 334 +* ((( 335 +Signal: 0x19 = 25 352 352 ))) 353 - 354 -((( 355 - 337 +* ((( 338 +Distance: 0x0292= 658 mm 356 356 ))) 357 - 358 358 * ((( 359 - **Reset**341 +Interrupt: 0x00 = 0 360 360 ))) 361 361 362 -((( 363 -If payload = 0x04FF, it will reset the LSE01 364 -))) 365 365 366 366 367 -* **CFM** 368 368 369 - DownlinkPayload:05000001, SetAT+CFM=1or05000000 , setAT+CFM=0347 +== 2.4 Payload Explanation and Sensor Interface == 370 370 371 371 350 +=== 2.4.1 Device ID === 372 372 373 -== 2.6 Show Data in DataCake IoT Server == 352 +((( 353 +By default, the Device ID equal to the last 6 bytes of IMEI. 354 +))) 374 374 375 375 ((( 376 - [[DATACAKE>>url:https://datacake.co/]] providesahumanfriendlyinterfacetoshowthesensor data,once we have data in TTN, we canuse[[DATACAKE>>url:https://datacake.co/]]toconnect to TTN andseethedata inDATACAKE. Below arethe steps:357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 377 377 ))) 378 378 379 379 ((( 380 - 361 +**Example:** 381 381 ))) 382 382 383 383 ((( 384 - (% style="color:blue" %)**Step1**(%%): Be sure that your device is programmed and properly connected to the network at this time.365 +AT+DEUI=A84041F15612 385 385 ))) 386 386 387 387 ((( 388 - (%style="color:blue"%)**Step2**(%%):ToconfiguretheApplicationtoforward data to DATACAKE you will needtoadd integration.To add the DATACAKEintegration, performthefollowing steps:369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 389 389 ))) 390 390 391 391 392 -[[image:1654505857935-743.png]] 393 393 374 +=== 2.4.2 Version Info === 394 394 395 -[[image:1654505874829-548.png]] 376 +((( 377 +Specify the software version: 0x64=100, means firmware version 1.00. 378 +))) 396 396 380 +((( 381 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 382 +))) 397 397 398 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 399 399 400 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 401 401 386 +=== 2.4.3 Battery Info === 402 402 403 -[[image:1654505905236-553.png]] 388 +((( 389 +Check the battery voltage for LSE01. 390 +))) 404 404 392 +((( 393 +Ex1: 0x0B45 = 2885mV 394 +))) 405 405 406 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 396 +((( 397 +Ex2: 0x0B49 = 2889mV 398 +))) 407 407 408 -[[image:1654505925508-181.png]] 409 409 410 410 402 +=== 2.4.4 Signal Strength === 411 411 412 -== 2.7 Frequency Plans == 404 +((( 405 +NB-IoT Network signal Strength. 406 +))) 413 413 414 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 408 +((( 409 +**Ex1: 0x1d = 29** 410 +))) 415 415 412 +((( 413 +(% style="color:blue" %)**0**(%%) -113dBm or less 414 +))) 416 416 417 -=== 2.7.1 EU863-870 (EU868) === 416 +((( 417 +(% style="color:blue" %)**1**(%%) -111dBm 418 +))) 418 418 419 -(% style="color:#037691" %)** Uplink:** 420 +((( 421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 +))) 420 420 421 -868.1 - SF7BW125 to SF12BW125 424 +((( 425 +(% style="color:blue" %)**31** (%%) -51dBm or greater 426 +))) 422 422 423 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 428 +((( 429 +(% style="color:blue" %)**99** (%%) Not known or not detectable 430 +))) 424 424 425 -868.5 - SF7BW125 to SF12BW125 426 426 427 -867.1 - SF7BW125 to SF12BW125 428 428 429 - 867.3- SF7BW125toSF12BW125434 +=== 2.4.5 Soil Moisture === 430 430 431 -867.5 - SF7BW125 to SF12BW125 436 +((( 437 +((( 438 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 439 +))) 440 +))) 432 432 433 -867.7 - SF7BW125 to SF12BW125 442 +((( 443 +((( 444 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 445 +))) 446 +))) 434 434 435 -867.9 - SF7BW125 to SF12BW125 448 +((( 449 + 450 +))) 436 436 437 -868.8 - FSK 452 +((( 453 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 454 +))) 438 438 439 439 440 -(% style="color:#037691" %)** Downlink:** 441 441 442 - Uplinkchannels1-9 (RX1)458 +=== 2.4.6 Soil Temperature === 443 443 444 -869.525 - SF9BW125 (RX2 downlink only) 460 +((( 461 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 462 +))) 445 445 464 +((( 465 +**Example**: 466 +))) 446 446 468 +((( 469 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 470 +))) 447 447 448 -=== 2.7.2 US902-928(US915) === 472 +((( 473 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 474 +))) 449 449 450 -Used in USA, Canada and South America. Default use CHE=2 451 451 452 -(% style="color:#037691" %)**Uplink:** 453 453 454 - 903.9-SF7BW125toSF10BW125478 +=== 2.4.7 Soil Conductivity (EC) === 455 455 456 -904.1 - SF7BW125 to SF10BW125 480 +((( 481 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 482 +))) 457 457 458 -904.3 - SF7BW125 to SF10BW125 484 +((( 485 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 486 +))) 459 459 460 -904.5 - SF7BW125 to SF10BW125 488 +((( 489 +Generally, the EC value of irrigation water is less than 800uS / cm. 490 +))) 461 461 462 -904.7 - SF7BW125 to SF10BW125 492 +((( 493 + 494 +))) 463 463 464 -904.9 - SF7BW125 to SF10BW125 496 +((( 497 + 498 +))) 465 465 466 - 905.1- SF7BW125toSF10BW125500 +=== 2.4.8 Digital Interrupt === 467 467 468 -905.3 - SF7BW125 to SF10BW125 502 +((( 503 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 504 +))) 469 469 506 +((( 507 +The command is: 508 +))) 470 470 471 -(% style="color:#037691" %)**Downlink:** 510 +((( 511 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 512 +))) 472 472 473 -923.3 - SF7BW500 to SF12BW500 474 474 475 -923.9 - SF7BW500 to SF12BW500 515 +((( 516 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 517 +))) 476 476 477 -924.5 - SF7BW500 to SF12BW500 478 478 479 -925.1 - SF7BW500 to SF12BW500 520 +((( 521 +Example: 522 +))) 480 480 481 -925.7 - SF7BW500 to SF12BW500 524 +((( 525 +0x(00): Normal uplink packet. 526 +))) 482 482 483 -926.3 - SF7BW500 to SF12BW500 528 +((( 529 +0x(01): Interrupt Uplink Packet. 530 +))) 484 484 485 -926.9 - SF7BW500 to SF12BW500 486 486 487 -927.5 - SF7BW500 to SF12BW500 488 488 489 - 923.3- SF12BW500(RX2downlinkonly)534 +=== 2.4.9 +5V Output === 490 490 536 +((( 537 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 538 +))) 491 491 492 492 493 -=== 2.7.3 CN470-510 (CN470) === 541 +((( 542 +The 5V output time can be controlled by AT Command. 543 +))) 494 494 495 -Used in China, Default use CHE=1 545 +((( 546 +(% style="color:blue" %)**AT+5VT=1000** 547 +))) 496 496 497 -(% style="color:#037691" %)**Uplink:** 549 +((( 550 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 551 +))) 498 498 499 -486.3 - SF7BW125 to SF12BW125 500 500 501 -486.5 - SF7BW125 to SF12BW125 502 502 503 - 486.7- SF7BW125toSF12BW125555 +== 2.5 Downlink Payload == 504 504 505 - 486.9-SF7BW125toSF12BW125557 +By default, NSE01 prints the downlink payload to console port. 506 506 507 - 487.1- SF7BW125to SF12BW125559 +[[image:image-20220708133731-5.png]] 508 508 509 -487.3 - SF7BW125 to SF12BW125 510 510 511 -487.5 - SF7BW125 to SF12BW125 562 +((( 563 +(% style="color:blue" %)**Examples:** 564 +))) 512 512 513 -487.7 - SF7BW125 to SF12BW125 566 +((( 567 + 568 +))) 514 514 570 +* ((( 571 +(% style="color:blue" %)**Set TDC** 572 +))) 515 515 516 -(% style="color:#037691" %)**Downlink:** 574 +((( 575 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 576 +))) 517 517 518 -506.7 - SF7BW125 to SF12BW125 578 +((( 579 +Payload: 01 00 00 1E TDC=30S 580 +))) 519 519 520 -506.9 - SF7BW125 to SF12BW125 582 +((( 583 +Payload: 01 00 00 3C TDC=60S 584 +))) 521 521 522 -507.1 - SF7BW125 to SF12BW125 586 +((( 587 + 588 +))) 523 523 524 -507.3 - SF7BW125 to SF12BW125 590 +* ((( 591 +(% style="color:blue" %)**Reset** 592 +))) 525 525 526 -507.5 - SF7BW125 to SF12BW125 594 +((( 595 +If payload = 0x04FF, it will reset the NSE01 596 +))) 527 527 528 -507.7 - SF7BW125 to SF12BW125 529 529 530 - 507.9-SF7BW125toSF12BW125599 +* (% style="color:blue" %)**INTMOD** 531 531 532 -508.1 - SF7BW125 to SF12BW125 601 +((( 602 +Downlink Payload: 06000003, Set AT+INTMOD=3 603 +))) 533 533 534 -505.3 - SF12BW125 (RX2 downlink only) 535 535 536 536 607 +== 2.6 LED Indicator == 537 537 538 -=== 2.7.4 AU915-928(AU915) === 609 +((( 610 +The NSE01 has an internal LED which is to show the status of different state. 539 539 540 -Default use CHE=2 541 541 542 -(% style="color:#037691" %)**Uplink:** 613 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 614 +* Then the LED will be on for 1 second means device is boot normally. 615 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 616 +* For each uplink probe, LED will be on for 500ms. 617 +))) 543 543 544 -916.8 - SF7BW125 to SF12BW125 545 545 546 -917.0 - SF7BW125 to SF12BW125 547 547 548 -917.2 - SF7BW125 to SF12BW125 549 549 550 - 917.4- SF7BW125to SF12BW125622 +== 2.7 Installation in Soil == 551 551 552 - 917.6- SF7BW125toSF12BW125624 +__**Measurement the soil surface**__ 553 553 554 -917.8 - SF7BW125 to SF12BW125 626 +((( 627 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 628 +))) 555 555 556 - 918.0 - SF7BW125to SF12BW125630 +[[image:1657259653666-883.png]] 557 557 558 -918.2 - SF7BW125 to SF12BW125 559 559 633 +((( 634 + 560 560 561 -(% style="color:#037691" %)**Downlink:** 636 +((( 637 +Dig a hole with diameter > 20CM. 638 +))) 562 562 563 -923.3 - SF7BW500 to SF12BW500 640 +((( 641 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 642 +))) 643 +))) 564 564 565 - 923.9 - SF7BW500 to SF12BW500645 +[[image:1654506665940-119.png]] 566 566 567 -924.5 - SF7BW500 to SF12BW500 647 +((( 648 + 649 +))) 568 568 569 -925.1 - SF7BW500 to SF12BW500 570 570 571 - 925.7- SF7BW500toSF12BW500652 +== 2.8 Firmware Change Log == 572 572 573 -926.3 - SF7BW500 to SF12BW500 574 574 575 - 926.9-SF7BW500toSF12BW500655 +Download URL & Firmware Change log 576 576 577 - 927.5-F7BW500toSF12BW500657 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 578 578 579 -923.3 - SF12BW500(RX2 downlink only) 580 580 660 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 581 581 582 582 583 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 584 584 585 - (% style="color:#037691"%)**DefaultUplink channel:**664 +== 2.9 Battery Analysis == 586 586 587 - 923.2 - SF7BW125toSF10BW125666 +=== 2.9.1 Battery Type === 588 588 589 -923.4 - SF7BW125 to SF10BW125 590 590 591 - 592 -(% style="color:#037691" %)**Additional Uplink Channel**: 593 - 594 -(OTAA mode, channel added by JoinAccept message) 595 - 596 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 597 - 598 -922.2 - SF7BW125 to SF10BW125 599 - 600 -922.4 - SF7BW125 to SF10BW125 601 - 602 -922.6 - SF7BW125 to SF10BW125 603 - 604 -922.8 - SF7BW125 to SF10BW125 605 - 606 -923.0 - SF7BW125 to SF10BW125 607 - 608 -922.0 - SF7BW125 to SF10BW125 609 - 610 - 611 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 612 - 613 -923.6 - SF7BW125 to SF10BW125 614 - 615 -923.8 - SF7BW125 to SF10BW125 616 - 617 -924.0 - SF7BW125 to SF10BW125 618 - 619 -924.2 - SF7BW125 to SF10BW125 620 - 621 -924.4 - SF7BW125 to SF10BW125 622 - 623 -924.6 - SF7BW125 to SF10BW125 624 - 625 - 626 -(% style="color:#037691" %)** Downlink:** 627 - 628 -Uplink channels 1-8 (RX1) 629 - 630 -923.2 - SF10BW125 (RX2) 631 - 632 - 633 - 634 -=== 2.7.6 KR920-923 (KR920) === 635 - 636 -Default channel: 637 - 638 -922.1 - SF7BW125 to SF12BW125 639 - 640 -922.3 - SF7BW125 to SF12BW125 641 - 642 -922.5 - SF7BW125 to SF12BW125 643 - 644 - 645 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 646 - 647 -922.1 - SF7BW125 to SF12BW125 648 - 649 -922.3 - SF7BW125 to SF12BW125 650 - 651 -922.5 - SF7BW125 to SF12BW125 652 - 653 -922.7 - SF7BW125 to SF12BW125 654 - 655 -922.9 - SF7BW125 to SF12BW125 656 - 657 -923.1 - SF7BW125 to SF12BW125 658 - 659 -923.3 - SF7BW125 to SF12BW125 660 - 661 - 662 -(% style="color:#037691" %)**Downlink:** 663 - 664 -Uplink channels 1-7(RX1) 665 - 666 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 667 - 668 - 669 - 670 -=== 2.7.7 IN865-867 (IN865) === 671 - 672 -(% style="color:#037691" %)** Uplink:** 673 - 674 -865.0625 - SF7BW125 to SF12BW125 675 - 676 -865.4025 - SF7BW125 to SF12BW125 677 - 678 -865.9850 - SF7BW125 to SF12BW125 679 - 680 - 681 -(% style="color:#037691" %) **Downlink:** 682 - 683 -Uplink channels 1-3 (RX1) 684 - 685 -866.550 - SF10BW125 (RX2) 686 - 687 - 688 - 689 - 690 -== 2.8 LED Indicator == 691 - 692 -The LSE01 has an internal LED which is to show the status of different state. 693 - 694 -* Blink once when device power on. 695 -* Solid ON for 5 seconds once device successful Join the network. 696 -* Blink once when device transmit a packet. 697 - 698 - 699 - 700 -== 2.9 Installation in Soil == 701 - 702 -**Measurement the soil surface** 703 - 704 - 705 -[[image:1654506634463-199.png]] 706 - 707 707 ((( 708 -((( 709 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 670 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 710 710 ))) 711 -))) 712 712 713 713 714 - 715 -[[image:1654506665940-119.png]] 716 - 717 717 ((( 718 - Dig aholewithdiameter>20CM.675 +The battery is designed to last for several years depends on the actually use environment and update interval. 719 719 ))) 720 720 721 -((( 722 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 723 -))) 724 724 725 - 726 -== 2.10 Firmware Change Log == 727 - 728 728 ((( 729 - **Firmware downloadlink:**680 +The battery related documents as below: 730 730 ))) 731 731 732 - (((733 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]734 - )))683 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 684 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 685 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 735 735 736 736 ((( 737 - 688 +[[image:image-20220708140453-6.png]] 738 738 ))) 739 739 740 -((( 741 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 742 -))) 743 743 744 -((( 745 - 746 -))) 747 747 748 -((( 749 -**V1.0.** 750 -))) 693 +=== 2.9.2 Power consumption Analyze === 751 751 752 752 ((( 753 - Release696 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 754 754 ))) 755 755 756 756 757 -== 2.11 Battery Analysis == 758 - 759 -=== 2.11.1 Battery Type === 760 - 761 761 ((( 762 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.701 +Instruction to use as below: 763 763 ))) 764 764 765 765 ((( 766 - Thebatterys designedlastforrethan5 years fortheSN50.705 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 767 767 ))) 768 768 708 + 769 769 ((( 770 -((( 771 -The battery-related documents are as below: 710 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 772 772 ))) 773 -))) 774 774 775 775 * ((( 776 - [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],714 +Product Model 777 777 ))) 778 778 * ((( 779 - [[Lithium-ThionylChloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],717 +Uplink Interval 780 780 ))) 781 781 * ((( 782 - [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]720 +Working Mode 783 783 ))) 784 784 785 - [[image:image-20220610172436-1.png]] 723 +((( 724 +And the Life expectation in difference case will be shown on the right. 725 +))) 786 786 727 +[[image:image-20220708141352-7.jpeg]] 787 787 788 788 789 -=== 2.11.2 Battery Note === 790 790 731 +=== 2.9.3 Battery Note === 732 + 791 791 ((( 792 792 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 793 793 ))) ... ... @@ -794,302 +794,176 @@ 794 794 795 795 796 796 797 -=== 2. 11.3Replace the battery ===739 +=== 2.9.4 Replace the battery === 798 798 799 799 ((( 800 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.742 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 801 801 ))) 802 802 745 + 746 + 747 += 3. Access NB-IoT Module = 748 + 803 803 ((( 804 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.750 +Users can directly access the AT command set of the NB-IoT module. 805 805 ))) 806 806 807 807 ((( 808 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)754 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 809 809 ))) 810 810 757 +[[image:1657261278785-153.png]] 811 811 812 812 813 -= 3. Using the AT Commands = 814 814 815 -= =3.1AccessAT Commands ==761 += 4. Using the AT Commands = 816 816 763 +== 4.1 Access AT Commands == 817 817 818 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.765 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 819 819 820 -[[image:1654501986557-872.png||height="391" width="800"]] 821 821 768 +AT+<CMD>? : Help on <CMD> 822 822 823 - Orifyouhavebelowboard,usebelowconnection:770 +AT+<CMD> : Run <CMD> 824 824 772 +AT+<CMD>=<value> : Set the value 825 825 826 - [[image:1654502005655-729.png||height="503"width="801"]]774 +AT+<CMD>=? : Get the value 827 827 828 828 829 - 830 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 831 - 832 - 833 - [[image:1654502050864-459.png||height="564" width="806"]] 834 - 835 - 836 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 837 - 838 - 839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 840 - 841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 842 - 843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 844 - 845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 846 - 847 - 848 848 (% style="color:#037691" %)**General Commands**(%%) 849 849 850 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention779 +AT : Attention 851 851 852 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help781 +AT? : Short Help 853 853 854 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset783 +ATZ : MCU Reset 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval785 +AT+TDC : Application Data Transmission Interval 857 857 787 +AT+CFG : Print all configurations 858 858 859 - (%style="color:#037691"%)**Keys,IDsand EUIs management**789 +AT+CFGMOD : Working mode selection 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI791 +AT+INTMOD : Set the trigger interrupt mode 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey793 +AT+5VT : Set extend the time of 5V power 864 864 865 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key795 +AT+PRO : Choose agreement 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress797 +AT+WEIGRE : Get weight or set weight to 0 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI799 +AT+WEIGAP : Get or Set the GapValue of weight 870 870 871 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)801 +AT+RXDL : Extend the sending and receiving time 872 872 873 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network803 +AT+CNTFAC : Get or set counting parameters 874 874 875 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode805 +AT+SERVADDR : Server Address 876 876 877 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 878 878 879 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network808 +(% style="color:#037691" %)**COAP Management** 880 880 881 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode810 +AT+URI : Resource parameters 882 882 883 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 884 884 885 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format813 +(% style="color:#037691" %)**UDP Management** 886 886 887 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat815 +AT+CFM : Upload confirmation mode (only valid for UDP) 888 888 889 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 890 890 891 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data818 +(% style="color:#037691" %)**MQTT Management** 892 892 820 +AT+CLIENT : Get or Set MQTT client 893 893 894 - (%style="color:#037691"%)**LoRaNetworkManagement**822 +AT+UNAME : Get or Set MQTT Username 895 895 896 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate824 +AT+PWD : Get or Set MQTT password 897 897 898 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA826 +AT+PUBTOPIC : Get or Set MQTT publish topic 899 899 900 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting828 +AT+SUBTOPIC : Get or Set MQTT subscription topic 901 901 902 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 903 903 904 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink831 +(% style="color:#037691" %)**Information** 905 905 906 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink833 +AT+FDR : Factory Data Reset 907 907 908 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1835 +AT+PWORD : Serial Access Password 909 909 910 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 911 911 912 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 913 913 914 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1839 += 5. FAQ = 915 915 916 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2841 +== 5.1 How to Upgrade Firmware == 917 917 918 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 919 919 920 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 925 - 926 - 927 -(% style="color:#037691" %)**Information** 928 - 929 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 930 - 931 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 932 - 933 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 934 - 935 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 936 - 937 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 938 - 939 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 940 - 941 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 942 - 943 - 944 -= 4. FAQ = 945 - 946 -== 4.1 How to change the LoRa Frequency Bands/Region? == 947 - 948 948 ((( 949 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 950 -When downloading the images, choose the required image file for download. 845 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 951 951 ))) 952 952 953 953 ((( 954 - 849 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 955 955 ))) 956 956 957 957 ((( 958 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.853 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 959 959 ))) 960 960 961 -((( 962 - 963 -))) 964 964 965 -((( 966 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 967 -))) 968 968 969 -((( 970 - 971 -))) 858 +== 5.2 Can I calibrate NSE01 to different soil types? == 972 972 973 973 ((( 974 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.861 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 975 975 ))) 976 976 977 -[[image:image-20220606154726-3.png]] 978 978 865 += 6. Trouble Shooting = 979 979 980 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:867 +== 6.1 Connection problem when uploading firmware == 981 981 982 -* 903.9 - SF7BW125 to SF10BW125 983 -* 904.1 - SF7BW125 to SF10BW125 984 -* 904.3 - SF7BW125 to SF10BW125 985 -* 904.5 - SF7BW125 to SF10BW125 986 -* 904.7 - SF7BW125 to SF10BW125 987 -* 904.9 - SF7BW125 to SF10BW125 988 -* 905.1 - SF7BW125 to SF10BW125 989 -* 905.3 - SF7BW125 to SF10BW125 990 -* 904.6 - SF8BW500 991 991 992 992 ((( 993 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 994 - 995 -* (% style="color:#037691" %)**AT+CHE=2** 996 -* (% style="color:#037691" %)**ATZ** 871 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 997 997 ))) 998 998 874 +(% class="wikigeneratedid" %) 999 999 ((( 1000 1000 1001 - 1002 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1003 1003 ))) 1004 1004 1005 -((( 1006 - 1007 -))) 1008 1008 1009 -((( 1010 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1011 -))) 880 +== 6.2 AT Command input doesn't work == 1012 1012 1013 -[[image:image-20220606154825-4.png]] 1014 - 1015 - 1016 -== 4.2 Can I calibrate LSE01 to different soil types? == 1017 - 1018 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1019 - 1020 - 1021 -= 5. Trouble Shooting = 1022 - 1023 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1024 - 1025 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1026 - 1027 - 1028 -== 5.2 AT Command input doesn’t work == 1029 - 1030 1030 ((( 1031 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1032 -))) 883 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1033 1033 1034 - 1035 -== 5.3 Device rejoin in at the second uplink packet == 1036 - 1037 -(% style="color:#4f81bd" %)**Issue describe as below:** 1038 - 1039 -[[image:1654500909990-784.png]] 1040 - 1041 - 1042 -(% style="color:#4f81bd" %)**Cause for this issue:** 1043 - 1044 -((( 1045 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 885 + 1046 1046 ))) 1047 1047 1048 1048 1049 - (% style="color:#4f81bd"%)**Solution:**889 += 7. Order Info = 1050 1050 1051 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1052 1052 1053 - [[image:1654500929571-736.png||height="458" width="832"]]892 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1054 1054 1055 1055 1056 -= 6. Order Info = 1057 - 1058 - 1059 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1060 - 1061 - 1062 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1063 - 1064 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1065 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1066 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1067 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1068 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1069 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1070 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1071 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1072 - 1073 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1074 - 1075 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1076 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1077 - 1078 1078 (% class="wikigeneratedid" %) 1079 1079 ((( 1080 1080 1081 1081 ))) 1082 1082 1083 -= 7. Packing Info =900 += 8. Packing Info = 1084 1084 1085 1085 ((( 1086 1086 1087 1087 1088 1088 (% style="color:#037691" %)**Package Includes**: 1089 -))) 1090 1090 1091 -* (((1092 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1907 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 908 +* External antenna x 1 1093 1093 ))) 1094 1094 1095 1095 ((( ... ... @@ -1096,24 +1096,19 @@ 1096 1096 1097 1097 1098 1098 (% style="color:#037691" %)**Dimension and weight**: 1099 -))) 1100 1100 1101 -* (((1102 - DeviceSize:cm916 +* Size: 195 x 125 x 55 mm 917 +* Weight: 420g 1103 1103 ))) 1104 -* ((( 1105 -Device Weight: g 1106 -))) 1107 -* ((( 1108 -Package Size / pcs : cm 1109 -))) 1110 -* ((( 1111 -Weight / pcs : g 1112 1112 920 +((( 1113 1113 922 + 923 + 924 + 1114 1114 ))) 1115 1115 1116 -= 8. Support =927 += 9. Support = 1117 1117 1118 1118 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1119 1119 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +83.8 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +61.9 KB - Content