Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 30 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,774 +20,709 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 16 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 42 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 71 71 72 72 73 -== 1.3 Specification == 60 +== 1.3 Specification == 74 74 75 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 76 76 77 - [[image:image-20220606162220-5.png]]63 +(% style="color:#037691" %)**Common DC Characteristics:** 78 78 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 79 79 68 +(% style="color:#037691" %)**NB-IoT Spec:** 80 80 81 -== 1.4 Applications == 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 82 82 83 -* Smart Agriculture 84 84 85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 86 - 78 +(% style="color:#037691" %)**Battery:** 87 87 88 -== 1.5 Firmware Change log == 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 89 89 90 90 91 - **LSE01v1.0 :**Release87 +(% style="color:#037691" %)**Power Consumption** 92 92 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 93 93 94 94 95 -= 2. Configure LSE01 to connect to LoRaWAN network = 96 96 97 -== 2.1 How it works == 98 98 99 -((( 100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 101 -))) 95 +== 1.4 Applications == 102 102 103 -((( 104 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 105 -))) 97 +* Smart Agriculture 106 106 99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 + 107 107 102 +== 1.5 Pin Definitions == 108 108 109 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 110 110 111 - Following is an example for how to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.105 +[[image:1657246476176-652.png]] 112 112 113 113 114 -[[image:1654503992078-669.png]] 115 115 109 += 2. Use NSE01 to communicate with IoT Server = 116 116 117 - TheLG308is already set toconnected to [[TTN network>>url:https://console.cloud.thethings.network/]],sowhat we need to now is configure the TTN server.111 +== 2.1 How it works == 118 118 119 119 120 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 121 - 122 -Each LSE01 is shipped with a sticker with the default device EUI as below: 123 - 124 -[[image:image-20220606163732-6.jpeg]] 125 - 126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 - 128 -**Add APP EUI in the application** 129 - 130 - 131 -[[image:1654504596150-405.png]] 132 - 133 - 134 - 135 -**Add APP KEY and DEV EUI** 136 - 137 -[[image:1654504683289-357.png]] 138 - 139 - 140 - 141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 142 - 143 - 144 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 145 - 146 -[[image:image-20220606163915-7.png]] 147 - 148 - 149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 - 151 -[[image:1654504778294-788.png]] 152 - 153 - 154 - 155 -== 2.3 Uplink Payload == 156 - 157 - 158 -=== 2.3.1 MOD~=0(Default Mode) === 159 - 160 -LSE01 will uplink payload via LoRaWAN with below payload format: 161 - 162 162 ((( 163 - Uplinkpayload includesin total11bytes.115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 164 164 ))) 165 165 166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 -|((( 168 -**Size** 169 169 170 -**(bytes)** 171 -)))|**2**|**2**|**2**|**2**|**2**|**1** 172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 -Temperature 174 - 175 -(Reserve, Ignore now) 176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 -MOD & Digital Interrupt 178 - 179 -(Optional) 180 -))) 181 - 182 - 183 - 184 -=== 2.3.2 MOD~=1(Original value) === 185 - 186 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 187 - 188 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 189 -|((( 190 -**Size** 191 - 192 -**(bytes)** 193 -)))|**2**|**2**|**2**|**2**|**2**|**1** 194 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 195 -Temperature 196 - 197 -(Reserve, Ignore now) 198 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 199 -MOD & Digital Interrupt 200 - 201 -(Optional) 202 -))) 203 - 204 - 205 - 206 -=== 2.3.3 Battery Info === 207 - 208 208 ((( 209 - CheckthebatteryvoltageforLSE01.120 +The diagram below shows the working flow in default firmware of NSE01: 210 210 ))) 211 211 212 -((( 213 -Ex1: 0x0B45 = 2885mV 214 -))) 123 +[[image:image-20220708101605-2.png]] 215 215 216 216 ((( 217 -Ex2: 0x0B49 = 2889mV 218 -))) 219 - 220 - 221 - 222 -=== 2.3.4 Soil Moisture === 223 - 224 -((( 225 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 226 -))) 227 - 228 -((( 229 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 230 -))) 231 - 232 -((( 233 233 234 234 ))) 235 235 236 -((( 237 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 238 -))) 239 239 240 240 131 +== 2.2 Configure the NSE01 == 241 241 242 -=== 2.3.5 Soil Temperature === 243 243 244 -((( 245 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 246 -))) 134 +=== 2.2.1 Test Requirement === 247 247 248 -((( 249 -**Example**: 250 -))) 251 251 252 252 ((( 253 - If payloadis 0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100 = 2.61 °C138 +To use NSE01 in your city, make sure meet below requirements: 254 254 ))) 255 255 256 - (((257 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C258 - )))141 +* Your local operator has already distributed a NB-IoT Network there. 142 +* The local NB-IoT network used the band that NSE01 supports. 143 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 259 259 260 - 261 - 262 -=== 2.3.6 Soil Conductivity (EC) === 263 - 264 264 ((( 265 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).146 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 266 266 ))) 267 267 268 -((( 269 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 270 -))) 271 271 272 -((( 273 -Generally, the EC value of irrigation water is less than 800uS / cm. 274 -))) 150 +[[image:1657249419225-449.png]] 275 275 276 -((( 277 - 278 -))) 279 279 280 -((( 281 - 282 -))) 283 283 284 -=== 2. 3.7MOD===154 +=== 2.2.2 Insert SIM card === 285 285 286 -Firmware version at least v2.1 supports changing mode. 287 - 288 -For example, bytes[10]=90 289 - 290 -mod=(bytes[10]>>7)&0x01=1. 291 - 292 - 293 -**Downlink Command:** 294 - 295 -If payload = 0x0A00, workmode=0 296 - 297 -If** **payload =** **0x0A01, workmode=1 298 - 299 - 300 - 301 -=== 2.3.8 Decode payload in The Things Network === 302 - 303 -While using TTN network, you can add the payload format to decode the payload. 304 - 305 - 306 -[[image:1654505570700-128.png]] 307 - 308 308 ((( 309 - ThepayloaddecoderfunctionforTTNis here:157 +Insert the NB-IoT Card get from your provider. 310 310 ))) 311 311 312 312 ((( 313 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]161 +User need to take out the NB-IoT module and insert the SIM card like below: 314 314 ))) 315 315 316 316 317 - ==2.4Uplink Interval ==165 +[[image:1657249468462-536.png]] 318 318 319 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 320 320 321 321 169 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 322 322 323 -== 2.5 Downlink Payload == 324 - 325 -By default, LSE50 prints the downlink payload to console port. 326 - 327 -[[image:image-20220606165544-8.png]] 328 - 329 - 330 330 ((( 331 -**Examples:** 332 -))) 333 - 334 334 ((( 335 - 173 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 336 336 ))) 337 - 338 -* ((( 339 -**Set TDC** 340 340 ))) 341 341 342 -((( 343 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 344 -))) 345 345 346 -((( 347 -Payload: 01 00 00 1E TDC=30S 348 -))) 178 +**Connection:** 349 349 350 -((( 351 -Payload: 01 00 00 3C TDC=60S 352 -))) 180 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 353 353 354 -((( 355 - 356 -))) 182 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 357 357 358 -* ((( 359 -**Reset** 360 -))) 184 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 361 361 362 -((( 363 -If payload = 0x04FF, it will reset the LSE01 364 -))) 365 365 187 +In the PC, use below serial tool settings: 366 366 367 -* **CFM** 189 +* Baud: (% style="color:green" %)**9600** 190 +* Data bits:** (% style="color:green" %)8(%%)** 191 +* Stop bits: (% style="color:green" %)**1** 192 +* Parity: (% style="color:green" %)**None** 193 +* Flow Control: (% style="color:green" %)**None** 368 368 369 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 370 - 371 - 372 - 373 -== 2.6 Show Data in DataCake IoT Server == 374 - 375 375 ((( 376 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:196 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 377 377 ))) 378 378 379 -((( 380 - 381 -))) 199 +[[image:image-20220708110657-3.png]] 382 382 383 383 ((( 384 -(% style="color: blue" %)**Step 1**(%%):Be surethat your deviceisprogrammed and properlyconnectedtothe networkat thistime.202 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 385 385 ))) 386 386 387 -((( 388 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 389 -))) 390 390 391 391 392 - [[image:1654505857935-743.png]]207 +=== 2.2.4 Use CoAP protocol to uplink data === 393 393 209 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 394 394 395 -[[image:1654505874829-548.png]] 396 396 212 +**Use below commands:** 397 397 398 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 214 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 215 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 216 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 399 399 400 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01andadd DevEUI.218 +For parameter description, please refer to AT command set 401 401 220 +[[image:1657249793983-486.png]] 402 402 403 -[[image:1654505905236-553.png]] 404 404 223 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 405 405 406 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.225 +[[image:1657249831934-534.png]] 407 407 408 -[[image:1654505925508-181.png]] 409 409 410 410 229 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 411 411 412 - ==2.7 FrequencyPlans==231 +This feature is supported since firmware version v1.0.1 413 413 414 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 415 415 234 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 236 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 416 416 417 - === 2.7.1EU863-870 (EU868) ===238 +[[image:1657249864775-321.png]] 418 418 419 -(% style="color:#037691" %)** Uplink:** 420 420 421 - 868.1- SF7BW125 to SF12BW125241 +[[image:1657249930215-289.png]] 422 422 423 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 424 424 425 -868.5 - SF7BW125 to SF12BW125 426 426 427 - 867.1-SF7BW125toSF12BW125245 +=== 2.2.6 Use MQTT protocol to uplink data === 428 428 429 - 867.3-SF7BW125toSF12BW125247 +This feature is supported since firmware version v110 430 430 431 -867.5 - SF7BW125 to SF12BW125 432 432 433 -867.7 - SF7BW125 to SF12BW125 250 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 251 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 252 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 253 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 254 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 255 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 256 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 434 434 435 - 867.9SF7BW125 to SF12BW125258 +[[image:1657249978444-674.png]] 436 436 437 -868.8 - FSK 438 438 261 +[[image:1657249990869-686.png]] 439 439 440 -(% style="color:#037691" %)** Downlink:** 441 441 442 -Uplink channels 1-9 (RX1) 264 +((( 265 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 266 +))) 443 443 444 -869.525 - SF9BW125 (RX2 downlink only) 445 445 446 446 270 +=== 2.2.7 Use TCP protocol to uplink data === 447 447 448 - ===2.7.2US902-928(US915)===272 +This feature is supported since firmware version v110 449 449 450 -Used in USA, Canada and South America. Default use CHE=2 451 451 452 -(% style="color:#037691" %)**Uplink:** 275 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 276 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 453 453 454 - 903.9 - SF7BW125to SF10BW125278 +[[image:1657250217799-140.png]] 455 455 456 -904.1 - SF7BW125 to SF10BW125 457 457 458 - 904.3 - SF7BW125to SF10BW125281 +[[image:1657250255956-604.png]] 459 459 460 -904.5 - SF7BW125 to SF10BW125 461 461 462 -904.7 - SF7BW125 to SF10BW125 463 463 464 - 904.9-SF7BW125toSF10BW125285 +=== 2.2.8 Change Update Interval === 465 465 466 - 905.1-SF7BW125toSF10BW125287 +User can use below command to change the (% style="color:green" %)**uplink interval**. 467 467 468 - 905.3-SF7BW125toSF10BW125289 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 469 469 291 +((( 292 +(% style="color:red" %)**NOTE:** 293 +))) 470 470 471 -(% style="color:#037691" %)**Downlink:** 295 +((( 296 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 297 +))) 472 472 473 -923.3 - SF7BW500 to SF12BW500 474 474 475 -923.9 - SF7BW500 to SF12BW500 476 476 477 - 924.5-SF7BW500 toSF12BW500301 +== 2.3 Uplink Payload == 478 478 479 - 925.1-SF7BW500toSF12BW500303 +In this mode, uplink payload includes in total 18 bytes 480 480 481 -925.7 - SF7BW500 to SF12BW500 305 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 306 +|=(% style="width: 60px;" %)((( 307 +**Size(bytes)** 308 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 309 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 482 482 483 -926.3 - SF7BW500 to SF12BW500 311 +((( 312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 313 +))) 484 484 485 -926.9 - SF7BW500 to SF12BW500 486 486 487 - 927.5-SF7BW500 to SF12BW500316 +[[image:image-20220708111918-4.png]] 488 488 489 -923.3 - SF12BW500(RX2 downlink only) 490 490 319 +The payload is ASCII string, representative same HEX: 491 491 321 +0x72403155615900640c7817075e0a8c02f900 where: 492 492 493 -=== 2.7.3 CN470-510 (CN470) === 323 +* Device ID: 0x 724031556159 = 724031556159 324 +* Version: 0x0064=100=1.0.0 494 494 495 -Used in China, Default use CHE=1 326 +* BAT: 0x0c78 = 3192 mV = 3.192V 327 +* Singal: 0x17 = 23 328 +* Soil Moisture: 0x075e= 1886 = 18.86 % 329 +* Soil Temperature:0x0a8c =2700=27 °C 330 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 331 +* Interrupt: 0x00 = 0 496 496 497 - (%style="color:#037691"%)**Uplink:**333 +== 2.4 Payload Explanation and Sensor Interface == 498 498 499 -486.3 - SF7BW125 to SF12BW125 500 500 501 -4 86.5 - SF7BW125toSF12BW125336 +=== 2.4.1 Device ID === 502 502 503 -486.7 - SF7BW125 to SF12BW125 338 +((( 339 +By default, the Device ID equal to the last 6 bytes of IMEI. 340 +))) 504 504 505 -486.9 - SF7BW125 to SF12BW125 342 +((( 343 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 344 +))) 506 506 507 -487.1 - SF7BW125 to SF12BW125 346 +((( 347 +**Example:** 348 +))) 508 508 509 -487.3 - SF7BW125 to SF12BW125 350 +((( 351 +AT+DEUI=A84041F15612 352 +))) 510 510 511 -487.5 - SF7BW125 to SF12BW125 354 +((( 355 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 356 +))) 512 512 513 -487.7 - SF7BW125 to SF12BW125 514 514 515 515 516 - (%style="color:#037691" %)**Downlink:**360 +=== 2.4.2 Version Info === 517 517 518 -506.7 - SF7BW125 to SF12BW125 362 +((( 363 +Specify the software version: 0x64=100, means firmware version 1.00. 364 +))) 519 519 520 -506.9 - SF7BW125 to SF12BW125 366 +((( 367 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 368 +))) 521 521 522 -507.1 - SF7BW125 to SF12BW125 523 523 524 -507.3 - SF7BW125 to SF12BW125 525 525 526 - 507.5- SF7BW125toSF12BW125372 +=== 2.4.3 Battery Info === 527 527 528 -507.7 - SF7BW125 to SF12BW125 374 +((( 375 +Check the battery voltage for LSE01. 376 +))) 529 529 530 -507.9 - SF7BW125 to SF12BW125 378 +((( 379 +Ex1: 0x0B45 = 2885mV 380 +))) 531 531 532 -508.1 - SF7BW125 to SF12BW125 382 +((( 383 +Ex2: 0x0B49 = 2889mV 384 +))) 533 533 534 -505.3 - SF12BW125 (RX2 downlink only) 535 535 536 536 388 +=== 2.4.4 Signal Strength === 537 537 538 -=== 2.7.4 AU915-928(AU915) === 390 +((( 391 +NB-IoT Network signal Strength. 392 +))) 539 539 540 -Default use CHE=2 394 +((( 395 +**Ex1: 0x1d = 29** 396 +))) 541 541 542 -(% style="color:#037691" %)**Uplink:** 398 +((( 399 +(% style="color:blue" %)**0**(%%) -113dBm or less 400 +))) 543 543 544 -916.8 - SF7BW125 to SF12BW125 402 +((( 403 +(% style="color:blue" %)**1**(%%) -111dBm 404 +))) 545 545 546 -917.0 - SF7BW125 to SF12BW125 406 +((( 407 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 408 +))) 547 547 548 -917.2 - SF7BW125 to SF12BW125 410 +((( 411 +(% style="color:blue" %)**31** (%%) -51dBm or greater 412 +))) 549 549 550 -917.4 - SF7BW125 to SF12BW125 414 +((( 415 +(% style="color:blue" %)**99** (%%) Not known or not detectable 416 +))) 551 551 552 -917.6 - SF7BW125 to SF12BW125 553 553 554 -917.8 - SF7BW125 to SF12BW125 555 555 556 - 918.0- SF7BW125toSF12BW125420 +=== 2.4.5 Soil Moisture === 557 557 558 -918.2 - SF7BW125 to SF12BW125 422 +((( 423 +((( 424 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 425 +))) 426 +))) 559 559 428 +((( 429 +((( 430 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 431 +))) 432 +))) 560 560 561 -(% style="color:#037691" %)**Downlink:** 434 +((( 435 + 436 +))) 562 562 563 -923.3 - SF7BW500 to SF12BW500 438 +((( 439 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 440 +))) 564 564 565 -923.9 - SF7BW500 to SF12BW500 566 566 567 -924.5 - SF7BW500 to SF12BW500 568 568 569 - 925.1-SF7BW500toSF12BW500444 +=== 2.4.6 Soil Temperature === 570 570 571 -925.7 - SF7BW500 to SF12BW500 446 +((( 447 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 448 +))) 572 572 573 -926.3 - SF7BW500 to SF12BW500 450 +((( 451 +**Example**: 452 +))) 574 574 575 -926.9 - SF7BW500 to SF12BW500 454 +((( 455 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 456 +))) 576 576 577 -927.5 - SF7BW500 to SF12BW500 458 +((( 459 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 460 +))) 578 578 579 -923.3 - SF12BW500(RX2 downlink only) 580 580 581 581 464 +=== 2.4.7 Soil Conductivity (EC) === 582 582 583 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 466 +((( 467 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 468 +))) 584 584 585 -(% style="color:#037691" %)**Default Uplink channel:** 470 +((( 471 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 472 +))) 586 586 587 -923.2 - SF7BW125 to SF10BW125 474 +((( 475 +Generally, the EC value of irrigation water is less than 800uS / cm. 476 +))) 588 588 589 -923.4 - SF7BW125 to SF10BW125 478 +((( 479 + 480 +))) 590 590 482 +((( 483 + 484 +))) 591 591 592 - (% style="color:#037691"%)**AdditionalUplink Channel**:486 +=== 2.4.8 Digital Interrupt === 593 593 594 -(OTAA mode, channel added by JoinAccept message) 488 +((( 489 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 490 +))) 595 595 596 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 492 +((( 493 +The command is: 494 +))) 597 597 598 -922.2 - SF7BW125 to SF10BW125 496 +((( 497 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 498 +))) 599 599 600 -922.4 - SF7BW125 to SF10BW125 601 601 602 -922.6 - SF7BW125 to SF10BW125 501 +((( 502 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 503 +))) 603 603 604 -922.8 - SF7BW125 to SF10BW125 605 605 606 -923.0 - SF7BW125 to SF10BW125 506 +((( 507 +Example: 508 +))) 607 607 608 -922.0 - SF7BW125 to SF10BW125 510 +((( 511 +0x(00): Normal uplink packet. 512 +))) 609 609 514 +((( 515 +0x(01): Interrupt Uplink Packet. 516 +))) 610 610 611 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 612 612 613 -923.6 - SF7BW125 to SF10BW125 614 614 615 - 923.8- SF7BW125 toSF10BW125520 +=== 2.4.9 +5V Output === 616 616 617 -924.0 - SF7BW125 to SF10BW125 522 +((( 523 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 524 +))) 618 618 619 -924.2 - SF7BW125 to SF10BW125 620 620 621 -924.4 - SF7BW125 to SF10BW125 527 +((( 528 +The 5V output time can be controlled by AT Command. 529 +))) 622 622 623 -924.6 - SF7BW125 to SF10BW125 531 +((( 532 +(% style="color:blue" %)**AT+5VT=1000** 533 +))) 624 624 535 +((( 536 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 537 +))) 625 625 626 -(% style="color:#037691" %)** Downlink:** 627 627 628 -Uplink channels 1-8 (RX1) 629 629 630 - 923.2-SF10BW125(RX2)541 +== 2.5 Downlink Payload == 631 631 543 +By default, NSE01 prints the downlink payload to console port. 632 632 545 +[[image:image-20220708133731-5.png]] 633 633 634 -=== 2.7.6 KR920-923 (KR920) === 635 635 636 -Default channel: 548 +((( 549 +(% style="color:blue" %)**Examples:** 550 +))) 637 637 638 -922.1 - SF7BW125 to SF12BW125 552 +((( 553 + 554 +))) 639 639 640 -922.3 - SF7BW125 to SF12BW125 556 +* ((( 557 +(% style="color:blue" %)**Set TDC** 558 +))) 641 641 642 -922.5 - SF7BW125 to SF12BW125 560 +((( 561 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 562 +))) 643 643 564 +((( 565 +Payload: 01 00 00 1E TDC=30S 566 +))) 644 644 645 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 568 +((( 569 +Payload: 01 00 00 3C TDC=60S 570 +))) 646 646 647 -922.1 - SF7BW125 to SF12BW125 572 +((( 573 + 574 +))) 648 648 649 -922.3 - SF7BW125 to SF12BW125 576 +* ((( 577 +(% style="color:blue" %)**Reset** 578 +))) 650 650 651 -922.5 - SF7BW125 to SF12BW125 580 +((( 581 +If payload = 0x04FF, it will reset the NSE01 582 +))) 652 652 653 -922.7 - SF7BW125 to SF12BW125 654 654 655 - 922.9-SF7BW125toSF12BW125585 +* (% style="color:blue" %)**INTMOD** 656 656 657 -923.1 - SF7BW125 to SF12BW125 587 +((( 588 +Downlink Payload: 06000003, Set AT+INTMOD=3 589 +))) 658 658 659 -923.3 - SF7BW125 to SF12BW125 660 660 661 661 662 - (% style="color:#037691"%)**Downlink:**593 +== 2.6 LED Indicator == 663 663 664 -Uplink channels 1-7(RX1) 595 +((( 596 +The NSE01 has an internal LED which is to show the status of different state. 665 665 666 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 667 667 599 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 600 +* Then the LED will be on for 1 second means device is boot normally. 601 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 602 +* For each uplink probe, LED will be on for 500ms. 603 +))) 668 668 669 669 670 -=== 2.7.7 IN865-867 (IN865) === 671 671 672 -(% style="color:#037691" %)** Uplink:** 673 673 674 - 865.0625- SF7BW125to SF12BW125608 +== 2.7 Installation in Soil == 675 675 676 - 865.4025- SF7BW125toSF12BW125610 +__**Measurement the soil surface**__ 677 677 678 -865.9850 - SF7BW125 to SF12BW125 612 +((( 613 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 614 +))) 679 679 616 +[[image:1657259653666-883.png]] 680 680 681 -(% style="color:#037691" %) **Downlink:** 682 682 683 -Uplink channels 1-3 (RX1) 619 +((( 620 + 684 684 685 -866.550 - SF10BW125 (RX2) 622 +((( 623 +Dig a hole with diameter > 20CM. 624 +))) 686 686 626 +((( 627 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 628 +))) 629 +))) 687 687 631 +[[image:1654506665940-119.png]] 688 688 633 +((( 634 + 635 +))) 689 689 690 -== 2.8 LED Indicator == 691 691 692 - TheLSE01has aninternal LEDwhich is to show the status of differentstate.638 +== 2.8 Firmware Change Log == 693 693 694 -* Blink once when device power on. 695 -* Solid ON for 5 seconds once device successful Join the network. 696 -* Blink once when device transmit a packet. 697 697 641 +Download URL & Firmware Change log 698 698 643 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 699 699 700 -== 2.9 Installation in Soil == 701 701 702 - **Measurement the soil surface**646 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 703 703 704 704 705 -[[image:1654506634463-199.png]] 706 706 707 -((( 708 -((( 709 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 710 -))) 711 -))) 650 +== 2.9 Battery Analysis == 712 712 652 +=== 2.9.1 Battery Type === 713 713 714 714 715 -[[image:1654506665940-119.png]] 716 - 717 717 ((( 718 - Diga hole with diameter>20CM.656 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 719 719 ))) 720 720 659 + 721 721 ((( 722 - Horizontalinserttheprobe to thesoil andfilltheholeforlong termmeasurement.661 +The battery is designed to last for several years depends on the actually use environment and update interval. 723 723 ))) 724 724 725 725 726 -== 2.10 Firmware Change Log == 727 - 728 728 ((( 729 - **Firmware downloadlink:**666 +The battery related documents as below: 730 730 ))) 731 731 732 - (((733 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]734 - )))669 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 670 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 735 735 736 736 ((( 737 - 674 +[[image:image-20220708140453-6.png]] 738 738 ))) 739 739 740 -((( 741 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 742 -))) 743 743 744 -((( 745 - 746 -))) 747 747 748 -((( 749 -**V1.0.** 750 -))) 679 +=== 2.9.2 Power consumption Analyze === 751 751 752 752 ((( 753 - Release682 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 754 754 ))) 755 755 756 756 757 -== 2.11 Battery Analysis == 758 - 759 -=== 2.11.1 Battery Type === 760 - 761 761 ((( 762 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.687 +Instruction to use as below: 763 763 ))) 764 764 765 765 ((( 766 - Thebatterys designedlastforrethan5 years fortheSN50.691 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 767 767 ))) 768 768 694 + 769 769 ((( 770 -((( 771 -The battery-related documents are as below: 696 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 772 772 ))) 773 -))) 774 774 775 775 * ((( 776 - [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],700 +Product Model 777 777 ))) 778 778 * ((( 779 - [[Lithium-ThionylChloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],703 +Uplink Interval 780 780 ))) 781 781 * ((( 782 - [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]706 +Working Mode 783 783 ))) 784 784 785 - [[image:image-20220610172436-1.png]] 709 +((( 710 +And the Life expectation in difference case will be shown on the right. 711 +))) 786 786 713 +[[image:image-20220708141352-7.jpeg]] 787 787 788 788 789 -=== 2.11.2 Battery Note === 790 790 717 +=== 2.9.3 Battery Note === 718 + 791 791 ((( 792 792 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 793 793 ))) ... ... @@ -794,302 +794,176 @@ 794 794 795 795 796 796 797 -=== 2. 11.3Replace the battery ===725 +=== 2.9.4 Replace the battery === 798 798 799 799 ((( 800 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.728 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 801 801 ))) 802 802 731 + 732 + 733 += 3. Access NB-IoT Module = 734 + 803 803 ((( 804 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.736 +Users can directly access the AT command set of the NB-IoT module. 805 805 ))) 806 806 807 807 ((( 808 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)740 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 809 809 ))) 810 810 743 +[[image:1657261278785-153.png]] 811 811 812 812 813 -= 3. Using the AT Commands = 814 814 815 -= =3.1AccessAT Commands ==747 += 4. Using the AT Commands = 816 816 749 +== 4.1 Access AT Commands == 817 817 818 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.751 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 819 819 820 -[[image:1654501986557-872.png||height="391" width="800"]] 821 821 754 +AT+<CMD>? : Help on <CMD> 822 822 823 - Orifyouhavebelowboard,usebelowconnection:756 +AT+<CMD> : Run <CMD> 824 824 758 +AT+<CMD>=<value> : Set the value 825 825 826 - [[image:1654502005655-729.png||height="503"width="801"]]760 +AT+<CMD>=? : Get the value 827 827 828 828 829 - 830 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 831 - 832 - 833 - [[image:1654502050864-459.png||height="564" width="806"]] 834 - 835 - 836 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 837 - 838 - 839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 840 - 841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 842 - 843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 844 - 845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 846 - 847 - 848 848 (% style="color:#037691" %)**General Commands**(%%) 849 849 850 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention765 +AT : Attention 851 851 852 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help767 +AT? : Short Help 853 853 854 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset769 +ATZ : MCU Reset 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval771 +AT+TDC : Application Data Transmission Interval 857 857 773 +AT+CFG : Print all configurations 858 858 859 - (%style="color:#037691"%)**Keys,IDsand EUIs management**775 +AT+CFGMOD : Working mode selection 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI777 +AT+INTMOD : Set the trigger interrupt mode 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey779 +AT+5VT : Set extend the time of 5V power 864 864 865 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key781 +AT+PRO : Choose agreement 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress783 +AT+WEIGRE : Get weight or set weight to 0 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI785 +AT+WEIGAP : Get or Set the GapValue of weight 870 870 871 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)787 +AT+RXDL : Extend the sending and receiving time 872 872 873 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network789 +AT+CNTFAC : Get or set counting parameters 874 874 875 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode791 +AT+SERVADDR : Server Address 876 876 877 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 878 878 879 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network794 +(% style="color:#037691" %)**COAP Management** 880 880 881 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode796 +AT+URI : Resource parameters 882 882 883 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 884 884 885 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format799 +(% style="color:#037691" %)**UDP Management** 886 886 887 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat801 +AT+CFM : Upload confirmation mode (only valid for UDP) 888 888 889 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 890 890 891 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data804 +(% style="color:#037691" %)**MQTT Management** 892 892 806 +AT+CLIENT : Get or Set MQTT client 893 893 894 - (%style="color:#037691"%)**LoRaNetworkManagement**808 +AT+UNAME : Get or Set MQTT Username 895 895 896 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate810 +AT+PWD : Get or Set MQTT password 897 897 898 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA812 +AT+PUBTOPIC : Get or Set MQTT publish topic 899 899 900 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting814 +AT+SUBTOPIC : Get or Set MQTT subscription topic 901 901 902 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 903 903 904 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink817 +(% style="color:#037691" %)**Information** 905 905 906 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink819 +AT+FDR : Factory Data Reset 907 907 908 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1821 +AT+PWORD : Serial Access Password 909 909 910 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 911 911 912 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 913 913 914 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1825 += 5. FAQ = 915 915 916 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2827 +== 5.1 How to Upgrade Firmware == 917 917 918 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 919 919 920 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 925 - 926 - 927 -(% style="color:#037691" %)**Information** 928 - 929 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 930 - 931 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 932 - 933 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 934 - 935 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 936 - 937 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 938 - 939 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 940 - 941 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 942 - 943 - 944 -= 4. FAQ = 945 - 946 -== 4.1 How to change the LoRa Frequency Bands/Region? == 947 - 948 948 ((( 949 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 950 -When downloading the images, choose the required image file for download. 831 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 951 951 ))) 952 952 953 953 ((( 954 - 835 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 955 955 ))) 956 956 957 957 ((( 958 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.839 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 959 959 ))) 960 960 961 -((( 962 - 963 -))) 964 964 965 -((( 966 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 967 -))) 968 968 969 -((( 970 - 971 -))) 844 +== 5.2 Can I calibrate NSE01 to different soil types? == 972 972 973 973 ((( 974 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.847 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 975 975 ))) 976 976 977 -[[image:image-20220606154726-3.png]] 978 978 851 += 6. Trouble Shooting = 979 979 980 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:853 +== 6.1 Connection problem when uploading firmware == 981 981 982 -* 903.9 - SF7BW125 to SF10BW125 983 -* 904.1 - SF7BW125 to SF10BW125 984 -* 904.3 - SF7BW125 to SF10BW125 985 -* 904.5 - SF7BW125 to SF10BW125 986 -* 904.7 - SF7BW125 to SF10BW125 987 -* 904.9 - SF7BW125 to SF10BW125 988 -* 905.1 - SF7BW125 to SF10BW125 989 -* 905.3 - SF7BW125 to SF10BW125 990 -* 904.6 - SF8BW500 991 991 992 992 ((( 993 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 994 - 995 -* (% style="color:#037691" %)**AT+CHE=2** 996 -* (% style="color:#037691" %)**ATZ** 857 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 997 997 ))) 998 998 860 +(% class="wikigeneratedid" %) 999 999 ((( 1000 1000 1001 - 1002 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1003 1003 ))) 1004 1004 1005 -((( 1006 - 1007 -))) 1008 1008 1009 -((( 1010 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1011 -))) 866 +== 6.2 AT Command input doesn't work == 1012 1012 1013 -[[image:image-20220606154825-4.png]] 1014 - 1015 - 1016 -== 4.2 Can I calibrate LSE01 to different soil types? == 1017 - 1018 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1019 - 1020 - 1021 -= 5. Trouble Shooting = 1022 - 1023 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1024 - 1025 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1026 - 1027 - 1028 -== 5.2 AT Command input doesn’t work == 1029 - 1030 1030 ((( 1031 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1032 -))) 869 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1033 1033 1034 - 1035 -== 5.3 Device rejoin in at the second uplink packet == 1036 - 1037 -(% style="color:#4f81bd" %)**Issue describe as below:** 1038 - 1039 -[[image:1654500909990-784.png]] 1040 - 1041 - 1042 -(% style="color:#4f81bd" %)**Cause for this issue:** 1043 - 1044 -((( 1045 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 871 + 1046 1046 ))) 1047 1047 1048 1048 1049 - (% style="color:#4f81bd"%)**Solution:**875 += 7. Order Info = 1050 1050 1051 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1052 1052 1053 - [[image:1654500929571-736.png||height="458" width="832"]]878 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1054 1054 1055 1055 1056 -= 6. Order Info = 1057 - 1058 - 1059 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1060 - 1061 - 1062 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1063 - 1064 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1065 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1066 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1067 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1068 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1069 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1070 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1071 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1072 - 1073 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1074 - 1075 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1076 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1077 - 1078 1078 (% class="wikigeneratedid" %) 1079 1079 ((( 1080 1080 1081 1081 ))) 1082 1082 1083 -= 7. Packing Info =886 += 8. Packing Info = 1084 1084 1085 1085 ((( 1086 1086 1087 1087 1088 1088 (% style="color:#037691" %)**Package Includes**: 1089 -))) 1090 1090 1091 -* (((1092 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1893 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 894 +* External antenna x 1 1093 1093 ))) 1094 1094 1095 1095 ((( ... ... @@ -1096,24 +1096,19 @@ 1096 1096 1097 1097 1098 1098 (% style="color:#037691" %)**Dimension and weight**: 1099 -))) 1100 1100 1101 -* (((1102 - DeviceSize:cm902 +* Size: 195 x 125 x 55 mm 903 +* Weight: 420g 1103 1103 ))) 1104 -* ((( 1105 -Device Weight: g 1106 -))) 1107 -* ((( 1108 -Package Size / pcs : cm 1109 -))) 1110 -* ((( 1111 -Weight / pcs : g 1112 1112 906 +((( 1113 1113 908 + 909 + 910 + 1114 1114 ))) 1115 1115 1116 -= 8. Support =913 += 9. Support = 1117 1117 1118 1118 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1119 1119 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content