Last modified by Mengting Qiu on 2024/04/02 16:44

From version 40.3
edited by Xiaoling
on 2022/06/30 10:41
Change comment: There is no comment for this version
To version 75.3
edited by Xiaoling
on 2022/07/09 08:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,19 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
... ... @@ -20,774 +20,709 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
16 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
32 -
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
35 35  )))
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
39 39  )))
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
44 -
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 -)))
48 -
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 60  * Ultra low power consumption
61 -* Monitor Soil Moisture
62 -* Monitor Soil Temperature
63 -* Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
70 70  
71 71  
72 72  
73 -== 1.3 Specification ==
60 +== 1.3  Specification ==
74 74  
75 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 76  
77 -[[image:image-20220606162220-5.png]]
63 +(% style="color:#037691" %)**Common DC Characteristics:**
78 78  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
79 79  
68 +(% style="color:#037691" %)**NB-IoT Spec:**
80 80  
81 -== ​1.4 Applications ==
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
82 82  
83 -* Smart Agriculture
84 84  
85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 -​
78 +(% style="color:#037691" %)**Battery:**
87 87  
88 -== 1.5 Firmware Change log ==
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
89 89  
90 90  
91 -**LSE01 v1.0 :**  Release
87 +(% style="color:#037691" %)**Power Consumption**
92 92  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
93 93  
94 94  
95 -= 2. Configure LSE01 to connect to LoRaWAN network =
96 96  
97 -== 2.1 How it works ==
98 98  
99 -(((
100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
101 -)))
95 +== ​1.4  Applications ==
102 102  
103 -(((
104 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
105 -)))
97 +* Smart Agriculture
106 106  
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
107 107  
102 +== 1.5  Pin Definitions ==
108 108  
109 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
110 110  
111 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
105 +[[image:1657246476176-652.png]]
112 112  
113 113  
114 -[[image:1654503992078-669.png]]
115 115  
109 += 2.  Use NSE01 to communicate with IoT Server =
116 116  
117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
111 +== 2.1  How it works ==
118 118  
119 119  
120 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
121 -
122 -Each LSE01 is shipped with a sticker with the default device EUI as below:
123 -
124 -[[image:image-20220606163732-6.jpeg]]
125 -
126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
127 -
128 -**Add APP EUI in the application**
129 -
130 -
131 -[[image:1654504596150-405.png]]
132 -
133 -
134 -
135 -**Add APP KEY and DEV EUI**
136 -
137 -[[image:1654504683289-357.png]]
138 -
139 -
140 -
141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
142 -
143 -
144 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
145 -
146 -[[image:image-20220606163915-7.png]]
147 -
148 -
149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 -
151 -[[image:1654504778294-788.png]]
152 -
153 -
154 -
155 -== 2.3 Uplink Payload ==
156 -
157 -
158 -=== 2.3.1 MOD~=0(Default Mode) ===
159 -
160 -LSE01 will uplink payload via LoRaWAN with below payload format: 
161 -
162 162  (((
163 -Uplink payload includes in total 11 bytes.
115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
164 164  )))
165 165  
166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 -|(((
168 -**Size**
169 169  
170 -**(bytes)**
171 -)))|**2**|**2**|**2**|**2**|**2**|**1**
172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 -Temperature
174 -
175 -(Reserve, Ignore now)
176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 -MOD & Digital Interrupt
178 -
179 -(Optional)
180 -)))
181 -
182 -
183 -
184 -=== 2.3.2 MOD~=1(Original value) ===
185 -
186 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
187 -
188 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
189 -|(((
190 -**Size**
191 -
192 -**(bytes)**
193 -)))|**2**|**2**|**2**|**2**|**2**|**1**
194 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
195 -Temperature
196 -
197 -(Reserve, Ignore now)
198 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
199 -MOD & Digital Interrupt
200 -
201 -(Optional)
202 -)))
203 -
204 -
205 -
206 -=== 2.3.3 Battery Info ===
207 -
208 208  (((
209 -Check the battery voltage for LSE01.
120 +The diagram below shows the working flow in default firmware of NSE01:
210 210  )))
211 211  
212 -(((
213 -Ex1: 0x0B45 = 2885mV
214 -)))
123 +[[image:image-20220708101605-2.png]]
215 215  
216 216  (((
217 -Ex2: 0x0B49 = 2889mV
218 -)))
219 -
220 -
221 -
222 -=== 2.3.4 Soil Moisture ===
223 -
224 -(((
225 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
226 -)))
227 -
228 -(((
229 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
230 -)))
231 -
232 -(((
233 233  
234 234  )))
235 235  
236 -(((
237 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
238 -)))
239 239  
240 240  
131 +== 2.2 ​ Configure the NSE01 ==
241 241  
242 -=== 2.3.5 Soil Temperature ===
243 243  
244 -(((
245 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
246 -)))
134 +=== 2.2.1 Test Requirement ===
247 247  
248 -(((
249 -**Example**:
250 -)))
251 251  
252 252  (((
253 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
138 +To use NSE01 in your city, make sure meet below requirements:
254 254  )))
255 255  
256 -(((
257 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
258 -)))
141 +* Your local operator has already distributed a NB-IoT Network there.
142 +* The local NB-IoT network used the band that NSE01 supports.
143 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
259 259  
260 -
261 -
262 -=== 2.3.6 Soil Conductivity (EC) ===
263 -
264 264  (((
265 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
146 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
266 266  )))
267 267  
268 -(((
269 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
270 -)))
271 271  
272 -(((
273 -Generally, the EC value of irrigation water is less than 800uS / cm.
274 -)))
150 +[[image:1657249419225-449.png]]
275 275  
276 -(((
277 -
278 -)))
279 279  
280 -(((
281 -
282 -)))
283 283  
284 -=== 2.3.7 MOD ===
154 +=== 2.2.2 Insert SIM card ===
285 285  
286 -Firmware version at least v2.1 supports changing mode.
287 -
288 -For example, bytes[10]=90
289 -
290 -mod=(bytes[10]>>7)&0x01=1.
291 -
292 -
293 -**Downlink Command:**
294 -
295 -If payload = 0x0A00, workmode=0
296 -
297 -If** **payload =** **0x0A01, workmode=1
298 -
299 -
300 -
301 -=== 2.3.8 ​Decode payload in The Things Network ===
302 -
303 -While using TTN network, you can add the payload format to decode the payload.
304 -
305 -
306 -[[image:1654505570700-128.png]]
307 -
308 308  (((
309 -The payload decoder function for TTN is here:
157 +Insert the NB-IoT Card get from your provider.
310 310  )))
311 311  
312 312  (((
313 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
161 +User need to take out the NB-IoT module and insert the SIM card like below:
314 314  )))
315 315  
316 316  
317 -== 2.4 Uplink Interval ==
165 +[[image:1657249468462-536.png]]
318 318  
319 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
320 320  
321 321  
169 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
322 322  
323 -== 2.5 Downlink Payload ==
324 -
325 -By default, LSE50 prints the downlink payload to console port.
326 -
327 -[[image:image-20220606165544-8.png]]
328 -
329 -
330 330  (((
331 -**Examples:**
332 -)))
333 -
334 334  (((
335 -
173 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
336 336  )))
337 -
338 -* (((
339 -**Set TDC**
340 340  )))
341 341  
342 -(((
343 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
344 -)))
345 345  
346 -(((
347 -Payload:    01 00 00 1E    TDC=30S
348 -)))
178 +**Connection:**
349 349  
350 -(((
351 -Payload:    01 00 00 3C    TDC=60S
352 -)))
180 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
353 353  
354 -(((
355 -
356 -)))
182 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
357 357  
358 -* (((
359 -**Reset**
360 -)))
184 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
361 361  
362 -(((
363 -If payload = 0x04FF, it will reset the LSE01
364 -)))
365 365  
187 +In the PC, use below serial tool settings:
366 366  
367 -* **CFM**
189 +* Baud:  (% style="color:green" %)**9600**
190 +* Data bits:** (% style="color:green" %)8(%%)**
191 +* Stop bits: (% style="color:green" %)**1**
192 +* Parity:  (% style="color:green" %)**None**
193 +* Flow Control: (% style="color:green" %)**None**
368 368  
369 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
370 -
371 -
372 -
373 -== 2.6 ​Show Data in DataCake IoT Server ==
374 -
375 375  (((
376 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
196 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
377 377  )))
378 378  
379 -(((
380 -
381 -)))
199 +[[image:image-20220708110657-3.png]]
382 382  
383 383  (((
384 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
202 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
385 385  )))
386 386  
387 -(((
388 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
389 -)))
390 390  
391 391  
392 -[[image:1654505857935-743.png]]
207 +=== 2.2.4 Use CoAP protocol to uplink data ===
393 393  
209 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
394 394  
395 -[[image:1654505874829-548.png]]
396 396  
212 +**Use below commands:**
397 397  
398 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
214 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
215 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
216 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
399 399  
400 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
218 +For parameter description, please refer to AT command set
401 401  
220 +[[image:1657249793983-486.png]]
402 402  
403 -[[image:1654505905236-553.png]]
404 404  
223 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
405 405  
406 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
225 +[[image:1657249831934-534.png]]
407 407  
408 -[[image:1654505925508-181.png]]
409 409  
410 410  
229 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
411 411  
412 -== 2.7 Frequency Plans ==
231 +This feature is supported since firmware version v1.0.1
413 413  
414 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
415 415  
234 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
236 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
416 416  
417 -=== 2.7.1 EU863-870 (EU868) ===
238 +[[image:1657249864775-321.png]]
418 418  
419 -(% style="color:#037691" %)** Uplink:**
420 420  
421 -868.1 - SF7BW125 to SF12BW125
241 +[[image:1657249930215-289.png]]
422 422  
423 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
424 424  
425 -868.5 - SF7BW125 to SF12BW125
426 426  
427 -867.1 - SF7BW125 to SF12BW125
245 +=== 2.2.6 Use MQTT protocol to uplink data ===
428 428  
429 -867.3 - SF7BW125 to SF12BW125
247 +This feature is supported since firmware version v110
430 430  
431 -867.5 - SF7BW125 to SF12BW125
432 432  
433 -867.7 - SF7BW125 to SF12BW125
250 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
251 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
252 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
253 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
254 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
255 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
256 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
434 434  
435 -867.9 - SF7BW125 to SF12BW125
258 +[[image:1657249978444-674.png]]
436 436  
437 -868.8 - FSK
438 438  
261 +[[image:1657249990869-686.png]]
439 439  
440 -(% style="color:#037691" %)** Downlink:**
441 441  
442 -Uplink channels 1-9 (RX1)
264 +(((
265 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
266 +)))
443 443  
444 -869.525 - SF9BW125 (RX2 downlink only)
445 445  
446 446  
270 +=== 2.2.7 Use TCP protocol to uplink data ===
447 447  
448 -=== 2.7.2 US902-928(US915) ===
272 +This feature is supported since firmware version v110
449 449  
450 -Used in USA, Canada and South America. Default use CHE=2
451 451  
452 -(% style="color:#037691" %)**Uplink:**
275 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
276 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
453 453  
454 -903.9 - SF7BW125 to SF10BW125
278 +[[image:1657250217799-140.png]]
455 455  
456 -904.1 - SF7BW125 to SF10BW125
457 457  
458 -904.3 - SF7BW125 to SF10BW125
281 +[[image:1657250255956-604.png]]
459 459  
460 -904.5 - SF7BW125 to SF10BW125
461 461  
462 -904.7 - SF7BW125 to SF10BW125
463 463  
464 -904.9 - SF7BW125 to SF10BW125
285 +=== 2.2.8 Change Update Interval ===
465 465  
466 -905.1 - SF7BW125 to SF10BW125
287 +User can use below command to change the (% style="color:green" %)**uplink interval**.
467 467  
468 -905.3 - SF7BW125 to SF10BW125
289 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
469 469  
291 +(((
292 +(% style="color:red" %)**NOTE:**
293 +)))
470 470  
471 -(% style="color:#037691" %)**Downlink:**
295 +(((
296 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
297 +)))
472 472  
473 -923.3 - SF7BW500 to SF12BW500
474 474  
475 -923.9 - SF7BW500 to SF12BW500
476 476  
477 -924.5 - SF7BW500 to SF12BW500
301 +== 2. Uplink Payload ==
478 478  
479 -925.1 - SF7BW500 to SF12BW500
303 +In this mode, uplink payload includes in total 18 bytes
480 480  
481 -925.7 - SF7BW500 to SF12BW500
305 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
306 +|=(% style="width: 60px;" %)(((
307 +**Size(bytes)**
308 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
309 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
482 482  
483 -926.3 - SF7BW500 to SF12BW500
311 +(((
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
313 +)))
484 484  
485 -926.9 - SF7BW500 to SF12BW500
486 486  
487 -927.5 - SF7BW500 to SF12BW500
316 +[[image:image-20220708111918-4.png]]
488 488  
489 -923.3 - SF12BW500(RX2 downlink only)
490 490  
319 +The payload is ASCII string, representative same HEX:
491 491  
321 +0x72403155615900640c7817075e0a8c02f900 where:
492 492  
493 -=== 2.7.3 CN470-510 (CN470) ===
323 +* Device ID: 0x 724031556159 = 724031556159
324 +* Version: 0x0064=100=1.0.0
494 494  
495 -Used in China, Default use CHE=1
326 +* BAT: 0x0c78 = 3192 mV = 3.192V
327 +* Singal: 0x17 = 23
328 +* Soil Moisture: 0x075e= 1886 = 18.86  %
329 +* Soil Temperature:0x0a8c =2700=27 °C
330 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
331 +* Interrupt: 0x00 = 0
496 496  
497 -(% style="color:#037691" %)**Uplink:**
333 +== 2.4  Payload Explanation and Sensor Interface ==
498 498  
499 -486.3 - SF7BW125 to SF12BW125
500 500  
501 -486.5 - SF7BW125 to SF12BW125
336 +=== 2.4.1  Device ID ===
502 502  
503 -486.7 - SF7BW125 to SF12BW125
338 +(((
339 +By default, the Device ID equal to the last 6 bytes of IMEI.
340 +)))
504 504  
505 -486.9 - SF7BW125 to SF12BW125
342 +(((
343 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
344 +)))
506 506  
507 -487.1 - SF7BW125 to SF12BW125
346 +(((
347 +**Example:**
348 +)))
508 508  
509 -487.3 - SF7BW125 to SF12BW125
350 +(((
351 +AT+DEUI=A84041F15612
352 +)))
510 510  
511 -487.5 - SF7BW125 to SF12BW125
354 +(((
355 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
356 +)))
512 512  
513 -487.7 - SF7BW125 to SF12BW125
514 514  
515 515  
516 -(% style="color:#037691" %)**Downlink:**
360 +=== 2.4.2  Version Info ===
517 517  
518 -506.7 - SF7BW125 to SF12BW125
362 +(((
363 +Specify the software version: 0x64=100, means firmware version 1.00.
364 +)))
519 519  
520 -506.9 - SF7BW125 to SF12BW125
366 +(((
367 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
368 +)))
521 521  
522 -507.1 - SF7BW125 to SF12BW125
523 523  
524 -507.3 - SF7BW125 to SF12BW125
525 525  
526 -507.5 - SF7BW125 to SF12BW125
372 +=== 2.4.3  Battery Info ===
527 527  
528 -507.7 - SF7BW125 to SF12BW125
374 +(((
375 +Check the battery voltage for LSE01.
376 +)))
529 529  
530 -507.9 - SF7BW125 to SF12BW125
378 +(((
379 +Ex1: 0x0B45 = 2885mV
380 +)))
531 531  
532 -508.1 - SF7BW125 to SF12BW125
382 +(((
383 +Ex2: 0x0B49 = 2889mV
384 +)))
533 533  
534 -505.3 - SF12BW125 (RX2 downlink only)
535 535  
536 536  
388 +=== 2.4.4  Signal Strength ===
537 537  
538 -=== 2.7.4 AU915-928(AU915) ===
390 +(((
391 +NB-IoT Network signal Strength.
392 +)))
539 539  
540 -Default use CHE=2
394 +(((
395 +**Ex1: 0x1d = 29**
396 +)))
541 541  
542 -(% style="color:#037691" %)**Uplink:**
398 +(((
399 +(% style="color:blue" %)**0**(%%)  -113dBm or less
400 +)))
543 543  
544 -916.8 - SF7BW125 to SF12BW125
402 +(((
403 +(% style="color:blue" %)**1**(%%)  -111dBm
404 +)))
545 545  
546 -917.0 - SF7BW125 to SF12BW125
406 +(((
407 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
408 +)))
547 547  
548 -917.2 - SF7BW125 to SF12BW125
410 +(((
411 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
412 +)))
549 549  
550 -917.4 - SF7BW125 to SF12BW125
414 +(((
415 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
416 +)))
551 551  
552 -917.6 - SF7BW125 to SF12BW125
553 553  
554 -917.8 - SF7BW125 to SF12BW125
555 555  
556 -918.0 - SF7BW125 to SF12BW125
420 +=== 2.4.5  Soil Moisture ===
557 557  
558 -918.2 - SF7BW125 to SF12BW125
422 +(((
423 +(((
424 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
425 +)))
426 +)))
559 559  
428 +(((
429 +(((
430 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
431 +)))
432 +)))
560 560  
561 -(% style="color:#037691" %)**Downlink:**
434 +(((
435 +
436 +)))
562 562  
563 -923.3 - SF7BW500 to SF12BW500
438 +(((
439 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
440 +)))
564 564  
565 -923.9 - SF7BW500 to SF12BW500
566 566  
567 -924.5 - SF7BW500 to SF12BW500
568 568  
569 -925.1 - SF7BW500 to SF12BW500
444 +=== 2.4.6  Soil Temperature ===
570 570  
571 -925.7 - SF7BW500 to SF12BW500
446 +(((
447 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
448 +)))
572 572  
573 -926.3 - SF7BW500 to SF12BW500
450 +(((
451 +**Example**:
452 +)))
574 574  
575 -926.9 - SF7BW500 to SF12BW500
454 +(((
455 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
456 +)))
576 576  
577 -927.5 - SF7BW500 to SF12BW500
458 +(((
459 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
460 +)))
578 578  
579 -923.3 - SF12BW500(RX2 downlink only)
580 580  
581 581  
464 +=== 2.4.7  Soil Conductivity (EC) ===
582 582  
583 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
466 +(((
467 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
468 +)))
584 584  
585 -(% style="color:#037691" %)**Default Uplink channel:**
470 +(((
471 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
472 +)))
586 586  
587 -923.2 - SF7BW125 to SF10BW125
474 +(((
475 +Generally, the EC value of irrigation water is less than 800uS / cm.
476 +)))
588 588  
589 -923.4 - SF7BW125 to SF10BW125
478 +(((
479 +
480 +)))
590 590  
482 +(((
483 +
484 +)))
591 591  
592 -(% style="color:#037691" %)**Additional Uplink Channel**:
486 +=== 2.4.8  Digital Interrupt ===
593 593  
594 -(OTAA mode, channel added by JoinAccept message)
488 +(((
489 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
490 +)))
595 595  
596 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
492 +(((
493 +The command is:
494 +)))
597 597  
598 -922.2 - SF7BW125 to SF10BW125
496 +(((
497 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
498 +)))
599 599  
600 -922.4 - SF7BW125 to SF10BW125
601 601  
602 -922.6 - SF7BW125 to SF10BW125
501 +(((
502 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
503 +)))
603 603  
604 -922.8 - SF7BW125 to SF10BW125
605 605  
606 -923.0 - SF7BW125 to SF10BW125
506 +(((
507 +Example:
508 +)))
607 607  
608 -922.0 - SF7BW125 to SF10BW125
510 +(((
511 +0x(00): Normal uplink packet.
512 +)))
609 609  
514 +(((
515 +0x(01): Interrupt Uplink Packet.
516 +)))
610 610  
611 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
612 612  
613 -923.6 - SF7BW125 to SF10BW125
614 614  
615 -923.8 - SF7BW125 to SF10BW125
520 +=== 2.4.9  ​+5V Output ===
616 616  
617 -924.0 - SF7BW125 to SF10BW125
522 +(((
523 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
524 +)))
618 618  
619 -924.2 - SF7BW125 to SF10BW125
620 620  
621 -924.4 - SF7BW125 to SF10BW125
527 +(((
528 +The 5V output time can be controlled by AT Command.
529 +)))
622 622  
623 -924.6 - SF7BW125 to SF10BW125
531 +(((
532 +(% style="color:blue" %)**AT+5VT=1000**
533 +)))
624 624  
535 +(((
536 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
537 +)))
625 625  
626 -(% style="color:#037691" %)** Downlink:**
627 627  
628 -Uplink channels 1-8 (RX1)
629 629  
630 -923.2 - SF10BW125 (RX2)
541 +== 2. Downlink Payload ==
631 631  
543 +By default, NSE01 prints the downlink payload to console port.
632 632  
545 +[[image:image-20220708133731-5.png]]
633 633  
634 -=== 2.7.6 KR920-923 (KR920) ===
635 635  
636 -Default channel:
548 +(((
549 +(% style="color:blue" %)**Examples:**
550 +)))
637 637  
638 -922.1 - SF7BW125 to SF12BW125
552 +(((
553 +
554 +)))
639 639  
640 -922.3 - SF7BW125 to SF12BW125
556 +* (((
557 +(% style="color:blue" %)**Set TDC**
558 +)))
641 641  
642 -922.5 - SF7BW125 to SF12BW125
560 +(((
561 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
562 +)))
643 643  
564 +(((
565 +Payload:    01 00 00 1E    TDC=30S
566 +)))
644 644  
645 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
568 +(((
569 +Payload:    01 00 00 3C    TDC=60S
570 +)))
646 646  
647 -922.1 - SF7BW125 to SF12BW125
572 +(((
573 +
574 +)))
648 648  
649 -922.3 - SF7BW125 to SF12BW125
576 +* (((
577 +(% style="color:blue" %)**Reset**
578 +)))
650 650  
651 -922.5 - SF7BW125 to SF12BW125
580 +(((
581 +If payload = 0x04FF, it will reset the NSE01
582 +)))
652 652  
653 -922.7 - SF7BW125 to SF12BW125
654 654  
655 -922.9 - SF7BW125 to SF12BW125
585 +* (% style="color:blue" %)**INTMOD**
656 656  
657 -923.1 - SF7BW125 to SF12BW125
587 +(((
588 +Downlink Payload: 06000003, Set AT+INTMOD=3
589 +)))
658 658  
659 -923.3 - SF7BW125 to SF12BW125
660 660  
661 661  
662 -(% style="color:#037691" %)**Downlink:**
593 +== 2.6  ​LED Indicator ==
663 663  
664 -Uplink channels 1-7(RX1)
595 +(((
596 +The NSE01 has an internal LED which is to show the status of different state.
665 665  
666 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
667 667  
599 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
600 +* Then the LED will be on for 1 second means device is boot normally.
601 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
602 +* For each uplink probe, LED will be on for 500ms.
603 +)))
668 668  
669 669  
670 -=== 2.7.7 IN865-867 (IN865) ===
671 671  
672 -(% style="color:#037691" %)** Uplink:**
673 673  
674 -865.0625 - SF7BW125 to SF12BW125
608 +== 2.7  Installation in Soil ==
675 675  
676 -865.4025 - SF7BW125 to SF12BW125
610 +__**Measurement the soil surface**__
677 677  
678 -865.9850 - SF7BW125 to SF12BW125
612 +(((
613 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
614 +)))
679 679  
616 +[[image:1657259653666-883.png]] ​
680 680  
681 -(% style="color:#037691" %) **Downlink:**
682 682  
683 -Uplink channels 1-3 (RX1)
619 +(((
620 +
684 684  
685 -866.550 - SF10BW125 (RX2)
622 +(((
623 +Dig a hole with diameter > 20CM.
624 +)))
686 686  
626 +(((
627 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
628 +)))
629 +)))
687 687  
631 +[[image:1654506665940-119.png]]
688 688  
633 +(((
634 +
635 +)))
689 689  
690 -== 2.8 LED Indicator ==
691 691  
692 -The LSE01 has an internal LED which is to show the status of different state.
638 +== 2.8  ​Firmware Change Log ==
693 693  
694 -* Blink once when device power on.
695 -* Solid ON for 5 seconds once device successful Join the network.
696 -* Blink once when device transmit a packet.
697 697  
641 +Download URL & Firmware Change log
698 698  
643 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
699 699  
700 -== 2.9 Installation in Soil ==
701 701  
702 -**Measurement the soil surface**
646 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
703 703  
704 704  
705 -[[image:1654506634463-199.png]] ​
706 706  
707 -(((
708 -(((
709 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
710 -)))
711 -)))
650 +== 2.9  ​Battery Analysis ==
712 712  
652 +=== 2.9.1  ​Battery Type ===
713 713  
714 714  
715 -[[image:1654506665940-119.png]]
716 -
717 717  (((
718 -Dig a hole with diameter > 20CM.
656 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
719 719  )))
720 720  
659 +
721 721  (((
722 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
661 +The battery is designed to last for several years depends on the actually use environment and update interval. 
723 723  )))
724 724  
725 725  
726 -== 2.10 ​Firmware Change Log ==
727 -
728 728  (((
729 -**Firmware download link:**
666 +The battery related documents as below:
730 730  )))
731 731  
732 -(((
733 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
734 -)))
669 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
670 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
735 735  
736 736  (((
737 -
674 +[[image:image-20220708140453-6.png]]
738 738  )))
739 739  
740 -(((
741 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
742 -)))
743 743  
744 -(((
745 -
746 -)))
747 747  
748 -(((
749 -**V1.0.**
750 -)))
679 +=== 2.9.2  Power consumption Analyze ===
751 751  
752 752  (((
753 -Release
682 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
754 754  )))
755 755  
756 756  
757 -== 2.11 ​Battery Analysis ==
758 -
759 -=== 2.11.1 ​Battery Type ===
760 -
761 761  (((
762 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
687 +Instruction to use as below:
763 763  )))
764 764  
765 765  (((
766 -The battery is designed to last for more than 5 years for the LSN50.
691 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
767 767  )))
768 768  
694 +
769 769  (((
770 -(((
771 -The battery-related documents are as below:
696 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
772 772  )))
773 -)))
774 774  
775 775  * (((
776 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
700 +Product Model
777 777  )))
778 778  * (((
779 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
703 +Uplink Interval
780 780  )))
781 781  * (((
782 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
706 +Working Mode
783 783  )))
784 784  
785 - [[image:image-20220610172436-1.png]]
709 +(((
710 +And the Life expectation in difference case will be shown on the right.
711 +)))
786 786  
713 +[[image:image-20220708141352-7.jpeg]]
787 787  
788 788  
789 -=== 2.11.2 ​Battery Note ===
790 790  
717 +=== 2.9.3  ​Battery Note ===
718 +
791 791  (((
792 792  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
793 793  )))
... ... @@ -794,302 +794,176 @@
794 794  
795 795  
796 796  
797 -=== 2.11.3 Replace the battery ===
725 +=== 2.9. Replace the battery ===
798 798  
799 799  (((
800 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
728 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
801 801  )))
802 802  
731 +
732 +
733 += 3. ​ Access NB-IoT Module =
734 +
803 803  (((
804 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
736 +Users can directly access the AT command set of the NB-IoT module.
805 805  )))
806 806  
807 807  (((
808 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
740 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
809 809  )))
810 810  
743 +[[image:1657261278785-153.png]]
811 811  
812 812  
813 -= 3. ​Using the AT Commands =
814 814  
815 -== 3.1 Access AT Commands ==
747 += 4.  Using the AT Commands =
816 816  
749 +== 4.1  Access AT Commands ==
817 817  
818 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
751 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
819 819  
820 -[[image:1654501986557-872.png||height="391" width="800"]]
821 821  
754 +AT+<CMD>?  : Help on <CMD>
822 822  
823 -Or if you have below board, use below connection:
756 +AT+<CMD>         : Run <CMD>
824 824  
758 +AT+<CMD>=<value> : Set the value
825 825  
826 -[[image:1654502005655-729.png||height="503" width="801"]]
760 +AT+<CMD>=?  : Get the value
827 827  
828 828  
829 -
830 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
831 -
832 -
833 - [[image:1654502050864-459.png||height="564" width="806"]]
834 -
835 -
836 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
837 -
838 -
839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
840 -
841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
844 -
845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
846 -
847 -
848 848  (% style="color:#037691" %)**General Commands**(%%)      
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
765 +AT  : Attention       
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
767 +AT?  : Short Help     
853 853  
854 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
769 +ATZ  : MCU Reset    
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
771 +AT+TDC  : Application Data Transmission Interval
857 857  
773 +AT+CFG  : Print all configurations
858 858  
859 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
775 +AT+CFGMOD           : Working mode selection
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
777 +AT+INTMOD            : Set the trigger interrupt mode
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
779 +AT+5VT  : Set extend the time of 5V power  
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
781 +AT+PRO  : Choose agreement
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
783 +AT+WEIGRE  : Get weight or set weight to 0
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
785 +AT+WEIGAP  : Get or Set the GapValue of weight
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
787 +AT+RXDL  : Extend the sending and receiving time
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
789 +AT+CNTFAC  : Get or set counting parameters
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
791 +AT+SERVADDR  : Server Address
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
794 +(% style="color:#037691" %)**COAP Management**      
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
796 +AT+URI            : Resource parameters
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
799 +(% style="color:#037691" %)**UDP Management**
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
801 +AT+CFM          : Upload confirmation mode (only valid for UDP)
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
804 +(% style="color:#037691" %)**MQTT Management**
892 892  
806 +AT+CLIENT               : Get or Set MQTT client
893 893  
894 -(% style="color:#037691" %)**LoRa Network Management**
808 +AT+UNAME  : Get or Set MQTT Username
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
810 +AT+PWD                  : Get or Set MQTT password
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
812 +AT+PUBTOPI : Get or Set MQTT publish topic
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
814 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
817 +(% style="color:#037691" %)**Information**          
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
819 +AT+FDR  : Factory Data Reset
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
821 +AT+PWOR : Serial Access Password
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
825 += ​5.  FAQ =
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
827 +== 5.1 How to Upgrade Firmware ==
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
919 919  
920 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
925 -
926 -
927 -(% style="color:#037691" %)**Information** 
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
932 -
933 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
934 -
935 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
936 -
937 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
938 -
939 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
940 -
941 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
942 -
943 -
944 -= ​4. FAQ =
945 -
946 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
947 -
948 948  (((
949 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
950 -When downloading the images, choose the required image file for download. ​
831 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
951 951  )))
952 952  
953 953  (((
954 -
835 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
955 955  )))
956 956  
957 957  (((
958 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
839 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
959 959  )))
960 960  
961 -(((
962 -
963 -)))
964 964  
965 -(((
966 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
967 -)))
968 968  
969 -(((
970 -
971 -)))
844 +== 5.2  Can I calibrate NSE01 to different soil types? ==
972 972  
973 973  (((
974 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
847 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
975 975  )))
976 976  
977 -[[image:image-20220606154726-3.png]]
978 978  
851 += 6.  Trouble Shooting =
979 979  
980 -When you use the TTN network, the US915 frequency bands use are:
853 +== 6.1  ​Connection problem when uploading firmware ==
981 981  
982 -* 903.9 - SF7BW125 to SF10BW125
983 -* 904.1 - SF7BW125 to SF10BW125
984 -* 904.3 - SF7BW125 to SF10BW125
985 -* 904.5 - SF7BW125 to SF10BW125
986 -* 904.7 - SF7BW125 to SF10BW125
987 -* 904.9 - SF7BW125 to SF10BW125
988 -* 905.1 - SF7BW125 to SF10BW125
989 -* 905.3 - SF7BW125 to SF10BW125
990 -* 904.6 - SF8BW500
991 991  
992 992  (((
993 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
994 -
995 -* (% style="color:#037691" %)**AT+CHE=2**
996 -* (% style="color:#037691" %)**ATZ**
857 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 997  )))
998 998  
860 +(% class="wikigeneratedid" %)
999 999  (((
1000 1000  
1001 -
1002 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1003 1003  )))
1004 1004  
1005 -(((
1006 -
1007 -)))
1008 1008  
1009 -(((
1010 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1011 -)))
866 +== 6.2  AT Command input doesn't work ==
1012 1012  
1013 -[[image:image-20220606154825-4.png]]
1014 -
1015 -
1016 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1017 -
1018 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1019 -
1020 -
1021 -= 5. Trouble Shooting =
1022 -
1023 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1024 -
1025 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1026 -
1027 -
1028 -== 5.2 AT Command input doesn’t work ==
1029 -
1030 1030  (((
1031 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1032 -)))
869 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1033 1033  
1034 -
1035 -== 5.3 Device rejoin in at the second uplink packet ==
1036 -
1037 -(% style="color:#4f81bd" %)**Issue describe as below:**
1038 -
1039 -[[image:1654500909990-784.png]]
1040 -
1041 -
1042 -(% style="color:#4f81bd" %)**Cause for this issue:**
1043 -
1044 -(((
1045 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
871 +
1046 1046  )))
1047 1047  
1048 1048  
1049 -(% style="color:#4f81bd" %)**Solution: **
875 += 7. ​ Order Info =
1050 1050  
1051 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1052 1052  
1053 -[[image:1654500929571-736.png||height="458" width="832"]]
878 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1054 1054  
1055 1055  
1056 -= 6. ​Order Info =
1057 -
1058 -
1059 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1060 -
1061 -
1062 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1063 -
1064 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1065 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1066 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1067 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1068 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1069 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1070 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1071 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1072 -
1073 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1074 -
1075 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1076 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1077 -
1078 1078  (% class="wikigeneratedid" %)
1079 1079  (((
1080 1080  
1081 1081  )))
1082 1082  
1083 -= 7. Packing Info =
886 += 8.  Packing Info =
1084 1084  
1085 1085  (((
1086 1086  
1087 1087  
1088 1088  (% style="color:#037691" %)**Package Includes**:
1089 -)))
1090 1090  
1091 -* (((
1092 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
893 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
894 +* External antenna x 1
1093 1093  )))
1094 1094  
1095 1095  (((
... ... @@ -1096,24 +1096,19 @@
1096 1096  
1097 1097  
1098 1098  (% style="color:#037691" %)**Dimension and weight**:
1099 -)))
1100 1100  
1101 -* (((
1102 -Device Size: cm
902 +* Size: 195 x 125 x 55 mm
903 +* Weight:   420g
1103 1103  )))
1104 -* (((
1105 -Device Weight: g
1106 -)))
1107 -* (((
1108 -Package Size / pcs : cm
1109 -)))
1110 -* (((
1111 -Weight / pcs : g
1112 1112  
906 +(((
1113 1113  
908 +
909 +
910 +
1114 1114  )))
1115 1115  
1116 -= 8. Support =
913 += 9.  Support =
1117 1117  
1118 1118  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1119 1119  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content