Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 36 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,770 +20,719 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 16 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 42 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 71 71 72 72 73 -== 1.3 Specification == 60 +== 1.3 Specification == 74 74 75 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 76 76 77 - [[image:image-20220606162220-5.png]]63 +(% style="color:#037691" %)**Common DC Characteristics:** 78 78 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 79 79 68 +(% style="color:#037691" %)**NB-IoT Spec:** 80 80 81 -== 1.4 Applications == 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 82 82 83 -* Smart Agriculture 84 84 85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 86 - 78 +(% style="color:#037691" %)**Battery:** 87 87 88 -== 1.5 Firmware Change log == 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 89 89 90 90 91 - **LSE01v1.0 :**Release87 +(% style="color:#037691" %)**Power Consumption** 92 92 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 93 93 94 94 95 -= 2. Configure LSE01 to connect to LoRaWAN network = 96 96 97 -== 2.1 How it works == 98 98 99 -((( 100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 101 -))) 95 +== 1.4 Applications == 102 102 103 -((( 104 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 105 -))) 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 106 106 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 107 107 108 108 109 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 110 110 111 - Followingisan examplefor how to jointhe [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.109 +== 1.5 Pin Definitions == 112 112 113 113 114 -[[image:165 4503992078-669.png]]112 +[[image:1657328609906-564.png]] 115 115 116 116 117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 118 118 119 119 120 - (%style="color:blue"%)**Step1**(%%):Createa devicein TTNwiththe OTAAkeys fromLSE01.117 += 2. Use NSE01 to communicate with IoT Server = 121 121 122 - EachLSE01is shippedwitha sticker withthe default device EUI asbelow:119 +== 2.1 How it works == 123 123 124 -[[image:image-20220606163732-6.jpeg]] 125 - 126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 - 128 -**Add APP EUI in the application** 129 - 130 - 131 -[[image:1654504596150-405.png]] 132 - 133 - 134 - 135 -**Add APP KEY and DEV EUI** 136 - 137 -[[image:1654504683289-357.png]] 138 - 139 - 140 - 141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 142 - 143 - 144 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 145 - 146 -[[image:image-20220606163915-7.png]] 147 - 148 - 149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 - 151 -[[image:1654504778294-788.png]] 152 - 153 - 154 - 155 -== 2.3 Uplink Payload == 156 - 157 - 158 -=== 2.3.1 MOD~=0(Default Mode) === 159 - 160 -LSE01 will uplink payload via LoRaWAN with below payload format: 161 - 162 162 ((( 163 - Uplinkpayload includesin total11bytes.122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 164 164 ))) 165 165 166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 -|((( 168 -**Size** 169 169 170 -**(bytes)** 171 -)))|**2**|**2**|**2**|**2**|**2**|**1** 172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 -Temperature 174 - 175 -(Reserve, Ignore now) 176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 -MOD & Digital Interrupt 178 - 179 -(Optional) 180 -))) 181 - 182 -=== 2.3.2 MOD~=1(Original value) === 183 - 184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 185 - 186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 187 -|((( 188 -**Size** 189 - 190 -**(bytes)** 191 -)))|**2**|**2**|**2**|**2**|**2**|**1** 192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 193 -Temperature 194 - 195 -(Reserve, Ignore now) 196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 197 -MOD & Digital Interrupt 198 - 199 -(Optional) 200 -))) 201 - 202 -=== 2.3.3 Battery Info === 203 - 204 204 ((( 205 - CheckthebatteryvoltageforLSE01.127 +The diagram below shows the working flow in default firmware of NDDS75: 206 206 ))) 207 207 208 208 ((( 209 - Ex1:0x0B45 = 2885mV131 + 210 210 ))) 211 211 212 -((( 213 -Ex2: 0x0B49 = 2889mV 214 -))) 134 +[[image:1657328659945-416.png]] 215 215 216 - 217 - 218 -=== 2.3.4 Soil Moisture === 219 - 220 220 ((( 221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 -))) 223 - 224 -((( 225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 -))) 227 - 228 -((( 229 229 230 230 ))) 231 231 232 -((( 233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 234 -))) 235 235 141 +== 2.2 Configure the NSE01 == 236 236 237 237 238 -=== 2. 3.5SoilTemperature ===144 +=== 2.2.1 Test Requirement === 239 239 240 -((( 241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 242 -))) 243 243 244 244 ((( 245 - **Example**:148 +To use NSE01 in your city, make sure meet below requirements: 246 246 ))) 247 247 248 - (((249 - Ifpayloadis0105H:((0x0105& 0x8000)>>15 === 0),temp=0105(H)/100= 2.61 °C250 - )))151 +* Your local operator has already distributed a NB-IoT Network there. 152 +* The local NB-IoT network used the band that NSE01 supports. 153 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 251 251 252 252 ((( 253 - Ifpayload isFF7EH:((FF7E&0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100=-1.29°C156 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 254 254 ))) 255 255 256 256 160 +[[image:1657249419225-449.png]] 257 257 258 -=== 2.3.6 Soil Conductivity (EC) === 259 259 260 -((( 261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 262 -))) 263 263 264 -((( 265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 -))) 164 +=== 2.2.2 Insert SIM card === 267 267 268 268 ((( 269 - Generally,theECvalueofirrigationwater is less than 800uS / cm.167 +Insert the NB-IoT Card get from your provider. 270 270 ))) 271 271 272 272 ((( 273 - 171 +User need to take out the NB-IoT module and insert the SIM card like below: 274 274 ))) 275 275 276 -((( 277 - 278 -))) 279 279 280 - ===2.3.7 MOD ===175 +[[image:1657249468462-536.png]] 281 281 282 -Firmware version at least v2.1 supports changing mode. 283 283 284 -For example, bytes[10]=90 285 285 286 - mod=(bytes[10]>>7)&0x01=1.179 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 287 287 288 - 289 -**Downlink Command:** 290 - 291 -If payload = 0x0A00, workmode=0 292 - 293 -If** **payload =** **0x0A01, workmode=1 294 - 295 - 296 - 297 -=== 2.3.8 Decode payload in The Things Network === 298 - 299 -While using TTN network, you can add the payload format to decode the payload. 300 - 301 - 302 -[[image:1654505570700-128.png]] 303 - 304 304 ((( 305 -The payload decoder function for TTN is here: 306 -))) 307 - 308 308 ((( 309 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]183 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 310 310 ))) 185 +))) 311 311 312 312 313 - == 2.4 Uplink Interval ==188 +**Connection:** 314 314 315 - TheLSE01by default uplink thesensor data every20 minutes. User canchange this interval by AT Commandr LoRaWAN Downlink Command. See this link:[[ChangeUplink Interval>>doc:Main.EndDeviceATCommandsandDownlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 316 316 192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 317 317 194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 318 318 319 -== 2.5 Downlink Payload == 320 320 321 - Bydefault,LSE50 printsthedownlinkpayloadtoconsoleport.197 +In the PC, use below serial tool settings: 322 322 323 -[[image:image-20220606165544-8.png]] 199 +* Baud: (% style="color:green" %)**9600** 200 +* Data bits:** (% style="color:green" %)8(%%)** 201 +* Stop bits: (% style="color:green" %)**1** 202 +* Parity: (% style="color:green" %)**None** 203 +* Flow Control: (% style="color:green" %)**None** 324 324 325 - 326 326 ((( 327 - **Examples:**206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 328 328 ))) 329 329 330 -((( 331 - 332 -))) 209 +[[image:image-20220708110657-3.png]] 333 333 334 -* ((( 335 -**Set TDC** 336 -))) 337 - 338 338 ((( 339 - Ifthepayload=0100003C,itmeanssettheEND Node’sTDCto0x00003C=60(S), whileypecodes01.212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 340 340 ))) 341 341 342 -((( 343 -Payload: 01 00 00 1E TDC=30S 344 -))) 345 345 346 -((( 347 -Payload: 01 00 00 3C TDC=60S 348 -))) 349 349 350 -((( 351 - 352 -))) 217 +=== 2.2.4 Use CoAP protocol to uplink data === 353 353 354 -* ((( 355 -**Reset** 356 -))) 219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 357 357 358 -((( 359 -If payload = 0x04FF, it will reset the LSE01 360 -))) 361 361 222 +**Use below commands:** 362 362 363 -* **CFM** 224 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 364 364 365 - DownlinkPayload:05000001,Set AT+CFM=1or05000000 ,setAT+CFM=0228 +For parameter description, please refer to AT command set 366 366 230 +[[image:1657249793983-486.png]] 367 367 368 368 369 - ==2.6ShowDatainDataCakeIoTServer==233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 370 370 371 -((( 372 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 373 -))) 235 +[[image:1657249831934-534.png]] 374 374 375 -((( 376 - 377 -))) 378 378 379 -((( 380 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 381 -))) 382 382 383 -((( 384 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 385 -))) 239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 386 386 241 +This feature is supported since firmware version v1.0.1 387 387 388 -[[image:1654505857935-743.png]] 389 389 244 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 246 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 390 390 391 -[[image:165 4505874829-548.png]]248 +[[image:1657249864775-321.png]] 392 392 393 393 394 - (% style="color:blue" %)**Step3**(%%)**:** Create anaccount or login Datacake.251 +[[image:1657249930215-289.png]] 395 395 396 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 397 397 398 398 399 - [[image:1654505905236-553.png]]255 +=== 2.2.6 Use MQTT protocol to uplink data === 400 400 257 +This feature is supported since firmware version v110 401 401 402 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 403 403 404 -[[image:1654505925508-181.png]] 260 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 263 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 264 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 405 405 268 +[[image:1657249978444-674.png]] 406 406 407 407 408 - ==2.7 Frequency Plans ==271 +[[image:1657249990869-686.png]] 409 409 410 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 411 411 274 +((( 275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 276 +))) 412 412 413 -=== 2.7.1 EU863-870 (EU868) === 414 414 415 -(% style="color:#037691" %)** Uplink:** 416 416 417 - 868.1-SF7BW125toSF12BW125280 +=== 2.2.7 Use TCP protocol to uplink data === 418 418 419 - 868.3-SF7BW125toSF12BW125andSF7BW250282 +This feature is supported since firmware version v110 420 420 421 -868.5 - SF7BW125 to SF12BW125 422 422 423 -867.1 - SF7BW125 to SF12BW125 285 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 424 424 425 - 867.3 - SF7BW125to SF12BW125288 +[[image:1657250217799-140.png]] 426 426 427 -867.5 - SF7BW125 to SF12BW125 428 428 429 - 867.7 - SF7BW125to SF12BW125291 +[[image:1657250255956-604.png]] 430 430 431 -867.9 - SF7BW125 to SF12BW125 432 432 433 -868.8 - FSK 434 434 295 +=== 2.2.8 Change Update Interval === 435 435 436 -(% style="color: #037691" %)**Downlink:**297 +User can use below command to change the (% style="color:green" %)**uplink interval**. 437 437 438 - Uplinkchannels1-9(RX1)299 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 439 439 440 -869.525 - SF9BW125 (RX2 downlink only) 301 +((( 302 +(% style="color:red" %)**NOTE:** 303 +))) 441 441 305 +((( 306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 307 +))) 442 442 443 443 444 -=== 2.7.2 US902-928(US915) === 445 445 446 - UsedinUSA, Canadaand South America.Default use CHE=2311 +== 2.3 Uplink Payload == 447 447 448 - (%style="color:#037691"%)**Uplink:**313 +In this mode, uplink payload includes in total 18 bytes 449 449 450 -903.9 - SF7BW125 to SF10BW125 315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 316 +|=(% style="width: 60px;" %)((( 317 +**Size(bytes)** 318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 451 451 452 -904.1 - SF7BW125 to SF10BW125 321 +((( 322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 323 +))) 453 453 454 -904.3 - SF7BW125 to SF10BW125 455 455 456 - 904.5-SF7BW125 to SF10BW125326 +[[image:image-20220708111918-4.png]] 457 457 458 -904.7 - SF7BW125 to SF10BW125 459 459 460 - 904.9-SF7BW125toSF10BW125329 +The payload is ASCII string, representative same HEX: 461 461 462 - 905.1 - SF7BW125to SF10BW125331 +0x72403155615900640c7817075e0a8c02f900 where: 463 463 464 -905.3 - SF7BW125 to SF10BW125 333 +* Device ID: 0x 724031556159 = 724031556159 334 +* Version: 0x0064=100=1.0.0 465 465 336 +* BAT: 0x0c78 = 3192 mV = 3.192V 337 +* Singal: 0x17 = 23 338 +* Soil Moisture: 0x075e= 1886 = 18.86 % 339 +* Soil Temperature:0x0a8c =2700=27 °C 340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 341 +* Interrupt: 0x00 = 0 466 466 467 - (%style="color:#037691"%)**Downlink:**343 +== 2.4 Payload Explanation and Sensor Interface == 468 468 469 -923.3 - SF7BW500 to SF12BW500 470 470 471 - 923.9-SF7BW500 to SF12BW500346 +=== 2.4.1 Device ID === 472 472 473 -924.5 - SF7BW500 to SF12BW500 348 +((( 349 +By default, the Device ID equal to the last 6 bytes of IMEI. 350 +))) 474 474 475 -925.1 - SF7BW500 to SF12BW500 352 +((( 353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 354 +))) 476 476 477 -925.7 - SF7BW500 to SF12BW500 356 +((( 357 +**Example:** 358 +))) 478 478 479 -926.3 - SF7BW500 to SF12BW500 360 +((( 361 +AT+DEUI=A84041F15612 362 +))) 480 480 481 -926.9 - SF7BW500 to SF12BW500 364 +((( 365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 366 +))) 482 482 483 -927.5 - SF7BW500 to SF12BW500 484 484 485 -923.3 - SF12BW500(RX2 downlink only) 486 486 370 +=== 2.4.2 Version Info === 487 487 372 +((( 373 +Specify the software version: 0x64=100, means firmware version 1.00. 374 +))) 488 488 489 -=== 2.7.3 CN470-510 (CN470) === 376 +((( 377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 378 +))) 490 490 491 -Used in China, Default use CHE=1 492 492 493 -(% style="color:#037691" %)**Uplink:** 494 494 495 -4 86.3- SF7BW125toSF12BW125382 +=== 2.4.3 Battery Info === 496 496 497 -486.5 - SF7BW125 to SF12BW125 384 +((( 385 +Check the battery voltage for LSE01. 386 +))) 498 498 499 -486.7 - SF7BW125 to SF12BW125 388 +((( 389 +Ex1: 0x0B45 = 2885mV 390 +))) 500 500 501 -486.9 - SF7BW125 to SF12BW125 392 +((( 393 +Ex2: 0x0B49 = 2889mV 394 +))) 502 502 503 -487.1 - SF7BW125 to SF12BW125 504 504 505 -487.3 - SF7BW125 to SF12BW125 506 506 507 -4 87.5-SF7BW125toSF12BW125398 +=== 2.4.4 Signal Strength === 508 508 509 -487.7 - SF7BW125 to SF12BW125 400 +((( 401 +NB-IoT Network signal Strength. 402 +))) 510 510 404 +((( 405 +**Ex1: 0x1d = 29** 406 +))) 511 511 512 -(% style="color:#037691" %)**Downlink:** 408 +((( 409 +(% style="color:blue" %)**0**(%%) -113dBm or less 410 +))) 513 513 514 -506.7 - SF7BW125 to SF12BW125 412 +((( 413 +(% style="color:blue" %)**1**(%%) -111dBm 414 +))) 515 515 516 -506.9 - SF7BW125 to SF12BW125 416 +((( 417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 418 +))) 517 517 518 -507.1 - SF7BW125 to SF12BW125 420 +((( 421 +(% style="color:blue" %)**31** (%%) -51dBm or greater 422 +))) 519 519 520 -507.3 - SF7BW125 to SF12BW125 424 +((( 425 +(% style="color:blue" %)**99** (%%) Not known or not detectable 426 +))) 521 521 522 -507.5 - SF7BW125 to SF12BW125 523 523 524 -507.7 - SF7BW125 to SF12BW125 525 525 526 - 507.9- SF7BW125toSF12BW125430 +=== 2.4.5 Soil Moisture === 527 527 528 -508.1 - SF7BW125 to SF12BW125 432 +((( 433 +((( 434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 435 +))) 436 +))) 529 529 530 -505.3 - SF12BW125 (RX2 downlink only) 438 +((( 439 +((( 440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 441 +))) 442 +))) 531 531 444 +((( 445 + 446 +))) 532 532 448 +((( 449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 450 +))) 533 533 534 -=== 2.7.4 AU915-928(AU915) === 535 535 536 -Default use CHE=2 537 537 538 - (% style="color:#037691"%)**Uplink:**454 +=== 2.4.6 Soil Temperature === 539 539 540 -916.8 - SF7BW125 to SF12BW125 456 +((( 457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 458 +))) 541 541 542 -917.0 - SF7BW125 to SF12BW125 460 +((( 461 +**Example**: 462 +))) 543 543 544 -917.2 - SF7BW125 to SF12BW125 464 +((( 465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 466 +))) 545 545 546 -917.4 - SF7BW125 to SF12BW125 468 +((( 469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 470 +))) 547 547 548 -917.6 - SF7BW125 to SF12BW125 549 549 550 -917.8 - SF7BW125 to SF12BW125 551 551 552 - 918.0-SF7BW125toSF12BW125474 +=== 2.4.7 Soil Conductivity (EC) === 553 553 554 -918.2 - SF7BW125 to SF12BW125 476 +((( 477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 478 +))) 555 555 480 +((( 481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 482 +))) 556 556 557 -(% style="color:#037691" %)**Downlink:** 484 +((( 485 +Generally, the EC value of irrigation water is less than 800uS / cm. 486 +))) 558 558 559 -923.3 - SF7BW500 to SF12BW500 488 +((( 489 + 490 +))) 560 560 561 -923.9 - SF7BW500 to SF12BW500 492 +((( 493 + 494 +))) 562 562 563 - 924.5-SF7BW500toSF12BW500496 +=== 2.4.8 Digital Interrupt === 564 564 565 -925.1 - SF7BW500 to SF12BW500 498 +((( 499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 500 +))) 566 566 567 -925.7 - SF7BW500 to SF12BW500 502 +((( 503 +The command is: 504 +))) 568 568 569 -926.3 - SF7BW500 to SF12BW500 506 +((( 507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 508 +))) 570 570 571 -926.9 - SF7BW500 to SF12BW500 572 572 573 -927.5 - SF7BW500 to SF12BW500 511 +((( 512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 513 +))) 574 574 575 -923.3 - SF12BW500(RX2 downlink only) 576 576 516 +((( 517 +Example: 518 +))) 577 577 520 +((( 521 +0x(00): Normal uplink packet. 522 +))) 578 578 579 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 524 +((( 525 +0x(01): Interrupt Uplink Packet. 526 +))) 580 580 581 -(% style="color:#037691" %)**Default Uplink channel:** 582 582 583 -923.2 - SF7BW125 to SF10BW125 584 584 585 - 923.4- SF7BW125 toSF10BW125530 +=== 2.4.9 +5V Output === 586 586 532 +((( 533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 534 +))) 587 587 588 -(% style="color:#037691" %)**Additional Uplink Channel**: 589 589 590 -(OTAA mode, channel added by JoinAccept message) 537 +((( 538 +The 5V output time can be controlled by AT Command. 539 +))) 591 591 592 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 541 +((( 542 +(% style="color:blue" %)**AT+5VT=1000** 543 +))) 593 593 594 -922.2 - SF7BW125 to SF10BW125 545 +((( 546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 547 +))) 595 595 596 -922.4 - SF7BW125 to SF10BW125 597 597 598 -922.6 - SF7BW125 to SF10BW125 599 599 600 - 922.8- SF7BW125toSF10BW125551 +== 2.5 Downlink Payload == 601 601 602 - 923.0-SF7BW125toSF10BW125553 +By default, NSE01 prints the downlink payload to console port. 603 603 604 - 922.0- SF7BW125 to SF10BW125555 +[[image:image-20220708133731-5.png]] 605 605 606 606 607 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 558 +((( 559 +(% style="color:blue" %)**Examples:** 560 +))) 608 608 609 -923.6 - SF7BW125 to SF10BW125 562 +((( 563 + 564 +))) 610 610 611 -923.8 - SF7BW125 to SF10BW125 566 +* ((( 567 +(% style="color:blue" %)**Set TDC** 568 +))) 612 612 613 -924.0 - SF7BW125 to SF10BW125 570 +((( 571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 572 +))) 614 614 615 -924.2 - SF7BW125 to SF10BW125 574 +((( 575 +Payload: 01 00 00 1E TDC=30S 576 +))) 616 616 617 -924.4 - SF7BW125 to SF10BW125 578 +((( 579 +Payload: 01 00 00 3C TDC=60S 580 +))) 618 618 619 -924.6 - SF7BW125 to SF10BW125 582 +((( 583 + 584 +))) 620 620 586 +* ((( 587 +(% style="color:blue" %)**Reset** 588 +))) 621 621 622 -(% style="color:#037691" %)** Downlink:** 590 +((( 591 +If payload = 0x04FF, it will reset the NSE01 592 +))) 623 623 624 -Uplink channels 1-8 (RX1) 625 625 626 - 923.2-SF10BW125(RX2)595 +* (% style="color:blue" %)**INTMOD** 627 627 597 +((( 598 +Downlink Payload: 06000003, Set AT+INTMOD=3 599 +))) 628 628 629 629 630 -=== 2.7.6 KR920-923 (KR920) === 631 631 632 -D efaultchannel:603 +== 2.6 LED Indicator == 633 633 634 -922.1 - SF7BW125 to SF12BW125 605 +((( 606 +The NSE01 has an internal LED which is to show the status of different state. 635 635 636 -922.3 - SF7BW125 to SF12BW125 637 637 638 -922.5 - SF7BW125 to SF12BW125 609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 610 +* Then the LED will be on for 1 second means device is boot normally. 611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 612 +* For each uplink probe, LED will be on for 500ms. 613 +))) 639 639 640 640 641 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 642 642 643 -922.1 - SF7BW125 to SF12BW125 644 644 645 - 922.3 - SF7BW125to SF12BW125618 +== 2.7 Installation in Soil == 646 646 647 - 922.5- SF7BW125toSF12BW125620 +__**Measurement the soil surface**__ 648 648 649 -922.7 - SF7BW125 to SF12BW125 622 +((( 623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 624 +))) 650 650 651 - 922.9 - SF7BW125to SF12BW125626 +[[image:1657259653666-883.png]] 652 652 653 -923.1 - SF7BW125 to SF12BW125 654 654 655 -923.3 - SF7BW125 to SF12BW125 629 +((( 630 + 656 656 632 +((( 633 +Dig a hole with diameter > 20CM. 634 +))) 657 657 658 -(% style="color:#037691" %)**Downlink:** 636 +((( 637 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 638 +))) 639 +))) 659 659 660 - Uplink channels1-7(RX1)641 +[[image:1654506665940-119.png]] 661 661 662 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 643 +((( 644 + 645 +))) 663 663 664 664 648 +== 2.8 Firmware Change Log == 665 665 666 -=== 2.7.7 IN865-867 (IN865) === 667 667 668 - (% style="color:#037691"%)**Uplink:**651 +Download URL & Firmware Change log 669 669 670 - 865.0625-F7BW125toSF12BW125653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 671 671 672 -865.4025 - SF7BW125 to SF12BW125 673 673 674 - 865.9850- SF7BW125toSF12BW125656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 675 675 676 676 677 -(% style="color:#037691" %) **Downlink:** 678 678 679 - Uplinkchannels1-3 (RX1)660 +== 2.9 Battery Analysis == 680 680 681 - 866.550- SF10BW125(RX2)662 +=== 2.9.1 Battery Type === 682 682 683 683 684 - 685 - 686 -== 2.8 LED Indicator == 687 - 688 -The LSE01 has an internal LED which is to show the status of different state. 689 - 690 -* Blink once when device power on. 691 -* Solid ON for 5 seconds once device successful Join the network. 692 -* Blink once when device transmit a packet. 693 - 694 - 695 - 696 -== 2.9 Installation in Soil == 697 - 698 -**Measurement the soil surface** 699 - 700 - 701 -[[image:1654506634463-199.png]] 702 - 703 703 ((( 704 -((( 705 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 706 706 ))) 707 -))) 708 708 709 709 710 - 711 -[[image:1654506665940-119.png]] 712 - 713 713 ((( 714 - Dig aholewithdiameter>20CM.671 +The battery is designed to last for several years depends on the actually use environment and update interval. 715 715 ))) 716 716 717 -((( 718 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 719 -))) 720 720 721 - 722 -== 2.10 Firmware Change Log == 723 - 724 724 ((( 725 - **Firmware downloadlink:**676 +The battery related documents as below: 726 726 ))) 727 727 728 - (((729 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]730 - )))679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 731 731 732 732 ((( 733 - 684 +[[image:image-20220708140453-6.png]] 734 734 ))) 735 735 736 -((( 737 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 738 -))) 739 739 740 -((( 741 - 742 -))) 743 743 744 -((( 745 -**V1.0.** 746 -))) 689 +=== 2.9.2 Power consumption Analyze === 747 747 748 748 ((( 749 - Release692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 750 750 ))) 751 751 752 752 753 -== 2.11 Battery Analysis == 754 - 755 -=== 2.11.1 Battery Type === 756 - 757 757 ((( 758 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.697 +Instruction to use as below: 759 759 ))) 760 760 761 761 ((( 762 - Thebatterys designedlastforrethan5 years fortheSN50.701 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 763 763 ))) 764 764 704 + 765 765 ((( 766 -((( 767 -The battery-related documents are as below: 706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 768 768 ))) 769 -))) 770 770 771 771 * ((( 772 - [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],710 +Product Model 773 773 ))) 774 774 * ((( 775 - [[Lithium-ThionylChloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],713 +Uplink Interval 776 776 ))) 777 777 * ((( 778 - [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]716 +Working Mode 779 779 ))) 780 780 781 - [[image:image-20220610172436-1.png]] 719 +((( 720 +And the Life expectation in difference case will be shown on the right. 721 +))) 782 782 723 +[[image:image-20220708141352-7.jpeg]] 783 783 784 784 785 -=== 2.11.2 Battery Note === 786 786 727 +=== 2.9.3 Battery Note === 728 + 787 787 ((( 788 788 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 789 789 ))) ... ... @@ -790,302 +790,176 @@ 790 790 791 791 792 792 793 -=== 2. 11.3Replace the battery ===735 +=== 2.9.4 Replace the battery === 794 794 795 795 ((( 796 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 797 797 ))) 798 798 741 + 742 + 743 += 3. Access NB-IoT Module = 744 + 799 799 ((( 800 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.746 +Users can directly access the AT command set of the NB-IoT module. 801 801 ))) 802 802 803 803 ((( 804 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 805 805 ))) 806 806 753 +[[image:1657261278785-153.png]] 807 807 808 808 809 -= 3. Using the AT Commands = 810 810 811 -= =3.1AccessAT Commands ==757 += 4. Using the AT Commands = 812 812 759 +== 4.1 Access AT Commands == 813 813 814 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 815 815 816 -[[image:1654501986557-872.png||height="391" width="800"]] 817 817 764 +AT+<CMD>? : Help on <CMD> 818 818 819 - Orifyouhavebelowboard,usebelowconnection:766 +AT+<CMD> : Run <CMD> 820 820 768 +AT+<CMD>=<value> : Set the value 821 821 822 - [[image:1654502005655-729.png||height="503"width="801"]]770 +AT+<CMD>=? : Get the value 823 823 824 824 825 - 826 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 827 - 828 - 829 - [[image:1654502050864-459.png||height="564" width="806"]] 830 - 831 - 832 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 833 - 834 - 835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 836 - 837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 838 - 839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 840 - 841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 842 - 843 - 844 844 (% style="color:#037691" %)**General Commands**(%%) 845 845 846 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention775 +AT : Attention 847 847 848 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help777 +AT? : Short Help 849 849 850 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset779 +ATZ : MCU Reset 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval781 +AT+TDC : Application Data Transmission Interval 853 853 783 +AT+CFG : Print all configurations 854 854 855 - (%style="color:#037691"%)**Keys,IDsand EUIs management**785 +AT+CFGMOD : Working mode selection 856 856 857 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI787 +AT+INTMOD : Set the trigger interrupt mode 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey789 +AT+5VT : Set extend the time of 5V power 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key791 +AT+PRO : Choose agreement 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress793 +AT+WEIGRE : Get weight or set weight to 0 864 864 865 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI795 +AT+WEIGAP : Get or Set the GapValue of weight 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)797 +AT+RXDL : Extend the sending and receiving time 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network799 +AT+CNTFAC : Get or set counting parameters 870 870 871 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode801 +AT+SERVADDR : Server Address 872 872 873 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 874 874 875 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network804 +(% style="color:#037691" %)**COAP Management** 876 876 877 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode806 +AT+URI : Resource parameters 878 878 879 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 880 880 881 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format809 +(% style="color:#037691" %)**UDP Management** 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat811 +AT+CFM : Upload confirmation mode (only valid for UDP) 884 884 885 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 886 886 887 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data814 +(% style="color:#037691" %)**MQTT Management** 888 888 816 +AT+CLIENT : Get or Set MQTT client 889 889 890 - (%style="color:#037691"%)**LoRaNetworkManagement**818 +AT+UNAME : Get or Set MQTT Username 891 891 892 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate820 +AT+PWD : Get or Set MQTT password 893 893 894 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA822 +AT+PUBTOPIC : Get or Set MQTT publish topic 895 895 896 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting824 +AT+SUBTOPIC : Get or Set MQTT subscription topic 897 897 898 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 899 899 900 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink827 +(% style="color:#037691" %)**Information** 901 901 902 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink829 +AT+FDR : Factory Data Reset 903 903 904 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1831 +AT+PWORD : Serial Access Password 905 905 906 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 907 907 908 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 909 909 910 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1835 += 5. FAQ = 911 911 912 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2837 +== 5.1 How to Upgrade Firmware == 913 913 914 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 915 915 916 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 921 - 922 - 923 -(% style="color:#037691" %)**Information** 924 - 925 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 926 - 927 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 928 - 929 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 930 - 931 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 932 - 933 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 934 - 935 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 936 - 937 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 938 - 939 - 940 -= 4. FAQ = 941 - 942 -== 4.1 How to change the LoRa Frequency Bands/Region? == 943 - 944 944 ((( 945 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 946 -When downloading the images, choose the required image file for download. 841 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 947 947 ))) 948 948 949 949 ((( 950 - 845 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 951 951 ))) 952 952 953 953 ((( 954 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 955 955 ))) 956 956 957 -((( 958 - 959 -))) 960 960 961 -((( 962 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 963 -))) 964 964 965 -((( 966 - 967 -))) 854 +== 5.2 Can I calibrate NSE01 to different soil types? == 968 968 969 969 ((( 970 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 971 971 ))) 972 972 973 -[[image:image-20220606154726-3.png]] 974 974 861 += 6. Trouble Shooting = 975 975 976 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:863 +== 6.1 Connection problem when uploading firmware == 977 977 978 -* 903.9 - SF7BW125 to SF10BW125 979 -* 904.1 - SF7BW125 to SF10BW125 980 -* 904.3 - SF7BW125 to SF10BW125 981 -* 904.5 - SF7BW125 to SF10BW125 982 -* 904.7 - SF7BW125 to SF10BW125 983 -* 904.9 - SF7BW125 to SF10BW125 984 -* 905.1 - SF7BW125 to SF10BW125 985 -* 905.3 - SF7BW125 to SF10BW125 986 -* 904.6 - SF8BW500 987 987 988 988 ((( 989 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 990 - 991 -* (% style="color:#037691" %)**AT+CHE=2** 992 -* (% style="color:#037691" %)**ATZ** 867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 993 993 ))) 994 994 870 +(% class="wikigeneratedid" %) 995 995 ((( 996 996 997 - 998 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 999 999 ))) 1000 1000 1001 -((( 1002 - 1003 -))) 1004 1004 1005 -((( 1006 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1007 -))) 876 +== 6.2 AT Command input doesn't work == 1008 1008 1009 -[[image:image-20220606154825-4.png]] 1010 - 1011 - 1012 -== 4.2 Can I calibrate LSE01 to different soil types? == 1013 - 1014 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1015 - 1016 - 1017 -= 5. Trouble Shooting = 1018 - 1019 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1020 - 1021 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1022 - 1023 - 1024 -== 5.2 AT Command input doesn’t work == 1025 - 1026 1026 ((( 1027 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1028 -))) 879 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1029 1029 1030 - 1031 -== 5.3 Device rejoin in at the second uplink packet == 1032 - 1033 -(% style="color:#4f81bd" %)**Issue describe as below:** 1034 - 1035 -[[image:1654500909990-784.png]] 1036 - 1037 - 1038 -(% style="color:#4f81bd" %)**Cause for this issue:** 1039 - 1040 -((( 1041 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 881 + 1042 1042 ))) 1043 1043 1044 1044 1045 - (% style="color:#4f81bd"%)**Solution:**885 += 7. Order Info = 1046 1046 1047 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1048 1048 1049 - [[image:1654500929571-736.png||height="458" width="832"]]888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1050 1050 1051 1051 1052 -= 6. Order Info = 1053 - 1054 - 1055 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1056 - 1057 - 1058 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1059 - 1060 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1061 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1062 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1063 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1064 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1065 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1066 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1067 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1068 - 1069 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1070 - 1071 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1072 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1073 - 1074 1074 (% class="wikigeneratedid" %) 1075 1075 ((( 1076 1076 1077 1077 ))) 1078 1078 1079 -= 7. Packing Info =896 += 8. Packing Info = 1080 1080 1081 1081 ((( 1082 1082 1083 1083 1084 1084 (% style="color:#037691" %)**Package Includes**: 1085 -))) 1086 1086 1087 -* (((1088 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 904 +* External antenna x 1 1089 1089 ))) 1090 1090 1091 1091 ((( ... ... @@ -1092,24 +1092,19 @@ 1092 1092 1093 1093 1094 1094 (% style="color:#037691" %)**Dimension and weight**: 1095 -))) 1096 1096 1097 -* (((1098 - DeviceSize:cm912 +* Size: 195 x 125 x 55 mm 913 +* Weight: 420g 1099 1099 ))) 1100 -* ((( 1101 -Device Weight: g 1102 -))) 1103 -* ((( 1104 -Package Size / pcs : cm 1105 -))) 1106 -* ((( 1107 -Weight / pcs : g 1108 1108 916 +((( 1109 1109 918 + 919 + 920 + 1110 1110 ))) 1111 1111 1112 -= 8. Support =923 += 9. Support = 1113 1113 1114 1114 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1115 1115 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content