Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 30 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,770 +20,716 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 16 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 42 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 71 71 72 72 73 -== 1.3 Specification == 60 +== 1.3 Specification == 74 74 75 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 76 76 77 - [[image:image-20220606162220-5.png]]63 +(% style="color:#037691" %)**Common DC Characteristics:** 78 78 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 79 79 68 +(% style="color:#037691" %)**NB-IoT Spec:** 80 80 81 -== 1.4 Applications == 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 82 82 83 -* Smart Agriculture 84 84 85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 86 - 78 +(% style="color:#037691" %)**Battery:** 87 87 88 -== 1.5 Firmware Change log == 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 89 89 90 90 91 - **LSE01v1.0 :**Release87 +(% style="color:#037691" %)**Power Consumption** 92 92 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 93 93 94 94 95 -= 2. Configure LSE01 to connect to LoRaWAN network = 96 96 97 -== 2.1 How it works == 98 98 99 -((( 100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 101 -))) 95 +== 1.4 Applications == 102 102 103 -((( 104 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 105 -))) 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 106 106 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 107 107 108 108 109 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 110 110 111 - Followingisan examplefor how to jointhe [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Belowis the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.109 +== 1.5 Pin Definitions == 112 112 113 113 114 -[[image:165 4503992078-669.png]]112 +[[image:1657246476176-652.png]] 115 115 116 116 117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 118 118 116 += 2. Use NSE01 to communicate with IoT Server = 119 119 120 - (% style="color:blue"%)**Step1**(%%):Createa device in TTN withthe OTAAkeysfrom LSE01.118 +== 2.1 How it works == 121 121 122 -Each LSE01 is shipped with a sticker with the default device EUI as below: 123 123 124 -[[image:image-20220606163732-6.jpeg]] 125 - 126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 - 128 -**Add APP EUI in the application** 129 - 130 - 131 -[[image:1654504596150-405.png]] 132 - 133 - 134 - 135 -**Add APP KEY and DEV EUI** 136 - 137 -[[image:1654504683289-357.png]] 138 - 139 - 140 - 141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 142 - 143 - 144 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 145 - 146 -[[image:image-20220606163915-7.png]] 147 - 148 - 149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 - 151 -[[image:1654504778294-788.png]] 152 - 153 - 154 - 155 -== 2.3 Uplink Payload == 156 - 157 - 158 -=== 2.3.1 MOD~=0(Default Mode) === 159 - 160 -LSE01 will uplink payload via LoRaWAN with below payload format: 161 - 162 162 ((( 163 - Uplinkpayload includesin total11bytes.122 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 164 164 ))) 165 165 166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 -|((( 168 -**Size** 169 169 170 -**(bytes)** 171 -)))|**2**|**2**|**2**|**2**|**2**|**1** 172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 -Temperature 174 - 175 -(Reserve, Ignore now) 176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 -MOD & Digital Interrupt 178 - 179 -(Optional) 180 -))) 181 - 182 -=== 2.3.2 MOD~=1(Original value) === 183 - 184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 185 - 186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 187 -|((( 188 -**Size** 189 - 190 -**(bytes)** 191 -)))|**2**|**2**|**2**|**2**|**2**|**1** 192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 193 -Temperature 194 - 195 -(Reserve, Ignore now) 196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 197 -MOD & Digital Interrupt 198 - 199 -(Optional) 200 -))) 201 - 202 -=== 2.3.3 Battery Info === 203 - 204 204 ((( 205 - CheckthebatteryvoltageforLSE01.127 +The diagram below shows the working flow in default firmware of NSE01: 206 206 ))) 207 207 208 -((( 209 -Ex1: 0x0B45 = 2885mV 210 -))) 130 +[[image:image-20220708101605-2.png]] 211 211 212 212 ((( 213 -Ex2: 0x0B49 = 2889mV 214 -))) 215 - 216 - 217 - 218 -=== 2.3.4 Soil Moisture === 219 - 220 -((( 221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 -))) 223 - 224 -((( 225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 -))) 227 - 228 -((( 229 229 230 230 ))) 231 231 232 -((( 233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 234 -))) 235 235 236 236 138 +== 2.2 Configure the NSE01 == 237 237 238 -=== 2.3.5 Soil Temperature === 239 239 240 -((( 241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 242 -))) 141 +=== 2.2.1 Test Requirement === 243 243 244 -((( 245 -**Example**: 246 -))) 247 247 248 248 ((( 249 - If payloadis 0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100 = 2.61 °C145 +To use NSE01 in your city, make sure meet below requirements: 250 250 ))) 251 251 252 - (((253 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C254 - )))148 +* Your local operator has already distributed a NB-IoT Network there. 149 +* The local NB-IoT network used the band that NSE01 supports. 150 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 255 255 256 - 257 - 258 -=== 2.3.6 Soil Conductivity (EC) === 259 - 260 260 ((( 261 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).153 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 262 262 ))) 263 263 264 -((( 265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 -))) 267 267 268 -((( 269 -Generally, the EC value of irrigation water is less than 800uS / cm. 270 -))) 157 +[[image:1657249419225-449.png]] 271 271 272 -((( 273 - 274 -))) 275 275 276 -((( 277 - 278 -))) 279 279 280 -=== 2. 3.7MOD===161 +=== 2.2.2 Insert SIM card === 281 281 282 -Firmware version at least v2.1 supports changing mode. 283 - 284 -For example, bytes[10]=90 285 - 286 -mod=(bytes[10]>>7)&0x01=1. 287 - 288 - 289 -**Downlink Command:** 290 - 291 -If payload = 0x0A00, workmode=0 292 - 293 -If** **payload =** **0x0A01, workmode=1 294 - 295 - 296 - 297 -=== 2.3.8 Decode payload in The Things Network === 298 - 299 -While using TTN network, you can add the payload format to decode the payload. 300 - 301 - 302 -[[image:1654505570700-128.png]] 303 - 304 304 ((( 305 - ThepayloaddecoderfunctionforTTNis here:164 +Insert the NB-IoT Card get from your provider. 306 306 ))) 307 307 308 308 ((( 309 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]168 +User need to take out the NB-IoT module and insert the SIM card like below: 310 310 ))) 311 311 312 312 313 - ==2.4Uplink Interval ==172 +[[image:1657249468462-536.png]] 314 314 315 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 316 316 317 317 176 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 318 318 319 -== 2.5 Downlink Payload == 320 - 321 -By default, LSE50 prints the downlink payload to console port. 322 - 323 -[[image:image-20220606165544-8.png]] 324 - 325 - 326 326 ((( 327 -**Examples:** 328 -))) 329 - 330 330 ((( 331 - 180 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 332 332 ))) 333 - 334 -* ((( 335 -**Set TDC** 336 336 ))) 337 337 338 -((( 339 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 340 -))) 341 341 342 -((( 343 -Payload: 01 00 00 1E TDC=30S 344 -))) 185 +**Connection:** 345 345 346 -((( 347 -Payload: 01 00 00 3C TDC=60S 348 -))) 187 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 349 349 350 -((( 351 - 352 -))) 189 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 353 353 354 -* ((( 355 -**Reset** 356 -))) 191 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 357 357 358 -((( 359 -If payload = 0x04FF, it will reset the LSE01 360 -))) 361 361 194 +In the PC, use below serial tool settings: 362 362 363 -* **CFM** 196 +* Baud: (% style="color:green" %)**9600** 197 +* Data bits:** (% style="color:green" %)8(%%)** 198 +* Stop bits: (% style="color:green" %)**1** 199 +* Parity: (% style="color:green" %)**None** 200 +* Flow Control: (% style="color:green" %)**None** 364 364 365 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 366 - 367 - 368 - 369 -== 2.6 Show Data in DataCake IoT Server == 370 - 371 371 ((( 372 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:203 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 373 373 ))) 374 374 375 -((( 376 - 377 -))) 206 +[[image:image-20220708110657-3.png]] 378 378 379 379 ((( 380 -(% style="color: blue" %)**Step 1**(%%):Be surethat your deviceisprogrammed and properlyconnectedtothe networkat thistime.209 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 381 381 ))) 382 382 383 -((( 384 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 385 -))) 386 386 387 387 388 - [[image:1654505857935-743.png]]214 +=== 2.2.4 Use CoAP protocol to uplink data === 389 389 216 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 390 390 391 -[[image:1654505874829-548.png]] 392 392 219 +**Use below commands:** 393 393 394 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 221 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 395 395 396 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01andadd DevEUI.225 +For parameter description, please refer to AT command set 397 397 227 +[[image:1657249793983-486.png]] 398 398 399 -[[image:1654505905236-553.png]] 400 400 230 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 401 401 402 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.232 +[[image:1657249831934-534.png]] 403 403 404 -[[image:1654505925508-181.png]] 405 405 406 406 236 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 407 407 408 - ==2.7 FrequencyPlans==238 +This feature is supported since firmware version v1.0.1 409 409 410 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 411 411 241 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 242 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 243 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 412 412 413 - === 2.7.1EU863-870 (EU868) ===245 +[[image:1657249864775-321.png]] 414 414 415 -(% style="color:#037691" %)** Uplink:** 416 416 417 - 868.1- SF7BW125 to SF12BW125248 +[[image:1657249930215-289.png]] 418 418 419 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 420 420 421 -868.5 - SF7BW125 to SF12BW125 422 422 423 - 867.1-SF7BW125toSF12BW125252 +=== 2.2.6 Use MQTT protocol to uplink data === 424 424 425 - 867.3-SF7BW125toSF12BW125254 +This feature is supported since firmware version v110 426 426 427 -867.5 - SF7BW125 to SF12BW125 428 428 429 -867.7 - SF7BW125 to SF12BW125 257 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 258 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 259 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 260 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 261 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 262 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 263 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 430 430 431 - 867.9SF7BW125 to SF12BW125265 +[[image:1657249978444-674.png]] 432 432 433 -868.8 - FSK 434 434 268 +[[image:1657249990869-686.png]] 435 435 436 -(% style="color:#037691" %)** Downlink:** 437 437 438 -Uplink channels 1-9 (RX1) 271 +((( 272 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 273 +))) 439 439 440 -869.525 - SF9BW125 (RX2 downlink only) 441 441 442 442 277 +=== 2.2.7 Use TCP protocol to uplink data === 443 443 444 - ===2.7.2US902-928(US915)===279 +This feature is supported since firmware version v110 445 445 446 -Used in USA, Canada and South America. Default use CHE=2 447 447 448 -(% style="color:#037691" %)**Uplink:** 282 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 449 449 450 - 903.9 - SF7BW125to SF10BW125285 +[[image:1657250217799-140.png]] 451 451 452 -904.1 - SF7BW125 to SF10BW125 453 453 454 - 904.3 - SF7BW125to SF10BW125288 +[[image:1657250255956-604.png]] 455 455 456 -904.5 - SF7BW125 to SF10BW125 457 457 458 -904.7 - SF7BW125 to SF10BW125 459 459 460 - 904.9-SF7BW125toSF10BW125292 +=== 2.2.8 Change Update Interval === 461 461 462 - 905.1-SF7BW125toSF10BW125294 +User can use below command to change the (% style="color:green" %)**uplink interval**. 463 463 464 - 905.3-SF7BW125toSF10BW125296 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 465 465 298 +((( 299 +(% style="color:red" %)**NOTE:** 300 +))) 466 466 467 -(% style="color:#037691" %)**Downlink:** 302 +((( 303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 +))) 468 468 469 -923.3 - SF7BW500 to SF12BW500 470 470 471 -923.9 - SF7BW500 to SF12BW500 472 472 473 - 924.5-SF7BW500 toSF12BW500308 +== 2.3 Uplink Payload == 474 474 475 - 925.1-SF7BW500toSF12BW500310 +In this mode, uplink payload includes in total 18 bytes 476 476 477 -925.7 - SF7BW500 to SF12BW500 312 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 313 +|=(% style="width: 60px;" %)((( 314 +**Size(bytes)** 315 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 316 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 478 478 479 -926.3 - SF7BW500 to SF12BW500 318 +((( 319 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 320 +))) 480 480 481 -926.9 - SF7BW500 to SF12BW500 482 482 483 - 927.5-SF7BW500 to SF12BW500323 +[[image:image-20220708111918-4.png]] 484 484 485 -923.3 - SF12BW500(RX2 downlink only) 486 486 326 +The payload is ASCII string, representative same HEX: 487 487 328 +0x72403155615900640c7817075e0a8c02f900 where: 488 488 489 -=== 2.7.3 CN470-510 (CN470) === 330 +* Device ID: 0x 724031556159 = 724031556159 331 +* Version: 0x0064=100=1.0.0 490 490 491 -Used in China, Default use CHE=1 333 +* BAT: 0x0c78 = 3192 mV = 3.192V 334 +* Singal: 0x17 = 23 335 +* Soil Moisture: 0x075e= 1886 = 18.86 % 336 +* Soil Temperature:0x0a8c =2700=27 °C 337 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 338 +* Interrupt: 0x00 = 0 492 492 493 - (%style="color:#037691"%)**Uplink:**340 +== 2.4 Payload Explanation and Sensor Interface == 494 494 495 -486.3 - SF7BW125 to SF12BW125 496 496 497 -4 86.5 - SF7BW125toSF12BW125343 +=== 2.4.1 Device ID === 498 498 499 -486.7 - SF7BW125 to SF12BW125 345 +((( 346 +By default, the Device ID equal to the last 6 bytes of IMEI. 347 +))) 500 500 501 -486.9 - SF7BW125 to SF12BW125 349 +((( 350 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 +))) 502 502 503 -487.1 - SF7BW125 to SF12BW125 353 +((( 354 +**Example:** 355 +))) 504 504 505 -487.3 - SF7BW125 to SF12BW125 357 +((( 358 +AT+DEUI=A84041F15612 359 +))) 506 506 507 -487.5 - SF7BW125 to SF12BW125 361 +((( 362 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 +))) 508 508 509 -487.7 - SF7BW125 to SF12BW125 510 510 511 511 512 - (%style="color:#037691" %)**Downlink:**367 +=== 2.4.2 Version Info === 513 513 514 -506.7 - SF7BW125 to SF12BW125 369 +((( 370 +Specify the software version: 0x64=100, means firmware version 1.00. 371 +))) 515 515 516 -506.9 - SF7BW125 to SF12BW125 373 +((( 374 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 +))) 517 517 518 -507.1 - SF7BW125 to SF12BW125 519 519 520 -507.3 - SF7BW125 to SF12BW125 521 521 522 - 507.5- SF7BW125toSF12BW125379 +=== 2.4.3 Battery Info === 523 523 524 -507.7 - SF7BW125 to SF12BW125 381 +((( 382 +Check the battery voltage for LSE01. 383 +))) 525 525 526 -507.9 - SF7BW125 to SF12BW125 385 +((( 386 +Ex1: 0x0B45 = 2885mV 387 +))) 527 527 528 -508.1 - SF7BW125 to SF12BW125 389 +((( 390 +Ex2: 0x0B49 = 2889mV 391 +))) 529 529 530 -505.3 - SF12BW125 (RX2 downlink only) 531 531 532 532 395 +=== 2.4.4 Signal Strength === 533 533 534 -=== 2.7.4 AU915-928(AU915) === 397 +((( 398 +NB-IoT Network signal Strength. 399 +))) 535 535 536 -Default use CHE=2 401 +((( 402 +**Ex1: 0x1d = 29** 403 +))) 537 537 538 -(% style="color:#037691" %)**Uplink:** 405 +((( 406 +(% style="color:blue" %)**0**(%%) -113dBm or less 407 +))) 539 539 540 -916.8 - SF7BW125 to SF12BW125 409 +((( 410 +(% style="color:blue" %)**1**(%%) -111dBm 411 +))) 541 541 542 -917.0 - SF7BW125 to SF12BW125 413 +((( 414 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 +))) 543 543 544 -917.2 - SF7BW125 to SF12BW125 417 +((( 418 +(% style="color:blue" %)**31** (%%) -51dBm or greater 419 +))) 545 545 546 -917.4 - SF7BW125 to SF12BW125 421 +((( 422 +(% style="color:blue" %)**99** (%%) Not known or not detectable 423 +))) 547 547 548 -917.6 - SF7BW125 to SF12BW125 549 549 550 -917.8 - SF7BW125 to SF12BW125 551 551 552 - 918.0- SF7BW125toSF12BW125427 +=== 2.4.5 Soil Moisture === 553 553 554 -918.2 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 432 +))) 433 +))) 555 555 435 +((( 436 +((( 437 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 438 +))) 439 +))) 556 556 557 -(% style="color:#037691" %)**Downlink:** 441 +((( 442 + 443 +))) 558 558 559 -923.3 - SF7BW500 to SF12BW500 445 +((( 446 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 447 +))) 560 560 561 -923.9 - SF7BW500 to SF12BW500 562 562 563 -924.5 - SF7BW500 to SF12BW500 564 564 565 - 925.1-SF7BW500toSF12BW500451 +=== 2.4.6 Soil Temperature === 566 566 567 -925.7 - SF7BW500 to SF12BW500 453 +((( 454 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 455 +))) 568 568 569 -926.3 - SF7BW500 to SF12BW500 457 +((( 458 +**Example**: 459 +))) 570 570 571 -926.9 - SF7BW500 to SF12BW500 461 +((( 462 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 463 +))) 572 572 573 -927.5 - SF7BW500 to SF12BW500 465 +((( 466 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 467 +))) 574 574 575 -923.3 - SF12BW500(RX2 downlink only) 576 576 577 577 471 +=== 2.4.7 Soil Conductivity (EC) === 578 578 579 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 473 +((( 474 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 475 +))) 580 580 581 -(% style="color:#037691" %)**Default Uplink channel:** 477 +((( 478 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 479 +))) 582 582 583 -923.2 - SF7BW125 to SF10BW125 481 +((( 482 +Generally, the EC value of irrigation water is less than 800uS / cm. 483 +))) 584 584 585 -923.4 - SF7BW125 to SF10BW125 485 +((( 486 + 487 +))) 586 586 489 +((( 490 + 491 +))) 587 587 588 - (% style="color:#037691"%)**AdditionalUplink Channel**:493 +=== 2.4.8 Digital Interrupt === 589 589 590 -(OTAA mode, channel added by JoinAccept message) 495 +((( 496 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 +))) 591 591 592 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 499 +((( 500 +The command is: 501 +))) 593 593 594 -922.2 - SF7BW125 to SF10BW125 503 +((( 504 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 +))) 595 595 596 -922.4 - SF7BW125 to SF10BW125 597 597 598 -922.6 - SF7BW125 to SF10BW125 508 +((( 509 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 510 +))) 599 599 600 -922.8 - SF7BW125 to SF10BW125 601 601 602 -923.0 - SF7BW125 to SF10BW125 513 +((( 514 +Example: 515 +))) 603 603 604 -922.0 - SF7BW125 to SF10BW125 517 +((( 518 +0x(00): Normal uplink packet. 519 +))) 605 605 521 +((( 522 +0x(01): Interrupt Uplink Packet. 523 +))) 606 606 607 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 608 608 609 -923.6 - SF7BW125 to SF10BW125 610 610 611 - 923.8- SF7BW125 toSF10BW125527 +=== 2.4.9 +5V Output === 612 612 613 -924.0 - SF7BW125 to SF10BW125 529 +((( 530 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 +))) 614 614 615 -924.2 - SF7BW125 to SF10BW125 616 616 617 -924.4 - SF7BW125 to SF10BW125 534 +((( 535 +The 5V output time can be controlled by AT Command. 536 +))) 618 618 619 -924.6 - SF7BW125 to SF10BW125 538 +((( 539 +(% style="color:blue" %)**AT+5VT=1000** 540 +))) 620 620 542 +((( 543 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 +))) 621 621 622 -(% style="color:#037691" %)** Downlink:** 623 623 624 -Uplink channels 1-8 (RX1) 625 625 626 - 923.2-SF10BW125(RX2)548 +== 2.5 Downlink Payload == 627 627 550 +By default, NSE01 prints the downlink payload to console port. 628 628 552 +[[image:image-20220708133731-5.png]] 629 629 630 -=== 2.7.6 KR920-923 (KR920) === 631 631 632 -Default channel: 555 +((( 556 +(% style="color:blue" %)**Examples:** 557 +))) 633 633 634 -922.1 - SF7BW125 to SF12BW125 559 +((( 560 + 561 +))) 635 635 636 -922.3 - SF7BW125 to SF12BW125 563 +* ((( 564 +(% style="color:blue" %)**Set TDC** 565 +))) 637 637 638 -922.5 - SF7BW125 to SF12BW125 567 +((( 568 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 569 +))) 639 639 571 +((( 572 +Payload: 01 00 00 1E TDC=30S 573 +))) 640 640 641 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 575 +((( 576 +Payload: 01 00 00 3C TDC=60S 577 +))) 642 642 643 -922.1 - SF7BW125 to SF12BW125 579 +((( 580 + 581 +))) 644 644 645 -922.3 - SF7BW125 to SF12BW125 583 +* ((( 584 +(% style="color:blue" %)**Reset** 585 +))) 646 646 647 -922.5 - SF7BW125 to SF12BW125 587 +((( 588 +If payload = 0x04FF, it will reset the NSE01 589 +))) 648 648 649 -922.7 - SF7BW125 to SF12BW125 650 650 651 - 922.9-SF7BW125toSF12BW125592 +* (% style="color:blue" %)**INTMOD** 652 652 653 -923.1 - SF7BW125 to SF12BW125 594 +((( 595 +Downlink Payload: 06000003, Set AT+INTMOD=3 596 +))) 654 654 655 -923.3 - SF7BW125 to SF12BW125 656 656 657 657 658 - (% style="color:#037691"%)**Downlink:**600 +== 2.6 LED Indicator == 659 659 660 -Uplink channels 1-7(RX1) 602 +((( 603 +The NSE01 has an internal LED which is to show the status of different state. 661 661 662 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 663 663 606 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 607 +* Then the LED will be on for 1 second means device is boot normally. 608 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 609 +* For each uplink probe, LED will be on for 500ms. 610 +))) 664 664 665 665 666 -=== 2.7.7 IN865-867 (IN865) === 667 667 668 -(% style="color:#037691" %)** Uplink:** 669 669 670 - 865.0625- SF7BW125to SF12BW125615 +== 2.7 Installation in Soil == 671 671 672 - 865.4025- SF7BW125toSF12BW125617 +__**Measurement the soil surface**__ 673 673 674 -865.9850 - SF7BW125 to SF12BW125 619 +((( 620 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 621 +))) 675 675 623 +[[image:1657259653666-883.png]] 676 676 677 -(% style="color:#037691" %) **Downlink:** 678 678 679 -Uplink channels 1-3 (RX1) 626 +((( 627 + 680 680 681 -866.550 - SF10BW125 (RX2) 629 +((( 630 +Dig a hole with diameter > 20CM. 631 +))) 682 682 633 +((( 634 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 635 +))) 636 +))) 683 683 638 +[[image:1654506665940-119.png]] 684 684 640 +((( 641 + 642 +))) 685 685 686 -== 2.8 LED Indicator == 687 687 688 - TheLSE01has aninternal LEDwhich is to show the status of differentstate.645 +== 2.8 Firmware Change Log == 689 689 690 -* Blink once when device power on. 691 -* Solid ON for 5 seconds once device successful Join the network. 692 -* Blink once when device transmit a packet. 693 693 648 +Download URL & Firmware Change log 694 694 650 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 695 695 696 -== 2.9 Installation in Soil == 697 697 698 - **Measurement the soil surface**653 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 699 699 700 700 701 -[[image:1654506634463-199.png]] 702 702 703 -((( 704 -((( 705 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 706 -))) 707 -))) 657 +== 2.9 Battery Analysis == 708 708 659 +=== 2.9.1 Battery Type === 709 709 710 710 711 -[[image:1654506665940-119.png]] 712 - 713 713 ((( 714 - Diga hole with diameter>20CM.663 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 715 715 ))) 716 716 666 + 717 717 ((( 718 - Horizontalinserttheprobe to thesoil andfilltheholeforlong termmeasurement.668 +The battery is designed to last for several years depends on the actually use environment and update interval. 719 719 ))) 720 720 721 721 722 -== 2.10 Firmware Change Log == 723 - 724 724 ((( 725 - **Firmware downloadlink:**673 +The battery related documents as below: 726 726 ))) 727 727 728 - (((729 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]730 - )))676 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 677 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 731 731 732 732 ((( 733 - 681 +[[image:image-20220708140453-6.png]] 734 734 ))) 735 735 736 -((( 737 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 738 -))) 739 739 740 -((( 741 - 742 -))) 743 743 744 -((( 745 -**V1.0.** 746 -))) 686 +=== 2.9.2 Power consumption Analyze === 747 747 748 748 ((( 749 - Release689 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 750 750 ))) 751 751 752 752 753 -== 2.11 Battery Analysis == 754 - 755 -=== 2.11.1 Battery Type === 756 - 757 757 ((( 758 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.694 +Instruction to use as below: 759 759 ))) 760 760 761 761 ((( 762 - Thebatterys designedlastforrethan5 years fortheSN50.698 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 763 763 ))) 764 764 701 + 765 765 ((( 766 -((( 767 -The battery-related documents are as below: 703 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 768 768 ))) 769 -))) 770 770 771 771 * ((( 772 - [[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],707 +Product Model 773 773 ))) 774 774 * ((( 775 - [[Lithium-ThionylChloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],710 +Uplink Interval 776 776 ))) 777 777 * ((( 778 - [[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]713 +Working Mode 779 779 ))) 780 780 781 - [[image:image-20220610172436-1.png]] 716 +((( 717 +And the Life expectation in difference case will be shown on the right. 718 +))) 782 782 720 +[[image:image-20220708141352-7.jpeg]] 783 783 784 784 785 -=== 2.11.2 Battery Note === 786 786 724 +=== 2.9.3 Battery Note === 725 + 787 787 ((( 788 788 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 789 789 ))) ... ... @@ -790,302 +790,176 @@ 790 790 791 791 792 792 793 -=== 2. 11.3Replace the battery ===732 +=== 2.9.4 Replace the battery === 794 794 795 795 ((( 796 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.735 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 797 797 ))) 798 798 738 + 739 + 740 += 3. Access NB-IoT Module = 741 + 799 799 ((( 800 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.743 +Users can directly access the AT command set of the NB-IoT module. 801 801 ))) 802 802 803 803 ((( 804 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)747 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 805 805 ))) 806 806 750 +[[image:1657261278785-153.png]] 807 807 808 808 809 -= 3. Using the AT Commands = 810 810 811 -= =3.1AccessAT Commands ==754 += 4. Using the AT Commands = 812 812 756 +== 4.1 Access AT Commands == 813 813 814 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.758 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 815 815 816 -[[image:1654501986557-872.png||height="391" width="800"]] 817 817 761 +AT+<CMD>? : Help on <CMD> 818 818 819 - Orifyouhavebelowboard,usebelowconnection:763 +AT+<CMD> : Run <CMD> 820 820 765 +AT+<CMD>=<value> : Set the value 821 821 822 - [[image:1654502005655-729.png||height="503"width="801"]]767 +AT+<CMD>=? : Get the value 823 823 824 824 825 - 826 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 827 - 828 - 829 - [[image:1654502050864-459.png||height="564" width="806"]] 830 - 831 - 832 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 833 - 834 - 835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 836 - 837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 838 - 839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 840 - 841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 842 - 843 - 844 844 (% style="color:#037691" %)**General Commands**(%%) 845 845 846 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention772 +AT : Attention 847 847 848 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help774 +AT? : Short Help 849 849 850 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset776 +ATZ : MCU Reset 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval778 +AT+TDC : Application Data Transmission Interval 853 853 780 +AT+CFG : Print all configurations 854 854 855 - (%style="color:#037691"%)**Keys,IDsand EUIs management**782 +AT+CFGMOD : Working mode selection 856 856 857 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI784 +AT+INTMOD : Set the trigger interrupt mode 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey786 +AT+5VT : Set extend the time of 5V power 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key788 +AT+PRO : Choose agreement 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress790 +AT+WEIGRE : Get weight or set weight to 0 864 864 865 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI792 +AT+WEIGAP : Get or Set the GapValue of weight 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)794 +AT+RXDL : Extend the sending and receiving time 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network796 +AT+CNTFAC : Get or set counting parameters 870 870 871 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode798 +AT+SERVADDR : Server Address 872 872 873 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 874 874 875 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network801 +(% style="color:#037691" %)**COAP Management** 876 876 877 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode803 +AT+URI : Resource parameters 878 878 879 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 880 880 881 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format806 +(% style="color:#037691" %)**UDP Management** 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat808 +AT+CFM : Upload confirmation mode (only valid for UDP) 884 884 885 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 886 886 887 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data811 +(% style="color:#037691" %)**MQTT Management** 888 888 813 +AT+CLIENT : Get or Set MQTT client 889 889 890 - (%style="color:#037691"%)**LoRaNetworkManagement**815 +AT+UNAME : Get or Set MQTT Username 891 891 892 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate817 +AT+PWD : Get or Set MQTT password 893 893 894 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA819 +AT+PUBTOPIC : Get or Set MQTT publish topic 895 895 896 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting821 +AT+SUBTOPIC : Get or Set MQTT subscription topic 897 897 898 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 899 899 900 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink824 +(% style="color:#037691" %)**Information** 901 901 902 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink826 +AT+FDR : Factory Data Reset 903 903 904 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1828 +AT+PWORD : Serial Access Password 905 905 906 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 907 907 908 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 909 909 910 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1832 += 5. FAQ = 911 911 912 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2834 +== 5.1 How to Upgrade Firmware == 913 913 914 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 915 915 916 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 921 - 922 - 923 -(% style="color:#037691" %)**Information** 924 - 925 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 926 - 927 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 928 - 929 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 930 - 931 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 932 - 933 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 934 - 935 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 936 - 937 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 938 - 939 - 940 -= 4. FAQ = 941 - 942 -== 4.1 How to change the LoRa Frequency Bands/Region? == 943 - 944 944 ((( 945 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 946 -When downloading the images, choose the required image file for download. 838 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 947 947 ))) 948 948 949 949 ((( 950 - 842 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 951 951 ))) 952 952 953 953 ((( 954 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.846 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 955 955 ))) 956 956 957 -((( 958 - 959 -))) 960 960 961 -((( 962 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 963 -))) 964 964 965 -((( 966 - 967 -))) 851 +== 5.2 Can I calibrate NSE01 to different soil types? == 968 968 969 969 ((( 970 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.854 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 971 971 ))) 972 972 973 -[[image:image-20220606154726-3.png]] 974 974 858 += 6. Trouble Shooting = 975 975 976 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:860 +== 6.1 Connection problem when uploading firmware == 977 977 978 -* 903.9 - SF7BW125 to SF10BW125 979 -* 904.1 - SF7BW125 to SF10BW125 980 -* 904.3 - SF7BW125 to SF10BW125 981 -* 904.5 - SF7BW125 to SF10BW125 982 -* 904.7 - SF7BW125 to SF10BW125 983 -* 904.9 - SF7BW125 to SF10BW125 984 -* 905.1 - SF7BW125 to SF10BW125 985 -* 905.3 - SF7BW125 to SF10BW125 986 -* 904.6 - SF8BW500 987 987 988 988 ((( 989 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 990 - 991 -* (% style="color:#037691" %)**AT+CHE=2** 992 -* (% style="color:#037691" %)**ATZ** 864 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 993 993 ))) 994 994 867 +(% class="wikigeneratedid" %) 995 995 ((( 996 996 997 - 998 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 999 999 ))) 1000 1000 1001 -((( 1002 - 1003 -))) 1004 1004 1005 -((( 1006 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1007 -))) 873 +== 6.2 AT Command input doesn't work == 1008 1008 1009 -[[image:image-20220606154825-4.png]] 1010 - 1011 - 1012 -== 4.2 Can I calibrate LSE01 to different soil types? == 1013 - 1014 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1015 - 1016 - 1017 -= 5. Trouble Shooting = 1018 - 1019 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1020 - 1021 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1022 - 1023 - 1024 -== 5.2 AT Command input doesn’t work == 1025 - 1026 1026 ((( 1027 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1028 -))) 876 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1029 1029 1030 - 1031 -== 5.3 Device rejoin in at the second uplink packet == 1032 - 1033 -(% style="color:#4f81bd" %)**Issue describe as below:** 1034 - 1035 -[[image:1654500909990-784.png]] 1036 - 1037 - 1038 -(% style="color:#4f81bd" %)**Cause for this issue:** 1039 - 1040 -((( 1041 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 878 + 1042 1042 ))) 1043 1043 1044 1044 1045 - (% style="color:#4f81bd"%)**Solution:**882 += 7. Order Info = 1046 1046 1047 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1048 1048 1049 - [[image:1654500929571-736.png||height="458" width="832"]]885 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1050 1050 1051 1051 1052 -= 6. Order Info = 1053 - 1054 - 1055 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1056 - 1057 - 1058 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1059 - 1060 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1061 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1062 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1063 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1064 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1065 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1066 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1067 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1068 - 1069 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1070 - 1071 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1072 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1073 - 1074 1074 (% class="wikigeneratedid" %) 1075 1075 ((( 1076 1076 1077 1077 ))) 1078 1078 1079 -= 7. Packing Info =893 += 8. Packing Info = 1080 1080 1081 1081 ((( 1082 1082 1083 1083 1084 1084 (% style="color:#037691" %)**Package Includes**: 1085 -))) 1086 1086 1087 -* (((1088 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1900 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 901 +* External antenna x 1 1089 1089 ))) 1090 1090 1091 1091 ((( ... ... @@ -1092,24 +1092,19 @@ 1092 1092 1093 1093 1094 1094 (% style="color:#037691" %)**Dimension and weight**: 1095 -))) 1096 1096 1097 -* (((1098 - DeviceSize:cm909 +* Size: 195 x 125 x 55 mm 910 +* Weight: 420g 1099 1099 ))) 1100 -* ((( 1101 -Device Weight: g 1102 -))) 1103 -* ((( 1104 -Package Size / pcs : cm 1105 -))) 1106 -* ((( 1107 -Weight / pcs : g 1108 1108 913 +((( 1109 1109 915 + 916 + 917 + 1110 1110 ))) 1111 1111 1112 -= 8. Support =920 += 9. Support = 1113 1113 1114 1114 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1115 1115 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content