<
From version < 40.2 >
edited by Xiaoling
on 2022/06/30 10:37
To version < 67.2 >
edited by Xiaoling
on 2022/07/08 18:09
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,5 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:1657271519014-786.png]]
3 3  
4 4  
5 5  
... ... @@ -10,10 +10,8 @@
10 10  
11 11  
12 12  
13 -
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
... ... @@ -20,770 +20,705 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
21 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
23 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
40 40  
34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*.
35 +
36 +~* Actually lifetime depends on network coverage and uplink interval and other factors
37 +
41 41  (((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
39 +
43 43  )))
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
42 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
48 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
52 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
62 +* Ultra-Low Power consumption
63 +* AT Commands to change parameters
64 +* Micro SIM card slot for NB-IoT SIM
65 +* 8500mAh Battery for long term use
70 70  
71 71  
72 72  
73 -== 1.3 Specification ==
69 +== 1.3  Specification ==
74 74  
75 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 76  
77 -[[image:image-20220606162220-5.png]]
72 +(% style="color:#037691" %)**Common DC Characteristics:**
78 78  
74 +* Supply Voltage: 2.1v ~~ 3.6v
75 +* Operating Temperature: -40 ~~ 85°C
79 79  
77 +(% style="color:#037691" %)**NB-IoT Spec:**
80 80  
81 -== ​1.4 Applications ==
79 +* - B1 @H-FDD: 2100MHz
80 +* - B3 @H-FDD: 1800MHz
81 +* - B8 @H-FDD: 900MHz
82 +* - B5 @H-FDD: 850MHz
83 +* - B20 @H-FDD: 800MHz
84 +* - B28 @H-FDD: 700MHz
82 82  
83 -* Smart Agriculture
86 +Probe(% style="color:#037691" %)** Specification:**
84 84  
85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 -​
88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
87 87  
88 -== 1.5 Firmware Change log ==
90 +[[image:image-20220708101224-1.png]]
89 89  
90 90  
91 -**LSE01 v1.0 :**  Release
92 92  
94 +== ​1.4  Applications ==
93 93  
96 +* Smart Agriculture
94 94  
95 -= 2. Configure LSE01 to connect to LoRaWAN network =
98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 +​
96 96  
97 -== 2.1 How it works ==
101 +== 1.5  Pin Definitions ==
98 98  
99 -(((
100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
101 -)))
102 102  
103 -(((
104 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
105 -)))
104 +[[image:1657246476176-652.png]]
106 106  
107 107  
108 108  
109 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
108 += 2.  Use NSE01 to communicate with IoT Server =
110 110  
111 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
110 +== 2. How it works ==
112 112  
113 113  
114 -[[image:1654503992078-669.png]]
115 -
116 -
117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
118 -
119 -
120 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
121 -
122 -Each LSE01 is shipped with a sticker with the default device EUI as below:
123 -
124 -[[image:image-20220606163732-6.jpeg]]
125 -
126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
127 -
128 -**Add APP EUI in the application**
129 -
130 -
131 -[[image:1654504596150-405.png]]
132 -
133 -
134 -
135 -**Add APP KEY and DEV EUI**
136 -
137 -[[image:1654504683289-357.png]]
138 -
139 -
140 -
141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
142 -
143 -
144 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
145 -
146 -[[image:image-20220606163915-7.png]]
147 -
148 -
149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 -
151 -[[image:1654504778294-788.png]]
152 -
153 -
154 -
155 -== 2.3 Uplink Payload ==
156 -
157 -
158 -=== 2.3.1 MOD~=0(Default Mode) ===
159 -
160 -LSE01 will uplink payload via LoRaWAN with below payload format: 
161 -
162 162  (((
163 -Uplink payload includes in total 11 bytes.
114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
164 164  )))
165 165  
166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 -|(((
168 -**Size**
169 169  
170 -**(bytes)**
171 -)))|**2**|**2**|**2**|**2**|**2**|**1**
172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 -Temperature
174 -
175 -(Reserve, Ignore now)
176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 -MOD & Digital Interrupt
178 -
179 -(Optional)
180 -)))
181 -
182 -=== 2.3.2 MOD~=1(Original value) ===
183 -
184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
185 -
186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 -|(((
188 -**Size**
189 -
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 -Temperature
194 -
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 -MOD & Digital Interrupt
198 -
199 -(Optional)
200 -)))
201 -
202 -=== 2.3.3 Battery Info ===
203 -
204 204  (((
205 -Check the battery voltage for LSE01.
119 +The diagram below shows the working flow in default firmware of NSE01:
206 206  )))
207 207  
208 -(((
209 -Ex1: 0x0B45 = 2885mV
210 -)))
122 +[[image:image-20220708101605-2.png]]
211 211  
212 212  (((
213 -Ex2: 0x0B49 = 2889mV
214 -)))
215 -
216 -
217 -
218 -=== 2.3.4 Soil Moisture ===
219 -
220 -(((
221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 -)))
223 -
224 -(((
225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
226 -)))
227 -
228 -(((
229 229  
230 230  )))
231 231  
232 -(((
233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
234 -)))
235 235  
236 236  
130 +== 2.2 ​ Configure the NSE01 ==
237 237  
238 -=== 2.3.5 Soil Temperature ===
239 239  
240 -(((
241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
242 -)))
133 +=== 2.2.1 Test Requirement ===
243 243  
244 -(((
245 -**Example**:
246 -)))
247 247  
248 248  (((
249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
137 +To use NSE01 in your city, make sure meet below requirements:
250 250  )))
251 251  
252 -(((
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
254 -)))
140 +* Your local operator has already distributed a NB-IoT Network there.
141 +* The local NB-IoT network used the band that NSE01 supports.
142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
255 255  
256 -
257 -
258 -=== 2.3.6 Soil Conductivity (EC) ===
259 -
260 260  (((
261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
262 262  )))
263 263  
264 -(((
265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
266 -)))
267 267  
268 -(((
269 -Generally, the EC value of irrigation water is less than 800uS / cm.
270 -)))
149 +[[image:1657249419225-449.png]]
271 271  
272 -(((
273 -
274 -)))
275 275  
276 -(((
277 -
278 -)))
279 279  
280 -=== 2.3.7 MOD ===
153 +=== 2.2.2 Insert SIM card ===
281 281  
282 -Firmware version at least v2.1 supports changing mode.
283 -
284 -For example, bytes[10]=90
285 -
286 -mod=(bytes[10]>>7)&0x01=1.
287 -
288 -
289 -**Downlink Command:**
290 -
291 -If payload = 0x0A00, workmode=0
292 -
293 -If** **payload =** **0x0A01, workmode=1
294 -
295 -
296 -
297 -=== 2.3.8 ​Decode payload in The Things Network ===
298 -
299 -While using TTN network, you can add the payload format to decode the payload.
300 -
301 -
302 -[[image:1654505570700-128.png]]
303 -
304 304  (((
305 -The payload decoder function for TTN is here:
156 +Insert the NB-IoT Card get from your provider.
306 306  )))
307 307  
308 308  (((
309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
160 +User need to take out the NB-IoT module and insert the SIM card like below:
310 310  )))
311 311  
312 312  
313 -== 2.4 Uplink Interval ==
164 +[[image:1657249468462-536.png]]
314 314  
315 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
316 316  
317 317  
168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
318 318  
319 -== 2.5 Downlink Payload ==
320 -
321 -By default, LSE50 prints the downlink payload to console port.
322 -
323 -[[image:image-20220606165544-8.png]]
324 -
325 -
326 326  (((
327 -**Examples:**
328 -)))
329 -
330 330  (((
331 -
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
332 332  )))
333 -
334 -* (((
335 -**Set TDC**
336 336  )))
337 337  
338 -(((
339 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
340 -)))
341 341  
342 -(((
343 -Payload:    01 00 00 1E    TDC=30S
344 -)))
177 +**Connection:**
345 345  
346 -(((
347 -Payload:    01 00 00 3C    TDC=60S
348 -)))
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
349 349  
350 -(((
351 -
352 -)))
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
353 353  
354 -* (((
355 -**Reset**
356 -)))
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
357 357  
358 -(((
359 -If payload = 0x04FF, it will reset the LSE01
360 -)))
361 361  
186 +In the PC, use below serial tool settings:
362 362  
363 -* **CFM**
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
364 364  
365 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
366 -
367 -
368 -
369 -== 2.6 ​Show Data in DataCake IoT Server ==
370 -
371 371  (((
372 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
373 373  )))
374 374  
375 -(((
376 -
377 -)))
198 +[[image:image-20220708110657-3.png]]
378 378  
379 379  (((
380 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
381 381  )))
382 382  
383 -(((
384 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
385 -)))
386 386  
387 387  
388 -[[image:1654505857935-743.png]]
206 +=== 2.2.4 Use CoAP protocol to uplink data ===
389 389  
208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
390 390  
391 -[[image:1654505874829-548.png]]
392 392  
211 +**Use below commands:**
393 393  
394 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
213 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
395 395  
396 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
217 +For parameter description, please refer to AT command set
397 397  
219 +[[image:1657249793983-486.png]]
398 398  
399 -[[image:1654505905236-553.png]]
400 400  
222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
401 401  
402 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
224 +[[image:1657249831934-534.png]]
403 403  
404 -[[image:1654505925508-181.png]]
405 405  
406 406  
228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
407 407  
408 -== 2.7 Frequency Plans ==
230 +This feature is supported since firmware version v1.0.1
409 409  
410 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
411 411  
233 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
235 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
412 412  
413 -=== 2.7.1 EU863-870 (EU868) ===
237 +[[image:1657249864775-321.png]]
414 414  
415 -(% style="color:#037691" %)** Uplink:**
416 416  
417 -868.1 - SF7BW125 to SF12BW125
240 +[[image:1657249930215-289.png]]
418 418  
419 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
420 420  
421 -868.5 - SF7BW125 to SF12BW125
422 422  
423 -867.1 - SF7BW125 to SF12BW125
244 +=== 2.2.6 Use MQTT protocol to uplink data ===
424 424  
425 -867.3 - SF7BW125 to SF12BW125
246 +This feature is supported since firmware version v110
426 426  
427 -867.5 - SF7BW125 to SF12BW125
428 428  
429 -867.7 - SF7BW125 to SF12BW125
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
430 430  
431 -867.9 - SF7BW125 to SF12BW125
257 +[[image:1657249978444-674.png]]
432 432  
433 -868.8 - FSK
434 434  
260 +[[image:1657249990869-686.png]]
435 435  
436 -(% style="color:#037691" %)** Downlink:**
437 437  
438 -Uplink channels 1-9 (RX1)
263 +(((
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 +)))
439 439  
440 -869.525 - SF9BW125 (RX2 downlink only)
441 441  
442 442  
269 +=== 2.2.7 Use TCP protocol to uplink data ===
443 443  
444 -=== 2.7.2 US902-928(US915) ===
271 +This feature is supported since firmware version v110
445 445  
446 -Used in USA, Canada and South America. Default use CHE=2
447 447  
448 -(% style="color:#037691" %)**Uplink:**
274 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
449 449  
450 -903.9 - SF7BW125 to SF10BW125
277 +[[image:1657250217799-140.png]]
451 451  
452 -904.1 - SF7BW125 to SF10BW125
453 453  
454 -904.3 - SF7BW125 to SF10BW125
280 +[[image:1657250255956-604.png]]
455 455  
456 -904.5 - SF7BW125 to SF10BW125
457 457  
458 -904.7 - SF7BW125 to SF10BW125
459 459  
460 -904.9 - SF7BW125 to SF10BW125
284 +=== 2.2.8 Change Update Interval ===
461 461  
462 -905.1 - SF7BW125 to SF10BW125
286 +User can use below command to change the (% style="color:green" %)**uplink interval**.
463 463  
464 -905.3 - SF7BW125 to SF10BW125
288 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
465 465  
290 +(((
291 +(% style="color:red" %)**NOTE:**
292 +)))
466 466  
467 -(% style="color:#037691" %)**Downlink:**
294 +(((
295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
296 +)))
468 468  
469 -923.3 - SF7BW500 to SF12BW500
470 470  
471 -923.9 - SF7BW500 to SF12BW500
472 472  
473 -924.5 - SF7BW500 to SF12BW500
300 +== 2. Uplink Payload ==
474 474  
475 -925.1 - SF7BW500 to SF12BW500
302 +In this mode, uplink payload includes in total 18 bytes
476 476  
477 -925.7 - SF7BW500 to SF12BW500
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 +|=(% style="width: 60px;" %)(((
306 +**Size(bytes)**
307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
478 478  
479 -926.3 - SF7BW500 to SF12BW500
310 +(((
311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
312 +)))
480 480  
481 -926.9 - SF7BW500 to SF12BW500
482 482  
483 -927.5 - SF7BW500 to SF12BW500
315 +[[image:image-20220708111918-4.png]]
484 484  
485 -923.3 - SF12BW500(RX2 downlink only)
486 486  
318 +The payload is ASCII string, representative same HEX:
487 487  
320 +0x72403155615900640c7817075e0a8c02f900 where:
488 488  
489 -=== 2.7.3 CN470-510 (CN470) ===
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
490 490  
491 -Used in China, Default use CHE=1
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
492 492  
493 -(% style="color:#037691" %)**Uplink:**
494 494  
495 -486.3 - SF7BW125 to SF12BW125
496 496  
497 -486.5 - SF7BW125 to SF12BW125
334 +== 2.4  Payload Explanation and Sensor Interface ==
498 498  
499 -486.7 - SF7BW125 to SF12BW125
500 500  
501 -486.9 - SF7BW125 to SF12BW125
337 +=== 2.4.1  Device ID ===
502 502  
503 -487.1 - SF7BW125 to SF12BW125
339 +(((
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
341 +)))
504 504  
505 -487.3 - SF7BW125 to SF12BW125
343 +(((
344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
345 +)))
506 506  
507 -487.5 - SF7BW125 to SF12BW125
347 +(((
348 +**Example:**
349 +)))
508 508  
509 -487.7 - SF7BW125 to SF12BW125
351 +(((
352 +AT+DEUI=A84041F15612
353 +)))
510 510  
355 +(((
356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
357 +)))
511 511  
512 -(% style="color:#037691" %)**Downlink:**
513 513  
514 -506.7 - SF7BW125 to SF12BW125
515 515  
516 -506.9 - SF7BW125 to SF12BW125
361 +=== 2.4.2  Version Info ===
517 517  
518 -507.1 - SF7BW125 to SF12BW125
363 +(((
364 +Specify the software version: 0x64=100, means firmware version 1.00.
365 +)))
519 519  
520 -507.3 - SF7BW125 to SF12BW125
367 +(((
368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 +)))
521 521  
522 -507.5 - SF7BW125 to SF12BW125
523 523  
524 -507.7 - SF7BW125 to SF12BW125
525 525  
526 -507.9 - SF7BW125 to SF12BW125
373 +=== 2.4.3  Battery Info ===
527 527  
528 -508.1 - SF7BW125 to SF12BW125
375 +(((
376 +Check the battery voltage for LSE01.
377 +)))
529 529  
530 -505.3 - SF12BW125 (RX2 downlink only)
379 +(((
380 +Ex1: 0x0B45 = 2885mV
381 +)))
531 531  
383 +(((
384 +Ex2: 0x0B49 = 2889mV
385 +)))
532 532  
533 533  
534 -=== 2.7.4 AU915-928(AU915) ===
535 535  
536 -Default use CHE=2
389 +=== 2.4.4  Signal Strength ===
537 537  
538 -(% style="color:#037691" %)**Uplink:**
391 +(((
392 +NB-IoT Network signal Strength.
393 +)))
539 539  
540 -916.8 - SF7BW125 to SF12BW125
395 +(((
396 +**Ex1: 0x1d = 29**
397 +)))
541 541  
542 -917.0 - SF7BW125 to SF12BW125
399 +(((
400 +(% style="color:blue" %)**0**(%%)  -113dBm or less
401 +)))
543 543  
544 -917.2 - SF7BW125 to SF12BW125
403 +(((
404 +(% style="color:blue" %)**1**(%%)  -111dBm
405 +)))
545 545  
546 -917.4 - SF7BW125 to SF12BW125
407 +(((
408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
409 +)))
547 547  
548 -917.6 - SF7BW125 to SF12BW125
411 +(((
412 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
413 +)))
549 549  
550 -917.8 - SF7BW125 to SF12BW125
415 +(((
416 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 +)))
551 551  
552 -918.0 - SF7BW125 to SF12BW125
553 553  
554 -918.2 - SF7BW125 to SF12BW125
555 555  
421 +=== 2.4.5  Soil Moisture ===
556 556  
557 -(% style="color:#037691" %)**Downlink:**
423 +(((
424 +(((
425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
426 +)))
427 +)))
558 558  
559 -923.3 - SF7BW500 to SF12BW500
429 +(((
430 +(((
431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
432 +)))
433 +)))
560 560  
561 -923.9 - SF7BW500 to SF12BW500
435 +(((
436 +
437 +)))
562 562  
563 -924.5 - SF7BW500 to SF12BW500
439 +(((
440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
441 +)))
564 564  
565 -925.1 - SF7BW500 to SF12BW500
566 566  
567 -925.7 - SF7BW500 to SF12BW500
568 568  
569 -926.3 - SF7BW500 to SF12BW500
445 +=== 2.4.6  Soil Temperature ===
570 570  
571 -926.9 - SF7BW500 to SF12BW500
447 +(((
448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
449 +)))
572 572  
573 -927.5 - SF7BW500 to SF12BW500
451 +(((
452 +**Example**:
453 +)))
574 574  
575 -923.3 - SF12BW500(RX2 downlink only)
455 +(((
456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
457 +)))
576 576  
459 +(((
460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
461 +)))
577 577  
578 578  
579 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
580 580  
581 -(% style="color:#037691" %)**Default Uplink channel:**
465 +=== 2.4.7  Soil Conductivity (EC) ===
582 582  
583 -923.2 - SF7BW125 to SF10BW125
467 +(((
468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
469 +)))
584 584  
585 -923.4 - SF7BW125 to SF10BW125
471 +(((
472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
473 +)))
586 586  
475 +(((
476 +Generally, the EC value of irrigation water is less than 800uS / cm.
477 +)))
587 587  
588 -(% style="color:#037691" %)**Additional Uplink Channel**:
479 +(((
480 +
481 +)))
589 589  
590 -(OTAA mode, channel added by JoinAccept message)
483 +(((
484 +
485 +)))
591 591  
592 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
487 +=== 2.4.8  Digital Interrupt ===
593 593  
594 -922.2 - SF7BW125 to SF10BW125
489 +(((
490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
491 +)))
595 595  
596 -922.4 - SF7BW125 to SF10BW125
493 +(((
494 +The command is:
495 +)))
597 597  
598 -922.6 - SF7BW125 to SF10BW125
497 +(((
498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
499 +)))
599 599  
600 -922.8 - SF7BW125 to SF10BW125
601 601  
602 -923.0 - SF7BW125 to SF10BW125
502 +(((
503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
504 +)))
603 603  
604 -922.0 - SF7BW125 to SF10BW125
605 605  
507 +(((
508 +Example:
509 +)))
606 606  
607 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
511 +(((
512 +0x(00): Normal uplink packet.
513 +)))
608 608  
609 -923.6 - SF7BW125 to SF10BW125
515 +(((
516 +0x(01): Interrupt Uplink Packet.
517 +)))
610 610  
611 -923.8 - SF7BW125 to SF10BW125
612 612  
613 -924.0 - SF7BW125 to SF10BW125
614 614  
615 -924.2 - SF7BW125 to SF10BW125
521 +=== 2.4. ​+5V Output ===
616 616  
617 -924.4 - SF7BW125 to SF10BW125
523 +(((
524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
525 +)))
618 618  
619 -924.6 - SF7BW125 to SF10BW125
620 620  
528 +(((
529 +The 5V output time can be controlled by AT Command.
530 +)))
621 621  
622 -(% style="color:#037691" %)** Downlink:**
532 +(((
533 +(% style="color:blue" %)**AT+5VT=1000**
534 +)))
623 623  
624 -Uplink channels 1-8 (RX1)
536 +(((
537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 +)))
625 625  
626 -923.2 - SF10BW125 (RX2)
627 627  
628 628  
542 +== 2.5  Downlink Payload ==
629 629  
630 -=== 2.7.6 KR920-923 (KR920) ===
544 +By default, NSE01 prints the downlink payload to console port.
631 631  
632 -Default channel:
546 +[[image:image-20220708133731-5.png]]
633 633  
634 -922.1 - SF7BW125 to SF12BW125
635 635  
636 -922.3 - SF7BW125 to SF12BW125
549 +(((
550 +(% style="color:blue" %)**Examples:**
551 +)))
637 637  
638 -922.5 - SF7BW125 to SF12BW125
553 +(((
554 +
555 +)))
639 639  
557 +* (((
558 +(% style="color:blue" %)**Set TDC**
559 +)))
640 640  
641 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
561 +(((
562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
563 +)))
642 642  
643 -922.1 - SF7BW125 to SF12BW125
565 +(((
566 +Payload:    01 00 00 1E    TDC=30S
567 +)))
644 644  
645 -922.3 - SF7BW125 to SF12BW125
569 +(((
570 +Payload:    01 00 00 3C    TDC=60S
571 +)))
646 646  
647 -922.5 - SF7BW125 to SF12BW125
573 +(((
574 +
575 +)))
648 648  
649 -922.7 - SF7BW125 to SF12BW125
577 +* (((
578 +(% style="color:blue" %)**Reset**
579 +)))
650 650  
651 -922.9 - SF7BW125 to SF12BW125
581 +(((
582 +If payload = 0x04FF, it will reset the NSE01
583 +)))
652 652  
653 -923.1 - SF7BW125 to SF12BW125
654 654  
655 -923.3 - SF7BW125 to SF12BW125
586 +* (% style="color:blue" %)**INTMOD**
656 656  
588 +(((
589 +Downlink Payload: 06000003, Set AT+INTMOD=3
590 +)))
657 657  
658 -(% style="color:#037691" %)**Downlink:**
659 659  
660 -Uplink channels 1-7(RX1)
661 661  
662 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
594 +== 2. ​LED Indicator ==
663 663  
596 +(((
597 +The NSE01 has an internal LED which is to show the status of different state.
664 664  
665 665  
666 -=== 2.7.7 IN865-867 (IN865) ===
600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
601 +* Then the LED will be on for 1 second means device is boot normally.
602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
603 +* For each uplink probe, LED will be on for 500ms.
604 +)))
667 667  
668 -(% style="color:#037691" %)** Uplink:**
669 669  
670 -865.0625 - SF7BW125 to SF12BW125
671 671  
672 -865.4025 - SF7BW125 to SF12BW125
673 673  
674 -865.9850 - SF7BW125 to SF12BW125
609 +== 2.7  Installation in Soil ==
675 675  
611 +__**Measurement the soil surface**__
676 676  
677 -(% style="color:#037691" %) **Downlink:**
613 +(((
614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
615 +)))
678 678  
679 -Uplink channels 1-3 (RX1)
617 +[[image:1657259653666-883.png]]
680 680  
681 -866.550 - SF10BW125 (RX2)
682 682  
620 +(((
621 +
683 683  
623 +(((
624 +Dig a hole with diameter > 20CM.
625 +)))
684 684  
627 +(((
628 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
629 +)))
630 +)))
685 685  
686 -== 2.8 LED Indicator ==
632 +[[image:1654506665940-119.png]]
687 687  
688 -The LSE01 has an internal LED which is to show the status of different state.
634 +(((
635 +
636 +)))
689 689  
690 -* Blink once when device power on.
691 -* Solid ON for 5 seconds once device successful Join the network.
692 -* Blink once when device transmit a packet.
693 693  
639 +== 2.8  ​Firmware Change Log ==
694 694  
695 695  
696 -== 2.9 Installation in Soil ==
642 +Download URL & Firmware Change log
697 697  
698 -**Measurement the soil surface**
644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
699 699  
700 700  
701 -[[image:1654506634463-199.png]]
647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
702 702  
703 -(((
704 -(((
705 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
706 -)))
707 -)))
708 708  
709 709  
651 +== 2.9  ​Battery Analysis ==
710 710  
711 -[[image:1654506665940-119.png]]
653 +=== 2.9.1  ​Battery Type ===
712 712  
713 -(((
714 -Dig a hole with diameter > 20CM.
715 -)))
716 716  
717 717  (((
718 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
719 719  )))
720 720  
721 721  
722 -== 2.10 ​Firmware Change Log ==
723 -
724 724  (((
725 -**Firmware download link:**
662 +The battery is designed to last for several years depends on the actually use environment and update interval. 
726 726  )))
727 727  
728 -(((
729 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
730 -)))
731 731  
732 732  (((
733 -
667 +The battery related documents as below:
734 734  )))
735 735  
736 -(((
737 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
738 -)))
670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
739 739  
740 740  (((
741 -
675 +[[image:image-20220708140453-6.png]]
742 742  )))
743 743  
744 -(((
745 -**V1.0.**
746 -)))
747 747  
679 +
680 +=== 2.9.2  Power consumption Analyze ===
681 +
748 748  (((
749 -Release
683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
750 750  )))
751 751  
752 752  
753 -== 2.11 ​Battery Analysis ==
754 -
755 -=== 2.11.1 ​Battery Type ===
756 -
757 757  (((
758 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
688 +Instruction to use as below:
759 759  )))
760 760  
761 761  (((
762 -The battery is designed to last for more than 5 years for the LSN50.
692 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
763 763  )))
764 764  
695 +
765 765  (((
766 -(((
767 -The battery-related documents are as below:
697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
768 768  )))
769 -)))
770 770  
771 771  * (((
772 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
701 +Product Model
773 773  )))
774 774  * (((
775 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
704 +Uplink Interval
776 776  )))
777 777  * (((
778 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
707 +Working Mode
779 779  )))
780 780  
781 - [[image:image-20220610172436-1.png]]
710 +(((
711 +And the Life expectation in difference case will be shown on the right.
712 +)))
782 782  
714 +[[image:image-20220708141352-7.jpeg]]
783 783  
784 784  
785 -=== 2.11.2 ​Battery Note ===
786 786  
718 +=== 2.9.3  ​Battery Note ===
719 +
787 787  (((
788 788  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
789 789  )))
... ... @@ -790,302 +790,176 @@
790 790  
791 791  
792 792  
793 -=== 2.11.3 Replace the battery ===
726 +=== 2.9. Replace the battery ===
794 794  
795 795  (((
796 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
797 797  )))
798 798  
732 +
733 +
734 += 3. ​ Access NB-IoT Module =
735 +
799 799  (((
800 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
737 +Users can directly access the AT command set of the NB-IoT module.
801 801  )))
802 802  
803 803  (((
804 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
805 805  )))
806 806  
744 +[[image:1657261278785-153.png]]
807 807  
808 808  
809 -= 3. ​Using the AT Commands =
810 810  
811 -== 3.1 Access AT Commands ==
748 += 4.  Using the AT Commands =
812 812  
750 +== 4.1  Access AT Commands ==
813 813  
814 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
815 815  
816 -[[image:1654501986557-872.png||height="391" width="800"]]
817 817  
755 +AT+<CMD>?  : Help on <CMD>
818 818  
819 -Or if you have below board, use below connection:
757 +AT+<CMD>         : Run <CMD>
820 820  
759 +AT+<CMD>=<value> : Set the value
821 821  
822 -[[image:1654502005655-729.png||height="503" width="801"]]
761 +AT+<CMD>=?  : Get the value
823 823  
824 824  
825 -
826 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
827 -
828 -
829 - [[image:1654502050864-459.png||height="564" width="806"]]
830 -
831 -
832 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
833 -
834 -
835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
836 -
837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
838 -
839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
840 -
841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
842 -
843 -
844 844  (% style="color:#037691" %)**General Commands**(%%)      
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
766 +AT  : Attention       
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
768 +AT?  : Short Help     
849 849  
850 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
770 +ATZ  : MCU Reset    
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
772 +AT+TDC  : Application Data Transmission Interval
853 853  
774 +AT+CFG  : Print all configurations
854 854  
855 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
776 +AT+CFGMOD           : Working mode selection
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
778 +AT+INTMOD            : Set the trigger interrupt mode
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
780 +AT+5VT  : Set extend the time of 5V power  
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
782 +AT+PRO  : Choose agreement
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
784 +AT+WEIGRE  : Get weight or set weight to 0
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
786 +AT+WEIGAP  : Get or Set the GapValue of weight
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
788 +AT+RXDL  : Extend the sending and receiving time
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
790 +AT+CNTFAC  : Get or set counting parameters
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
792 +AT+SERVADDR  : Server Address
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
795 +(% style="color:#037691" %)**COAP Management**      
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
797 +AT+URI            : Resource parameters
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
800 +(% style="color:#037691" %)**UDP Management**
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
802 +AT+CFM          : Upload confirmation mode (only valid for UDP)
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
805 +(% style="color:#037691" %)**MQTT Management**
888 888  
807 +AT+CLIENT               : Get or Set MQTT client
889 889  
890 -(% style="color:#037691" %)**LoRa Network Management**
809 +AT+UNAME  : Get or Set MQTT Username
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
811 +AT+PWD                  : Get or Set MQTT password
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
813 +AT+PUBTOPI : Get or Set MQTT publish topic
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
815 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
818 +(% style="color:#037691" %)**Information**          
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
820 +AT+FDR  : Factory Data Reset
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
822 +AT+PWOR : Serial Access Password
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
826 += ​5.  FAQ =
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
828 +== 5.1 How to Upgrade Firmware ==
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
921 -
922 -
923 -(% style="color:#037691" %)**Information** 
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
932 -
933 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
934 -
935 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
936 -
937 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
938 -
939 -
940 -= ​4. FAQ =
941 -
942 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
943 -
944 944  (((
945 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
946 -When downloading the images, choose the required image file for download. ​
832 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
947 947  )))
948 948  
949 949  (((
950 -
836 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
951 951  )))
952 952  
953 953  (((
954 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
955 955  )))
956 956  
957 -(((
958 -
959 -)))
960 960  
961 -(((
962 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
963 -)))
964 964  
965 -(((
966 -
967 -)))
845 +== 5.2  Can I calibrate NSE01 to different soil types? ==
968 968  
969 969  (((
970 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
971 971  )))
972 972  
973 -[[image:image-20220606154726-3.png]]
974 974  
852 += 6.  Trouble Shooting =
975 975  
976 -When you use the TTN network, the US915 frequency bands use are:
854 +== 6.1  ​Connection problem when uploading firmware ==
977 977  
978 -* 903.9 - SF7BW125 to SF10BW125
979 -* 904.1 - SF7BW125 to SF10BW125
980 -* 904.3 - SF7BW125 to SF10BW125
981 -* 904.5 - SF7BW125 to SF10BW125
982 -* 904.7 - SF7BW125 to SF10BW125
983 -* 904.9 - SF7BW125 to SF10BW125
984 -* 905.1 - SF7BW125 to SF10BW125
985 -* 905.3 - SF7BW125 to SF10BW125
986 -* 904.6 - SF8BW500
987 987  
988 988  (((
989 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
990 -
991 -* (% style="color:#037691" %)**AT+CHE=2**
992 -* (% style="color:#037691" %)**ATZ**
858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
993 993  )))
994 994  
861 +(% class="wikigeneratedid" %)
995 995  (((
996 996  
997 -
998 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
999 999  )))
1000 1000  
1001 -(((
1002 -
1003 -)))
1004 1004  
1005 -(((
1006 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1007 -)))
867 +== 6.2  AT Command input doesn't work ==
1008 1008  
1009 -[[image:image-20220606154825-4.png]]
1010 -
1011 -
1012 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1013 -
1014 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1015 -
1016 -
1017 -= 5. Trouble Shooting =
1018 -
1019 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1020 -
1021 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1022 -
1023 -
1024 -== 5.2 AT Command input doesn’t work ==
1025 -
1026 1026  (((
1027 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1028 -)))
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 1029  
1030 -
1031 -== 5.3 Device rejoin in at the second uplink packet ==
1032 -
1033 -(% style="color:#4f81bd" %)**Issue describe as below:**
1034 -
1035 -[[image:1654500909990-784.png]]
1036 -
1037 -
1038 -(% style="color:#4f81bd" %)**Cause for this issue:**
1039 -
1040 -(((
1041 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
872 +
1042 1042  )))
1043 1043  
1044 1044  
1045 -(% style="color:#4f81bd" %)**Solution: **
876 += 7. ​ Order Info =
1046 1046  
1047 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1048 1048  
1049 -[[image:1654500929571-736.png||height="458" width="832"]]
879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1050 1050  
1051 1051  
1052 -= 6. ​Order Info =
1053 -
1054 -
1055 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1056 -
1057 -
1058 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1059 -
1060 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1061 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1062 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1063 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1064 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1065 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1066 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1067 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1068 -
1069 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1070 -
1071 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1072 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1073 -
1074 1074  (% class="wikigeneratedid" %)
1075 1075  (((
1076 1076  
1077 1077  )))
1078 1078  
1079 -= 7. Packing Info =
887 += 8.  Packing Info =
1080 1080  
1081 1081  (((
1082 1082  
1083 1083  
1084 1084  (% style="color:#037691" %)**Package Includes**:
1085 -)))
1086 1086  
1087 -* (((
1088 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 +* External antenna x 1
1089 1089  )))
1090 1090  
1091 1091  (((
... ... @@ -1092,24 +1092,19 @@
1092 1092  
1093 1093  
1094 1094  (% style="color:#037691" %)**Dimension and weight**:
1095 -)))
1096 1096  
1097 -* (((
1098 -Device Size: cm
903 +* Size: 195 x 125 x 55 mm
904 +* Weight:   420g
1099 1099  )))
1100 -* (((
1101 -Device Weight: g
1102 -)))
1103 -* (((
1104 -Package Size / pcs : cm
1105 -)))
1106 -* (((
1107 -Weight / pcs : g
1108 1108  
907 +(((
1109 1109  
909 +
910 +
911 +
1110 1110  )))
1111 1111  
1112 -= 8. Support =
914 += 9.  Support =
1113 1113  
1114 1114  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1115 1115  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0