<
From version < 40.2 >
edited by Xiaoling
on 2022/06/30 10:37
To version < 63.1 >
edited by Xiaoling
on 2022/07/08 14:18
>
Change comment: Uploaded new attachment "1657261119050-993.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -13,72 +13,78 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
62 +== 1.3  Specification ==
71 71  
72 72  
73 -== 1.3 Specification ==
65 +(% style="color:#037691" %)**Common DC Characteristics:**
74 74  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
75 75  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 76  
77 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
78 78  
79 79  
80 80  
81 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
82 82  
83 83  * Smart Agriculture
84 84  
... ... @@ -85,705 +85,550 @@
85 85  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 86  ​
87 87  
88 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
89 89  
90 90  
91 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
92 92  
93 93  
94 94  
95 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
96 96  
97 -== 2.1 How it works ==
103 +== 2.1  How it works ==
98 98  
105 +
99 99  (((
100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
101 101  )))
102 102  
110 +
103 103  (((
104 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
105 105  )))
106 106  
115 +[[image:image-20220708101605-2.png]]
107 107  
117 +(((
118 +
119 +)))
108 108  
109 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
110 110  
111 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 112  
123 +== 2.2 ​ Configure the NSE01 ==
113 113  
114 -[[image:1654503992078-669.png]]
115 115  
126 +=== 2.2.1 Test Requirement ===
116 116  
117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
118 118  
129 +To use NSE01 in your city, make sure meet below requirements:
119 119  
120 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
121 121  
122 -Each LSE01 is shipped with a sticker with the default device EUI as below:
123 -
124 -[[image:image-20220606163732-6.jpeg]]
125 -
126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
127 -
128 -**Add APP EUI in the application**
129 -
130 -
131 -[[image:1654504596150-405.png]]
132 -
133 -
134 -
135 -**Add APP KEY and DEV EUI**
136 -
137 -[[image:1654504683289-357.png]]
138 -
139 -
140 -
141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
142 -
143 -
144 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
145 -
146 -[[image:image-20220606163915-7.png]]
147 -
148 -
149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 -
151 -[[image:1654504778294-788.png]]
152 -
153 -
154 -
155 -== 2.3 Uplink Payload ==
156 -
157 -
158 -=== 2.3.1 MOD~=0(Default Mode) ===
159 -
160 -LSE01 will uplink payload via LoRaWAN with below payload format: 
161 -
162 162  (((
163 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
164 164  )))
165 165  
166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 -|(((
168 -**Size**
169 169  
170 -**(bytes)**
171 -)))|**2**|**2**|**2**|**2**|**2**|**1**
172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 -Temperature
140 +[[image:1657249419225-449.png]]
174 174  
175 -(Reserve, Ignore now)
176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 -MOD & Digital Interrupt
178 178  
179 -(Optional)
180 -)))
181 181  
182 -=== 2.3.2 MOD~=1(Original value) ===
144 +=== 2.2.2 Insert SIM card ===
183 183  
184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
146 +Insert the NB-IoT Card get from your provider.
185 185  
186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 -|(((
188 -**Size**
148 +User need to take out the NB-IoT module and insert the SIM card like below:
189 189  
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 -Temperature
194 194  
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 -MOD & Digital Interrupt
151 +[[image:1657249468462-536.png]]
198 198  
199 -(Optional)
200 -)))
201 201  
202 -=== 2.3.3 Battery Info ===
203 203  
204 -(((
205 -Check the battery voltage for LSE01.
206 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
207 207  
208 208  (((
209 -Ex1: 0x0B45 = 2885mV
210 -)))
211 -
212 212  (((
213 -Ex2: 0x0B49 = 2889mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
214 214  )))
215 -
216 -
217 -
218 -=== 2.3.4 Soil Moisture ===
219 -
220 -(((
221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 222  )))
223 223  
224 -(((
225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
226 -)))
227 227  
228 -(((
229 -
230 -)))
164 +**Connection:**
231 231  
232 -(((
233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
234 -)))
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
235 235  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
236 236  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
237 237  
238 -=== 2.3.5 Soil Temperature ===
239 239  
240 -(((
241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
242 -)))
173 +In the PC, use below serial tool settings:
243 243  
244 -(((
245 -**Example**:
246 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
247 247  
248 248  (((
249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
250 250  )))
251 251  
252 -(((
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
254 -)))
185 +[[image:image-20220708110657-3.png]]
255 255  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
256 256  
257 257  
258 -=== 2.3.6 Soil Conductivity (EC) ===
259 259  
260 -(((
261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
262 -)))
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
263 263  
264 -(((
265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
266 -)))
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
267 267  
268 -(((
269 -Generally, the EC value of irrigation water is less than 800uS / cm.
270 -)))
271 271  
272 -(((
273 -
274 -)))
196 +**Use below commands:**
275 275  
276 -(((
277 -
278 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
279 279  
280 -=== 2.3.7 MOD ===
202 +For parameter description, please refer to AT command set
281 281  
282 -Firmware version at least v2.1 supports changing mode.
204 +[[image:1657249793983-486.png]]
283 283  
284 -For example, bytes[10]=90
285 285  
286 -mod=(bytes[10]>>7)&0x01=1.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
287 287  
209 +[[image:1657249831934-534.png]]
288 288  
289 -**Downlink Command:**
290 290  
291 -If payload = 0x0A00, workmode=0
292 292  
293 -If** **payload =** **0x0A01, workmode=1
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
294 294  
215 +This feature is supported since firmware version v1.0.1
295 295  
296 296  
297 -=== 2.3.8 ​Decode payload in The Things Network ===
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
298 298  
299 -While using TTN network, you can add the payload format to decode the payload.
222 +[[image:1657249864775-321.png]]
300 300  
301 301  
302 -[[image:1654505570700-128.png]]
225 +[[image:1657249930215-289.png]]
303 303  
304 -(((
305 -The payload decoder function for TTN is here:
306 -)))
307 307  
308 -(((
309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
310 -)))
311 311  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
312 312  
313 -== 2.4 Uplink Interval ==
231 +This feature is supported since firmware version v110
314 314  
315 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
316 316  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
317 317  
242 +[[image:1657249978444-674.png]]
318 318  
319 -== 2.5 Downlink Payload ==
320 320  
321 -By default, LSE50 prints the downlink payload to console port.
245 +[[image:1657249990869-686.png]]
322 322  
323 -[[image:image-20220606165544-8.png]]
324 324  
325 -
326 326  (((
327 -**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
328 328  )))
329 329  
330 -(((
331 -
332 -)))
333 333  
334 -* (((
335 -**Set TDC**
336 -)))
337 337  
338 -(((
339 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
340 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
341 341  
342 -(((
343 -Payload:    01 00 00 1E    TDC=30S
344 -)))
256 +This feature is supported since firmware version v110
345 345  
346 -(((
347 -Payload:    01 00 00 3C    TDC=60S
348 -)))
349 349  
350 -(((
351 -
352 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
353 353  
354 -* (((
355 -**Reset**
356 -)))
262 +[[image:1657250217799-140.png]]
357 357  
358 -(((
359 -If payload = 0x04FF, it will reset the LSE01
360 -)))
361 361  
265 +[[image:1657250255956-604.png]]
362 362  
363 -* **CFM**
364 364  
365 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
366 366  
269 +=== 2.2.8 Change Update Interval ===
367 367  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
368 368  
369 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
370 370  
371 371  (((
372 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
373 373  )))
374 374  
375 375  (((
376 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
377 377  )))
378 378  
379 -(((
380 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
381 -)))
382 382  
383 -(((
384 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
385 -)))
386 386  
285 +== 2.3  Uplink Payload ==
387 387  
388 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
389 389  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
390 390  
391 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
392 392  
393 393  
394 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
298 +[[image:image-20220708111918-4.png]]
395 395  
396 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
397 397  
301 +The payload is ASCII string, representative same HEX:
398 398  
399 -[[image:1654505905236-553.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
400 400  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
401 401  
402 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
403 403  
404 -[[image:1654505925508-181.png]]
315 +== 2.4  Payload Explanation and Sensor Interface ==
405 405  
406 406  
318 +=== 2.4.1  Device ID ===
407 407  
408 -== 2.7 Frequency Plans ==
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
409 409  
410 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
411 411  
324 +**Example:**
412 412  
413 -=== 2.7.1 EU863-870 (EU868) ===
326 +AT+DEUI=A84041F15612
414 414  
415 -(% style="color:#037691" %)** Uplink:**
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
416 416  
417 -868.1 - SF7BW125 to SF12BW125
418 418  
419 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
420 420  
421 -868.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
422 422  
423 -867.1 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
424 424  
425 -867.3 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
426 426  
427 -867.5 - SF7BW125 to SF12BW125
428 428  
429 -867.7 - SF7BW125 to SF12BW125
430 430  
431 -867.9 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
432 432  
433 -868.8 - FSK
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
434 434  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
435 435  
436 -(% style="color:#037691" %)** Downlink:**
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
437 437  
438 -Uplink channels 1-9 (RX1)
439 439  
440 -869.525 - SF9BW125 (RX2 downlink only)
441 441  
356 +=== 2.4.4  Signal Strength ===
442 442  
358 +NB-IoT Network signal Strength.
443 443  
444 -=== 2.7.2 US902-928(US915) ===
360 +**Ex1: 0x1d = 29**
445 445  
446 -Used in USA, Canada and South America. Default use CHE=2
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
447 447  
448 -(% style="color:#037691" %)**Uplink:**
364 +(% style="color:blue" %)**1**(%%)  -111dBm
449 449  
450 -903.9 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
451 451  
452 -904.1 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
453 453  
454 -904.3 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
455 455  
456 -904.5 - SF7BW125 to SF10BW125
457 457  
458 -904.7 - SF7BW125 to SF10BW125
459 459  
460 -904.9 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
461 461  
462 -905.1 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
463 463  
464 -905.3 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
465 465  
384 +(((
385 +
386 +)))
466 466  
467 -(% style="color:#037691" %)**Downlink:**
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
468 468  
469 -923.3 - SF7BW500 to SF12BW500
470 470  
471 -923.9 - SF7BW500 to SF12BW500
472 472  
473 -924.5 - SF7BW500 to SF12BW500
394 +=== 2.4. Soil Temperature ===
474 474  
475 -925.1 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
476 476  
477 -925.7 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
478 478  
479 -926.3 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
480 480  
481 -926.9 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
482 482  
483 -927.5 - SF7BW500 to SF12BW500
484 484  
485 -923.3 - SF12BW500(RX2 downlink only)
486 486  
414 +=== 2.4.7  Soil Conductivity (EC) ===
487 487  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
488 488  
489 -=== 2.7.3 CN470-510 (CN470) ===
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
490 490  
491 -Used in China, Default use CHE=1
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
492 492  
493 -(% style="color:#037691" %)**Uplink:**
428 +(((
429 +
430 +)))
494 494  
495 -486.3 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
496 496  
497 -486.5 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
498 498  
499 -486.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 500  
501 -486.9 - SF7BW125 to SF12BW125
440 +The command is:
502 502  
503 -487.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
504 504  
505 -487.3 - SF7BW125 to SF12BW125
506 506  
507 -487.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
508 508  
509 -487.7 - SF7BW125 to SF12BW125
510 510  
448 +Example:
511 511  
512 -(% style="color:#037691" %)**Downlink:**
450 +0x(00): Normal uplink packet.
513 513  
514 -506.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
515 515  
516 -506.9 - SF7BW125 to SF12BW125
517 517  
518 -507.1 - SF7BW125 to SF12BW125
519 519  
520 -507.3 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
521 521  
522 -507.5 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
523 523  
524 -507.7 - SF7BW125 to SF12BW125
525 525  
526 -507.9 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
527 527  
528 -508.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
529 529  
530 -505.3 - SF12BW125 (RX2 downlink only)
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
531 531  
532 532  
533 533  
534 -=== 2.7.4 AU915-928(AU915) ===
469 +== 2.5  Downlink Payload ==
535 535  
536 -Default use CHE=2
471 +By default, NSE01 prints the downlink payload to console port.
537 537  
538 -(% style="color:#037691" %)**Uplink:**
473 +[[image:image-20220708133731-5.png]]
539 539  
540 -916.8 - SF7BW125 to SF12BW125
541 541  
542 -917.0 - SF7BW125 to SF12BW125
543 543  
544 -917.2 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
545 545  
546 -917.4 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
547 547  
548 -917.6 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
549 549  
550 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
551 551  
552 -918.0 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
553 553  
554 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
555 555  
501 +(((
502 +
503 +)))
556 556  
557 -(% style="color:#037691" %)**Downlink:**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
558 558  
559 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
560 560  
561 -923.9 - SF7BW500 to SF12BW500
562 562  
563 -924.5 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
564 564  
565 -925.1 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
566 566  
567 -925.7 - SF7BW500 to SF12BW500
568 568  
569 -926.3 - SF7BW500 to SF12BW500
570 570  
571 -926.9 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
572 572  
573 -927.5 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
574 574  
575 -923.3 - SF12BW500(RX2 downlink only)
576 576  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
577 577  
578 578  
579 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
580 580  
581 -(% style="color:#037691" %)**Default Uplink channel:**
582 582  
583 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
584 584  
585 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
586 586  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
587 587  
588 -(% style="color:#037691" %)**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
589 589  
590 -(OTAA mode, channel added by JoinAccept message)
591 591  
592 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
593 593  
594 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
595 595  
596 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
597 597  
598 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
599 599  
600 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
601 601  
602 -923.0 - SF7BW125 to SF10BW125
603 603  
604 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
605 605  
606 606  
607 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
608 608  
609 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
610 610  
611 -923.8 - SF7BW125 to SF10BW125
612 612  
613 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
614 614  
615 -924.2 - SF7BW125 to SF10BW125
616 616  
617 -924.4 - SF7BW125 to SF10BW125
618 618  
619 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
620 620  
577 +=== 2.9.1  ​Battery Type ===
621 621  
622 -(% style="color:#037691" %)** Downlink:**
623 623  
624 -Uplink channels 1-8 (RX1)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
625 625  
626 -923.2 - SF10BW125 (RX2)
627 627  
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
628 628  
629 629  
630 -=== 2.7.6 KR920-923 (KR920) ===
586 +The battery related documents as below:
631 631  
632 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
633 633  
634 -922.1 - SF7BW125 to SF12BW125
635 -
636 -922.3 - SF7BW125 to SF12BW125
637 -
638 -922.5 - SF7BW125 to SF12BW125
639 -
640 -
641 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
642 -
643 -922.1 - SF7BW125 to SF12BW125
644 -
645 -922.3 - SF7BW125 to SF12BW125
646 -
647 -922.5 - SF7BW125 to SF12BW125
648 -
649 -922.7 - SF7BW125 to SF12BW125
650 -
651 -922.9 - SF7BW125 to SF12BW125
652 -
653 -923.1 - SF7BW125 to SF12BW125
654 -
655 -923.3 - SF7BW125 to SF12BW125
656 -
657 -
658 -(% style="color:#037691" %)**Downlink:**
659 -
660 -Uplink channels 1-7(RX1)
661 -
662 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
663 -
664 -
665 -
666 -=== 2.7.7 IN865-867 (IN865) ===
667 -
668 -(% style="color:#037691" %)** Uplink:**
669 -
670 -865.0625 - SF7BW125 to SF12BW125
671 -
672 -865.4025 - SF7BW125 to SF12BW125
673 -
674 -865.9850 - SF7BW125 to SF12BW125
675 -
676 -
677 -(% style="color:#037691" %) **Downlink:**
678 -
679 -Uplink channels 1-3 (RX1)
680 -
681 -866.550 - SF10BW125 (RX2)
682 -
683 -
684 -
685 -
686 -== 2.8 LED Indicator ==
687 -
688 -The LSE01 has an internal LED which is to show the status of different state.
689 -
690 -* Blink once when device power on.
691 -* Solid ON for 5 seconds once device successful Join the network.
692 -* Blink once when device transmit a packet.
693 -
694 -
695 -
696 -== 2.9 Installation in Soil ==
697 -
698 -**Measurement the soil surface**
699 -
700 -
701 -[[image:1654506634463-199.png]] ​
702 -
703 703  (((
704 -(((
705 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
706 706  )))
707 -)))
708 708  
709 709  
710 710  
711 -[[image:1654506665940-119.png]]
598 +=== 2.9.2  Power consumption Analyze ===
712 712  
713 713  (((
714 -Dig a hole with diameter > 20CM.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
715 715  )))
716 716  
717 -(((
718 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
719 -)))
720 720  
721 -
722 -== 2.10 ​Firmware Change Log ==
723 -
724 724  (((
725 -**Firmware download link:**
606 +Instruction to use as below:
726 726  )))
727 727  
728 728  (((
729 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
730 730  )))
731 731  
732 -(((
733 -
734 -)))
735 735  
736 736  (((
737 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
738 738  )))
739 739  
740 -(((
741 -
742 -)))
743 -
744 -(((
745 -**V1.0.**
746 -)))
747 -
748 -(((
749 -Release
750 -)))
751 -
752 -
753 -== 2.11 ​Battery Analysis ==
754 -
755 -=== 2.11.1 ​Battery Type ===
756 -
757 -(((
758 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
759 -)))
760 -
761 -(((
762 -The battery is designed to last for more than 5 years for the LSN50.
763 -)))
764 -
765 -(((
766 -(((
767 -The battery-related documents are as below:
768 -)))
769 -)))
770 -
771 771  * (((
772 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
619 +Product Model
773 773  )))
774 774  * (((
775 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
622 +Uplink Interval
776 776  )))
777 777  * (((
778 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
625 +Working Mode
779 779  )))
780 780  
781 - [[image:image-20220610172436-1.png]]
628 +(((
629 +And the Life expectation in difference case will be shown on the right.
630 +)))
782 782  
632 +[[image:image-20220708141352-7.jpeg]]
783 783  
784 784  
785 -=== 2.11.2 ​Battery Note ===
786 786  
636 +=== 2.9.3  ​Battery Note ===
637 +
787 787  (((
788 788  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
789 789  )))
... ... @@ -790,22 +790,14 @@
790 790  
791 791  
792 792  
793 -=== 2.11.3 Replace the battery ===
644 +=== 2.9. Replace the battery ===
794 794  
795 795  (((
796 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
797 797  )))
798 798  
799 -(((
800 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
801 -)))
802 802  
803 -(((
804 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
805 -)))
806 806  
807 -
808 -
809 809  = 3. ​Using the AT Commands =
810 810  
811 811  == 3.1 Access AT Commands ==
... ... @@ -1016,15 +1016,15 @@
1016 1016  
1017 1017  = 5. Trouble Shooting =
1018 1018  
1019 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
862 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1020 1020  
1021 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
864 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1022 1022  
1023 1023  
1024 -== 5.2 AT Command input doesnt work ==
867 +== 5.2 AT Command input doesn't work ==
1025 1025  
1026 1026  (((
1027 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1028 1028  )))
1029 1029  
1030 1030  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0