Last modified by Mengting Qiu on 2024/04/02 16:44

From version 40.1
edited by Edwin Chen
on 2022/06/29 19:12
Change comment: There is no comment for this version
To version 91.1
edited by Xiaoling
on 2022/07/09 09:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,19 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
... ... @@ -20,769 +20,677 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
16 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
32 -
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
35 35  )))
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
39 39  )))
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
44 -
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 -)))
48 -
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 60  * Ultra low power consumption
61 -* Monitor Soil Moisture
62 -* Monitor Soil Temperature
63 -* Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
70 70  
71 -== 1.3 Specification ==
58 +== 1.3  Specification ==
72 72  
73 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
75 -[[image:image-20220606162220-5.png]]
61 +(% style="color:#037691" %)**Common DC Characteristics:**
76 76  
63 +* Supply Voltage: 2.1v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
77 77  
66 +(% style="color:#037691" %)**NB-IoT Spec:**
78 78  
79 -== ​1.4 Applications ==
68 +* - B1 @H-FDD: 2100MHz
69 +* - B3 @H-FDD: 1800MHz
70 +* - B8 @H-FDD: 900MHz
71 +* - B5 @H-FDD: 850MHz
72 +* - B20 @H-FDD: 800MHz
73 +* - B28 @H-FDD: 700MHz
80 80  
75 +(% style="color:#037691" %)**Battery:**
76 +
77 +* Li/SOCI2 un-chargeable battery
78 +* Capacity: 8500mAh
79 +* Self Discharge: <1% / Year @ 25°C
80 +* Max continuously current: 130mA
81 +* Max boost current: 2A, 1 second
82 +
83 +(% style="color:#037691" %)**Power Consumption**
84 +
85 +* STOP Mode: 10uA @ 3.3v
86 +* Max transmit power: 350mA@3.3v
87 +
88 +
89 +== ​1.4  Applications ==
90 +
91 +* Smart Buildings & Home Automation
92 +* Logistics and Supply Chain Management
93 +* Smart Metering
81 81  * Smart Agriculture
95 +* Smart Cities
96 +* Smart Factory
82 82  
83 83  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
84 84  ​
85 85  
86 -== 1.5 Firmware Change log ==
87 87  
88 88  
89 -**LSE01 v1.0 :**  Release
103 +== 1.5  Pin Definitions ==
90 90  
91 91  
106 +[[image:1657328609906-564.png]]
92 92  
93 -= 2. Configure LSE01 to connect to LoRaWAN network =
94 94  
95 -== 2.1 How it works ==
96 96  
110 += 2.  Use NDDS75 to communicate with IoT Server =
111 +
112 +== 2.1  How it works ==
113 +
97 97  (((
98 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
99 99  )))
100 100  
118 +
101 101  (((
102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
120 +The diagram below shows the working flow in default firmware of NDDS75:
103 103  )))
104 104  
123 +(((
124 +
125 +)))
105 105  
127 +[[image:1657328659945-416.png]]
106 106  
107 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
129 +(((
130 +
131 +)))
108 108  
109 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
110 110  
134 +== 2.2 ​ Configure the NDDS75 ==
111 111  
112 -[[image:1654503992078-669.png]]
113 113  
137 +=== 2.2.1 Test Requirement ===
114 114  
115 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
139 +(((
140 +To use NDDS75 in your city, make sure meet below requirements:
141 +)))
116 116  
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
117 117  
118 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
147 +(((
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 +)))
119 119  
120 -Each LSE01 is shipped with a sticker with the default device EUI as below:
121 121  
122 -[[image:image-20220606163732-6.jpeg]]
152 +[[image:1657328756309-230.png]]
123 123  
124 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
125 125  
126 -**Add APP EUI in the application**
127 127  
156 +=== 2.2.2 Insert SIM card ===
128 128  
129 -[[image:1654504596150-405.png]]
158 +(((
159 +Insert the NB-IoT Card get from your provider.
160 +)))
130 130  
162 +(((
163 +User need to take out the NB-IoT module and insert the SIM card like below:
164 +)))
131 131  
132 132  
133 -**Add APP KEY and DEV EUI**
167 +[[image:1657328884227-504.png]]
134 134  
135 -[[image:1654504683289-357.png]]
136 136  
137 137  
171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
138 138  
139 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
173 +(((
174 +(((
175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
176 +)))
177 +)))
140 140  
179 +[[image:image-20220709092052-2.png]]
141 141  
142 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
181 +**Connection:**
143 143  
144 -[[image:image-20220606163915-7.png]]
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
145 145  
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
146 146  
147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
148 148  
149 -[[image:1654504778294-788.png]]
150 150  
190 +In the PC, use below serial tool settings:
151 151  
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
152 152  
153 -== 2.3 Uplink Payload ==
154 -
155 -
156 -=== 2.3.1 MOD~=0(Default Mode) ===
157 -
158 -LSE01 will uplink payload via LoRaWAN with below payload format: 
159 -
160 160  (((
161 -Uplink payload includes in total 11 bytes.
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
162 162  )))
163 163  
164 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 -|(((
166 -**Size**
202 +[[image:1657329814315-101.png]]
167 167  
168 -**(bytes)**
169 -)))|**2**|**2**|**2**|**2**|**2**|**1**
170 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 -Temperature
172 -
173 -(Reserve, Ignore now)
174 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 -MOD & Digital Interrupt
176 -
177 -(Optional)
204 +(((
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
178 178  )))
179 179  
180 -=== 2.3.2 MOD~=1(Original value) ===
181 181  
182 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
183 183  
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
186 -**Size**
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
187 187  
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 -Temperature
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
192 192  
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 -MOD & Digital Interrupt
196 196  
197 -(Optional)
198 -)))
215 +**Use below commands:**
199 199  
200 -=== 2.3.3 Battery Info ===
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 201  
202 -(((
203 -Check the battery voltage for LSE01.
204 -)))
221 +For parameter description, please refer to AT command set
205 205  
206 -(((
207 -Ex1: 0x0B45 = 2885mV
208 -)))
223 +[[image:1657330452568-615.png]]
209 209  
210 -(((
211 -Ex2: 0x0B49 = 2889mV
212 -)))
213 213  
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
214 214  
228 +[[image:1657330472797-498.png]]
215 215  
216 -=== 2.3.4 Soil Moisture ===
217 217  
218 -(((
219 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 -)))
221 221  
222 -(((
223 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
224 -)))
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
225 225  
226 -(((
227 -
228 -)))
229 229  
230 -(((
231 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
232 -)))
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
233 233  
239 +[[image:1657330501006-241.png]]
234 234  
235 235  
236 -=== 2.3.5 Soil Temperature ===
242 +[[image:1657330533775-472.png]]
237 237  
238 -(((
239 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
240 -)))
241 241  
242 -(((
243 -**Example**:
244 -)))
245 245  
246 -(((
247 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
248 -)))
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
249 249  
250 -(((
251 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
252 -)))
253 253  
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
254 254  
257 +[[image:1657249978444-674.png]]
255 255  
256 -=== 2.3.6 Soil Conductivity (EC) ===
257 257  
258 -(((
259 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
260 -)))
260 +[[image:1657330723006-866.png]]
261 261  
262 -(((
263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 -)))
265 265  
266 266  (((
267 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
268 268  )))
269 269  
270 -(((
271 -
272 -)))
273 273  
274 -(((
275 -
276 -)))
277 277  
278 -=== 2.3.7 MOD ===
269 +=== 2.2.7 Use TCP protocol to uplink data ===
279 279  
280 -Firmware version at least v2.1 supports changing mode.
281 281  
282 -For example, bytes[10]=90
272 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
283 283  
284 -mod=(bytes[10]>>7)&0x01=1.
275 +[[image:image-20220709093918-1.png]]
285 285  
286 286  
287 -**Downlink Command:**
278 +[[image:image-20220709093918-2.png]]
288 288  
289 -If payload = 0x0A00, workmode=0
290 290  
291 -If** **payload =** **0x0A01, workmode=1
292 292  
282 +=== 2.2.8 Change Update Interval ===
293 293  
284 +User can use below command to change the (% style="color:green" %)**uplink interval**.
294 294  
295 -=== 2.3.8 ​Decode payload in The Things Network ===
286 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
296 296  
297 -While using TTN network, you can add the payload format to decode the payload.
298 -
299 -
300 -[[image:1654505570700-128.png]]
301 -
302 302  (((
303 -The payload decoder function for TTN is here:
289 +(% style="color:red" %)**NOTE:**
304 304  )))
305 305  
306 306  (((
307 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
308 308  )))
309 309  
310 310  
311 -== 2.4 Uplink Interval ==
312 312  
313 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
298 +== 2. Uplink Payload ==
314 314  
300 +In this mode, uplink payload includes in total 14 bytes
315 315  
316 316  
317 -== 2.5 Downlink Payload ==
303 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 +|=(% style="width: 60px;" %)(((
305 +**Size(bytes)**
306 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
307 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
318 318  
319 -By default, LSE50 prints the downlink payload to console port.
309 +(((
310 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 +)))
320 320  
321 -[[image:image-20220606165544-8.png]]
322 322  
314 +[[image:1657331036973-987.png]]
323 323  
324 324  (((
325 -**Examples:**
317 +The payload is ASCII string, representative same HEX:
326 326  )))
327 327  
328 328  (((
329 -
321 +0x72403155615900640c6c19029200 where:
330 330  )))
331 331  
332 332  * (((
333 -**Set TDC**
325 +Device ID: 0x724031556159 = 724031556159
334 334  )))
335 -
336 -(((
337 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +* (((
328 +Version: 0x0064=100=1.0.0
338 338  )))
339 339  
340 -(((
341 -Payload:    01 00 00 1E    TDC=30S
331 +* (((
332 +BAT: 0x0c6c = 3180 mV = 3.180V
342 342  )))
343 -
344 -(((
345 -Payload:    01 00 00 3C    TDC=60S
334 +* (((
335 +Signal: 0x19 = 25
346 346  )))
347 -
348 -(((
349 -
337 +* (((
338 +Distance: 0x0292= 658 mm
350 350  )))
351 -
352 352  * (((
353 -**Reset**
341 +Interrupt: 0x00 = 0
354 354  )))
355 355  
356 -(((
357 -If payload = 0x04FF, it will reset the LSE01
358 -)))
359 359  
360 360  
361 -* **CFM**
362 362  
363 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
347 +== 2.4  Payload Explanation and Sensor Interface ==
364 364  
365 365  
350 +=== 2.4.1  Device ID ===
366 366  
367 -== 2.6 ​Show Data in DataCake IoT Server ==
352 +(((
353 +By default, the Device ID equal to the last 6 bytes of IMEI.
354 +)))
368 368  
369 369  (((
370 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
371 371  )))
372 372  
373 373  (((
374 -
361 +**Example:**
375 375  )))
376 376  
377 377  (((
378 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
365 +AT+DEUI=A84041F15612
379 379  )))
380 380  
381 381  (((
382 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
383 383  )))
384 384  
385 385  
386 -[[image:1654505857935-743.png]]
387 387  
374 +=== 2.4.2  Version Info ===
388 388  
389 -[[image:1654505874829-548.png]]
376 +(((
377 +Specify the software version: 0x64=100, means firmware version 1.00.
378 +)))
390 390  
380 +(((
381 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
382 +)))
391 391  
392 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
393 393  
394 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
395 395  
386 +=== 2.4.3  Battery Info ===
396 396  
397 -[[image:1654505905236-553.png]]
388 +(((
389 +Check the battery voltage for LSE01.
390 +)))
398 398  
392 +(((
393 +Ex1: 0x0B45 = 2885mV
394 +)))
399 399  
400 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
396 +(((
397 +Ex2: 0x0B49 = 2889mV
398 +)))
401 401  
402 -[[image:1654505925508-181.png]]
403 403  
404 404  
402 +=== 2.4.4  Signal Strength ===
405 405  
406 -== 2.7 Frequency Plans ==
404 +(((
405 +NB-IoT Network signal Strength.
406 +)))
407 407  
408 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
408 +(((
409 +**Ex1: 0x1d = 29**
410 +)))
409 409  
412 +(((
413 +(% style="color:blue" %)**0**(%%)  -113dBm or less
414 +)))
410 410  
411 -=== 2.7.1 EU863-870 (EU868) ===
416 +(((
417 +(% style="color:blue" %)**1**(%%)  -111dBm
418 +)))
412 412  
413 -(% style="color:#037691" %)** Uplink:**
420 +(((
421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 +)))
414 414  
415 -868.1 - SF7BW125 to SF12BW125
424 +(((
425 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 +)))
416 416  
417 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
428 +(((
429 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 +)))
418 418  
419 -868.5 - SF7BW125 to SF12BW125
420 420  
421 -867.1 - SF7BW125 to SF12BW125
422 422  
423 -867.3 - SF7BW125 to SF12BW125
434 +=== 2.4.5  Soil Moisture ===
424 424  
425 -867.5 - SF7BW125 to SF12BW125
436 +Get the distance. Flat object range 280mm - 7500mm.
426 426  
427 -867.7 - SF7BW125 to SF12BW125
438 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
428 428  
429 -867.9 - SF7BW125 to SF12BW125
440 +(((
441 +(((
442 +(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.**
443 +)))
444 +)))
430 430  
431 -868.8 - FSK
446 +(((
447 +
448 +)))
432 432  
450 +(((
451 +
452 +)))
433 433  
434 -(% style="color:#037691" %)** Downlink:**
454 +=== 2.4.6  Digital Interrupt ===
435 435  
436 -Uplink channels 1-9 (RX1)
456 +(((
457 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
458 +)))
437 437  
438 -869.525 - SF9BW125 (RX2 downlink only)
460 +(((
461 +The command is:
462 +)))
439 439  
464 +(((
465 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
466 +)))
440 440  
441 441  
442 -=== 2.7.2 US902-928(US915) ===
469 +(((
470 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 +)))
443 443  
444 -Used in USA, Canada and South America. Default use CHE=2
445 445  
446 -(% style="color:#037691" %)**Uplink:**
474 +(((
475 +Example:
476 +)))
447 447  
448 -903.9 - SF7BW125 to SF10BW125
478 +(((
479 +0x(00): Normal uplink packet.
480 +)))
449 449  
450 -904.1 - SF7BW125 to SF10BW125
482 +(((
483 +0x(01): Interrupt Uplink Packet.
484 +)))
451 451  
452 -904.3 - SF7BW125 to SF10BW125
453 453  
454 -904.5 - SF7BW125 to SF10BW125
455 455  
456 -904.7 - SF7BW125 to SF10BW125
488 +=== 2.4.7  ​+5V Output ===
457 457  
458 -904.9 - SF7BW125 to SF10BW125
490 +(((
491 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 +)))
459 459  
460 -905.1 - SF7BW125 to SF10BW125
461 461  
462 -905.3 - SF7BW125 to SF10BW125
495 +(((
496 +The 5V output time can be controlled by AT Command.
497 +)))
463 463  
499 +(((
500 +(% style="color:blue" %)**AT+5VT=1000**
501 +)))
464 464  
465 -(% style="color:#037691" %)**Downlink:**
503 +(((
504 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 +)))
466 466  
467 -923.3 - SF7BW500 to SF12BW500
468 468  
469 -923.9 - SF7BW500 to SF12BW500
470 470  
471 -924.5 - SF7BW500 to SF12BW500
509 +== 2.5  Downlink Payload ==
472 472  
473 -925.1 - SF7BW500 to SF12BW500
511 +By default, NSE01 prints the downlink payload to console port.
474 474  
475 -925.7 - SF7BW500 to SF12BW500
513 +[[image:image-20220708133731-5.png]]
476 476  
477 -926.3 - SF7BW500 to SF12BW500
478 478  
479 -926.9 - SF7BW500 to SF12BW500
516 +(((
517 +(% style="color:blue" %)**Examples:**
518 +)))
480 480  
481 -927.5 - SF7BW500 to SF12BW500
520 +(((
521 +
522 +)))
482 482  
483 -923.3 - SF12BW500(RX2 downlink only)
524 +* (((
525 +(% style="color:blue" %)**Set TDC**
526 +)))
484 484  
528 +(((
529 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
530 +)))
485 485  
532 +(((
533 +Payload:    01 00 00 1E    TDC=30S
534 +)))
486 486  
487 -=== 2.7.3 CN470-510 (CN470) ===
536 +(((
537 +Payload:    01 00 00 3C    TDC=60S
538 +)))
488 488  
489 -Used in China, Default use CHE=1
540 +(((
541 +
542 +)))
490 490  
491 -(% style="color:#037691" %)**Uplink:**
544 +* (((
545 +(% style="color:blue" %)**Reset**
546 +)))
492 492  
493 -486.3 - SF7BW125 to SF12BW125
548 +(((
549 +If payload = 0x04FF, it will reset the NSE01
550 +)))
494 494  
495 -486.5 - SF7BW125 to SF12BW125
496 496  
497 -486.7 - SF7BW125 to SF12BW125
553 +* (% style="color:blue" %)**INTMOD**
498 498  
499 -486.9 - SF7BW125 to SF12BW125
555 +(((
556 +Downlink Payload: 06000003, Set AT+INTMOD=3
557 +)))
500 500  
501 -487.1 - SF7BW125 to SF12BW125
502 502  
503 -487.3 - SF7BW125 to SF12BW125
504 504  
505 -487.5 - SF7BW125 to SF12BW125
561 +== 2.6  ​LED Indicator ==
506 506  
507 -487.7 - SF7BW125 to SF12BW125
563 +(((
564 +The NSE01 has an internal LED which is to show the status of different state.
508 508  
509 509  
510 -(% style="color:#037691" %)**Downlink:**
567 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 +* Then the LED will be on for 1 second means device is boot normally.
569 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
570 +* For each uplink probe, LED will be on for 500ms.
571 +)))
511 511  
512 -506.7 - SF7BW125 to SF12BW125
513 513  
514 -506.9 - SF7BW125 to SF12BW125
515 515  
516 -507.1 - SF7BW125 to SF12BW125
517 517  
518 -507.3 - SF7BW125 to SF12BW125
576 +== 2.7  Installation in Soil ==
519 519  
520 -507.5 - SF7BW125 to SF12BW125
578 +__**Measurement the soil surface**__
521 521  
522 -507.7 - SF7BW125 to SF12BW125
580 +(((
581 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
582 +)))
523 523  
524 -507.9 - SF7BW125 to SF12BW125
584 +[[image:1657259653666-883.png]] ​
525 525  
526 -508.1 - SF7BW125 to SF12BW125
527 527  
528 -505.3 - SF12BW125 (RX2 downlink only)
587 +(((
588 +
529 529  
590 +(((
591 +Dig a hole with diameter > 20CM.
592 +)))
530 530  
594 +(((
595 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
596 +)))
597 +)))
531 531  
532 -=== 2.7.4 AU915-928(AU915) ===
599 +[[image:1654506665940-119.png]]
533 533  
534 -Default use CHE=2
601 +(((
602 +
603 +)))
535 535  
536 -(% style="color:#037691" %)**Uplink:**
537 537  
538 -916.8 - SF7BW125 to SF12BW125
606 +== 2.8  Firmware Change Log ==
539 539  
540 -917.0 - SF7BW125 to SF12BW125
541 541  
542 -917.2 - SF7BW125 to SF12BW125
609 +Download URL & Firmware Change log
543 543  
544 -917.4 - SF7BW125 to SF12BW125
611 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
545 545  
546 -917.6 - SF7BW125 to SF12BW125
547 547  
548 -917.8 - SF7BW125 to SF12BW125
614 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
549 549  
550 -918.0 - SF7BW125 to SF12BW125
551 551  
552 -918.2 - SF7BW125 to SF12BW125
553 553  
618 +== 2.9  ​Battery Analysis ==
554 554  
555 -(% style="color:#037691" %)**Downlink:**
620 +=== 2.9.1  ​Battery Type ===
556 556  
557 -923.3 - SF7BW500 to SF12BW500
558 558  
559 -923.9 - SF7BW500 to SF12BW500
560 -
561 -924.5 - SF7BW500 to SF12BW500
562 -
563 -925.1 - SF7BW500 to SF12BW500
564 -
565 -925.7 - SF7BW500 to SF12BW500
566 -
567 -926.3 - SF7BW500 to SF12BW500
568 -
569 -926.9 - SF7BW500 to SF12BW500
570 -
571 -927.5 - SF7BW500 to SF12BW500
572 -
573 -923.3 - SF12BW500(RX2 downlink only)
574 -
575 -
576 -
577 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
578 -
579 -(% style="color:#037691" %)**Default Uplink channel:**
580 -
581 -923.2 - SF7BW125 to SF10BW125
582 -
583 -923.4 - SF7BW125 to SF10BW125
584 -
585 -
586 -(% style="color:#037691" %)**Additional Uplink Channel**:
587 -
588 -(OTAA mode, channel added by JoinAccept message)
589 -
590 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
591 -
592 -922.2 - SF7BW125 to SF10BW125
593 -
594 -922.4 - SF7BW125 to SF10BW125
595 -
596 -922.6 - SF7BW125 to SF10BW125
597 -
598 -922.8 - SF7BW125 to SF10BW125
599 -
600 -923.0 - SF7BW125 to SF10BW125
601 -
602 -922.0 - SF7BW125 to SF10BW125
603 -
604 -
605 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
606 -
607 -923.6 - SF7BW125 to SF10BW125
608 -
609 -923.8 - SF7BW125 to SF10BW125
610 -
611 -924.0 - SF7BW125 to SF10BW125
612 -
613 -924.2 - SF7BW125 to SF10BW125
614 -
615 -924.4 - SF7BW125 to SF10BW125
616 -
617 -924.6 - SF7BW125 to SF10BW125
618 -
619 -
620 -(% style="color:#037691" %)** Downlink:**
621 -
622 -Uplink channels 1-8 (RX1)
623 -
624 -923.2 - SF10BW125 (RX2)
625 -
626 -
627 -
628 -=== 2.7.6 KR920-923 (KR920) ===
629 -
630 -Default channel:
631 -
632 -922.1 - SF7BW125 to SF12BW125
633 -
634 -922.3 - SF7BW125 to SF12BW125
635 -
636 -922.5 - SF7BW125 to SF12BW125
637 -
638 -
639 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
640 -
641 -922.1 - SF7BW125 to SF12BW125
642 -
643 -922.3 - SF7BW125 to SF12BW125
644 -
645 -922.5 - SF7BW125 to SF12BW125
646 -
647 -922.7 - SF7BW125 to SF12BW125
648 -
649 -922.9 - SF7BW125 to SF12BW125
650 -
651 -923.1 - SF7BW125 to SF12BW125
652 -
653 -923.3 - SF7BW125 to SF12BW125
654 -
655 -
656 -(% style="color:#037691" %)**Downlink:**
657 -
658 -Uplink channels 1-7(RX1)
659 -
660 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
661 -
662 -
663 -
664 -=== 2.7.7 IN865-867 (IN865) ===
665 -
666 -(% style="color:#037691" %)** Uplink:**
667 -
668 -865.0625 - SF7BW125 to SF12BW125
669 -
670 -865.4025 - SF7BW125 to SF12BW125
671 -
672 -865.9850 - SF7BW125 to SF12BW125
673 -
674 -
675 -(% style="color:#037691" %) **Downlink:**
676 -
677 -Uplink channels 1-3 (RX1)
678 -
679 -866.550 - SF10BW125 (RX2)
680 -
681 -
682 -
683 -
684 -== 2.8 LED Indicator ==
685 -
686 -The LSE01 has an internal LED which is to show the status of different state.
687 -
688 -* Blink once when device power on.
689 -* Solid ON for 5 seconds once device successful Join the network.
690 -* Blink once when device transmit a packet.
691 -
692 -
693 -
694 -
695 -== 2.9 Installation in Soil ==
696 -
697 -**Measurement the soil surface**
698 -
699 -
700 -[[image:1654506634463-199.png]] ​
701 -
702 702  (((
703 -(((
704 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
624 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
705 705  )))
706 -)))
707 707  
708 708  
709 -
710 -[[image:1654506665940-119.png]]
711 -
712 712  (((
713 -Dig a hole with diameter > 20CM.
629 +The battery is designed to last for several years depends on the actually use environment and update interval. 
714 714  )))
715 715  
716 -(((
717 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
718 -)))
719 719  
720 -
721 -== 2.10 ​Firmware Change Log ==
722 -
723 723  (((
724 -**Firmware download link:**
634 +The battery related documents as below:
725 725  )))
726 726  
727 -(((
728 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
729 -)))
637 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
730 730  
731 731  (((
732 -
642 +[[image:image-20220708140453-6.png]]
733 733  )))
734 734  
735 -(((
736 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
737 -)))
738 738  
739 -(((
740 -
741 -)))
742 742  
743 -(((
744 -**V1.0.**
745 -)))
647 +=== 2.9.2  Power consumption Analyze ===
746 746  
747 747  (((
748 -Release
650 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
749 749  )))
750 750  
751 751  
752 -== 2.11 ​Battery Analysis ==
753 -
754 -=== 2.11.1 ​Battery Type ===
755 -
756 756  (((
757 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
655 +Instruction to use as below:
758 758  )))
759 759  
760 760  (((
761 -The battery is designed to last for more than 5 years for the LSN50.
659 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
762 762  )))
763 763  
662 +
764 764  (((
765 -(((
766 -The battery-related documents are as below:
664 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
767 767  )))
768 -)))
769 769  
770 770  * (((
771 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
668 +Product Model
772 772  )))
773 773  * (((
774 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
671 +Uplink Interval
775 775  )))
776 776  * (((
777 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
674 +Working Mode
778 778  )))
779 779  
780 - [[image:image-20220610172436-1.png]]
677 +(((
678 +And the Life expectation in difference case will be shown on the right.
679 +)))
781 781  
681 +[[image:image-20220708141352-7.jpeg]]
782 782  
783 783  
784 -=== 2.11.2 ​Battery Note ===
785 785  
685 +=== 2.9.3  ​Battery Note ===
686 +
786 786  (((
787 787  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
788 788  )))
... ... @@ -789,302 +789,176 @@
789 789  
790 790  
791 791  
792 -=== 2.11.3 Replace the battery ===
693 +=== 2.9. Replace the battery ===
793 793  
794 794  (((
795 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
696 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
796 796  )))
797 797  
699 +
700 +
701 += 3. ​ Access NB-IoT Module =
702 +
798 798  (((
799 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
704 +Users can directly access the AT command set of the NB-IoT module.
800 800  )))
801 801  
802 802  (((
803 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
708 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
804 804  )))
805 805  
711 +[[image:1657261278785-153.png]]
806 806  
807 807  
808 -= 3. ​Using the AT Commands =
809 809  
810 -== 3.1 Access AT Commands ==
715 += 4.  Using the AT Commands =
811 811  
717 +== 4.1  Access AT Commands ==
812 812  
813 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
719 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
814 814  
815 -[[image:1654501986557-872.png||height="391" width="800"]]
816 816  
722 +AT+<CMD>?  : Help on <CMD>
817 817  
818 -Or if you have below board, use below connection:
724 +AT+<CMD>         : Run <CMD>
819 819  
726 +AT+<CMD>=<value> : Set the value
820 820  
821 -[[image:1654502005655-729.png||height="503" width="801"]]
728 +AT+<CMD>=?  : Get the value
822 822  
823 823  
824 -
825 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
826 -
827 -
828 - [[image:1654502050864-459.png||height="564" width="806"]]
829 -
830 -
831 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
832 -
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
835 -
836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
837 -
838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
839 -
840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
841 -
842 -
843 843  (% style="color:#037691" %)**General Commands**(%%)      
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
733 +AT  : Attention       
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
735 +AT?  : Short Help     
848 848  
849 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
737 +ATZ  : MCU Reset    
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
739 +AT+TDC  : Application Data Transmission Interval
852 852  
741 +AT+CFG  : Print all configurations
853 853  
854 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
743 +AT+CFGMOD           : Working mode selection
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
745 +AT+INTMOD            : Set the trigger interrupt mode
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
747 +AT+5VT  : Set extend the time of 5V power  
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
749 +AT+PRO  : Choose agreement
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
751 +AT+WEIGRE  : Get weight or set weight to 0
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
753 +AT+WEIGAP  : Get or Set the GapValue of weight
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
755 +AT+RXDL  : Extend the sending and receiving time
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
757 +AT+CNTFAC  : Get or set counting parameters
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
759 +AT+SERVADDR  : Server Address
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
762 +(% style="color:#037691" %)**COAP Management**      
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
764 +AT+URI            : Resource parameters
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
767 +(% style="color:#037691" %)**UDP Management**
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
769 +AT+CFM          : Upload confirmation mode (only valid for UDP)
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
772 +(% style="color:#037691" %)**MQTT Management**
887 887  
774 +AT+CLIENT               : Get or Set MQTT client
888 888  
889 -(% style="color:#037691" %)**LoRa Network Management**
776 +AT+UNAME  : Get or Set MQTT Username
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
778 +AT+PWD                  : Get or Set MQTT password
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
780 +AT+PUBTOPI : Get or Set MQTT publish topic
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
782 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
785 +(% style="color:#037691" %)**Information**          
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
787 +AT+FDR  : Factory Data Reset
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
789 +AT+PWOR : Serial Access Password
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
793 += ​5.  FAQ =
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
795 +== 5.1 How to Upgrade Firmware ==
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
914 914  
915 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
916 -
917 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
918 -
919 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
920 -
921 -
922 -(% style="color:#037691" %)**Information** 
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
935 -
936 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
937 -
938 -
939 -= ​4. FAQ =
940 -
941 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
942 -
943 943  (((
944 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
945 -When downloading the images, choose the required image file for download. ​
799 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
946 946  )))
947 947  
948 948  (((
949 -
803 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
950 950  )))
951 951  
952 952  (((
953 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
807 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
954 954  )))
955 955  
956 -(((
957 -
958 -)))
959 959  
960 -(((
961 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
962 -)))
963 963  
964 -(((
965 -
966 -)))
812 +== 5.2  Can I calibrate NSE01 to different soil types? ==
967 967  
968 968  (((
969 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
815 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
970 970  )))
971 971  
972 -[[image:image-20220606154726-3.png]]
973 973  
819 += 6.  Trouble Shooting =
974 974  
975 -When you use the TTN network, the US915 frequency bands use are:
821 +== 6.1  ​Connection problem when uploading firmware ==
976 976  
977 -* 903.9 - SF7BW125 to SF10BW125
978 -* 904.1 - SF7BW125 to SF10BW125
979 -* 904.3 - SF7BW125 to SF10BW125
980 -* 904.5 - SF7BW125 to SF10BW125
981 -* 904.7 - SF7BW125 to SF10BW125
982 -* 904.9 - SF7BW125 to SF10BW125
983 -* 905.1 - SF7BW125 to SF10BW125
984 -* 905.3 - SF7BW125 to SF10BW125
985 -* 904.6 - SF8BW500
986 986  
987 987  (((
988 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
989 -
990 -* (% style="color:#037691" %)**AT+CHE=2**
991 -* (% style="color:#037691" %)**ATZ**
825 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
992 992  )))
993 993  
828 +(% class="wikigeneratedid" %)
994 994  (((
995 995  
996 -
997 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
998 998  )))
999 999  
1000 -(((
1001 -
1002 -)))
1003 1003  
1004 -(((
1005 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1006 -)))
834 +== 6.2  AT Command input doesn't work ==
1007 1007  
1008 -[[image:image-20220606154825-4.png]]
1009 -
1010 -
1011 -== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1012 -
1013 -LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1014 -
1015 -
1016 -= 5. Trouble Shooting =
1017 -
1018 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1019 -
1020 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1021 -
1022 -
1023 -== 5.2 AT Command input doesn’t work ==
1024 -
1025 1025  (((
1026 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 -)))
837 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1028 1028  
1029 -
1030 -== 5.3 Device rejoin in at the second uplink packet ==
1031 -
1032 -(% style="color:#4f81bd" %)**Issue describe as below:**
1033 -
1034 -[[image:1654500909990-784.png]]
1035 -
1036 -
1037 -(% style="color:#4f81bd" %)**Cause for this issue:**
1038 -
1039 -(((
1040 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
839 +
1041 1041  )))
1042 1042  
1043 1043  
1044 -(% style="color:#4f81bd" %)**Solution: **
843 += 7. ​ Order Info =
1045 1045  
1046 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1047 1047  
1048 -[[image:1654500929571-736.png||height="458" width="832"]]
846 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1049 1049  
1050 1050  
1051 -= 6. ​Order Info =
1052 -
1053 -
1054 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1055 -
1056 -
1057 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1058 -
1059 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1060 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1061 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1062 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1063 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1064 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1065 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1066 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1067 -
1068 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1069 -
1070 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1071 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1072 -
1073 1073  (% class="wikigeneratedid" %)
1074 1074  (((
1075 1075  
1076 1076  )))
1077 1077  
1078 -= 7. Packing Info =
854 += 8.  Packing Info =
1079 1079  
1080 1080  (((
1081 1081  
1082 1082  
1083 1083  (% style="color:#037691" %)**Package Includes**:
1084 -)))
1085 1085  
1086 -* (((
1087 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
861 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
862 +* External antenna x 1
1088 1088  )))
1089 1089  
1090 1090  (((
... ... @@ -1091,24 +1091,19 @@
1091 1091  
1092 1092  
1093 1093  (% style="color:#037691" %)**Dimension and weight**:
1094 -)))
1095 1095  
1096 -* (((
1097 -Device Size: cm
870 +* Size: 195 x 125 x 55 mm
871 +* Weight:   420g
1098 1098  )))
1099 -* (((
1100 -Device Weight: g
1101 -)))
1102 -* (((
1103 -Package Size / pcs : cm
1104 -)))
1105 -* (((
1106 -Weight / pcs : g
1107 1107  
874 +(((
1108 1108  
876 +
877 +
878 +
1109 1109  )))
1110 1110  
1111 -= 8. Support =
881 += 9.  Support =
1112 1112  
1113 1113  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1114 1114  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content