Last modified by Mengting Qiu on 2024/04/02 16:44

From version 40.1
edited by Edwin Chen
on 2022/06/29 19:12
Change comment: There is no comment for this version
To version 62.1
edited by Xiaoling
on 2022/07/08 14:13
Change comment: Uploaded new attachment "image-20220708141352-7.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -13,775 +13,612 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
71 -== 1.3 Specification ==
62 +== 1.3  Specification ==
72 72  
73 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
75 -[[image:image-20220606162220-5.png]]
65 +(% style="color:#037691" %)**Common DC Characteristics:**
76 76  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
77 77  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
78 78  
79 -== ​1.4 Applications ==
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
80 80  
81 -* Smart Agriculture
79 +(% style="color:#037691" %)**Probe Specification:**
82 82  
83 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
84 -​
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
85 85  
86 -== 1.5 Firmware Change log ==
83 +[[image:image-20220708101224-1.png]]
87 87  
88 88  
89 -**LSE01 v1.0 :**  Release
90 90  
87 +== ​1.4  Applications ==
91 91  
89 +* Smart Agriculture
92 92  
93 -= 2. Configure LSE01 to connect to LoRaWAN network =
91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
92 +​
94 94  
95 -== 2.1 How it works ==
94 +== 1.5  Pin Definitions ==
96 96  
97 -(((
98 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
99 -)))
100 100  
101 -(((
102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
103 -)))
97 +[[image:1657246476176-652.png]]
104 104  
105 105  
106 106  
107 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 += 2.  Use NSE01 to communicate with IoT Server =
108 108  
109 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 +== 2. How it works ==
110 110  
111 111  
112 -[[image:1654503992078-669.png]]
113 -
114 -
115 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
116 -
117 -
118 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
119 -
120 -Each LSE01 is shipped with a sticker with the default device EUI as below:
121 -
122 -[[image:image-20220606163732-6.jpeg]]
123 -
124 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
125 -
126 -**Add APP EUI in the application**
127 -
128 -
129 -[[image:1654504596150-405.png]]
130 -
131 -
132 -
133 -**Add APP KEY and DEV EUI**
134 -
135 -[[image:1654504683289-357.png]]
136 -
137 -
138 -
139 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
140 -
141 -
142 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
143 -
144 -[[image:image-20220606163915-7.png]]
145 -
146 -
147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
148 -
149 -[[image:1654504778294-788.png]]
150 -
151 -
152 -
153 -== 2.3 Uplink Payload ==
154 -
155 -
156 -=== 2.3.1 MOD~=0(Default Mode) ===
157 -
158 -LSE01 will uplink payload via LoRaWAN with below payload format: 
159 -
160 160  (((
161 -Uplink payload includes in total 11 bytes.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
162 162  )))
163 163  
164 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 -|(((
166 -**Size**
167 167  
168 -**(bytes)**
169 -)))|**2**|**2**|**2**|**2**|**2**|**1**
170 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 -Temperature
172 -
173 -(Reserve, Ignore now)
174 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 -MOD & Digital Interrupt
176 -
177 -(Optional)
178 -)))
179 -
180 -=== 2.3.2 MOD~=1(Original value) ===
181 -
182 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
183 -
184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 -|(((
186 -**Size**
187 -
188 -**(bytes)**
189 -)))|**2**|**2**|**2**|**2**|**2**|**1**
190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 -Temperature
192 -
193 -(Reserve, Ignore now)
194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 -MOD & Digital Interrupt
196 -
197 -(Optional)
198 -)))
199 -
200 -=== 2.3.3 Battery Info ===
201 -
202 202  (((
203 -Check the battery voltage for LSE01.
112 +The diagram below shows the working flow in default firmware of NSE01:
204 204  )))
205 205  
206 -(((
207 -Ex1: 0x0B45 = 2885mV
208 -)))
115 +[[image:image-20220708101605-2.png]]
209 209  
210 210  (((
211 -Ex2: 0x0B49 = 2889mV
212 -)))
213 -
214 -
215 -
216 -=== 2.3.4 Soil Moisture ===
217 -
218 -(((
219 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 -)))
221 -
222 -(((
223 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
224 -)))
225 -
226 -(((
227 227  
228 228  )))
229 229  
230 -(((
231 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
232 -)))
233 233  
234 234  
123 +== 2.2 ​ Configure the NSE01 ==
235 235  
236 -=== 2.3.5 Soil Temperature ===
237 237  
238 -(((
239 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
240 -)))
126 +=== 2.2.1 Test Requirement ===
241 241  
242 -(((
243 -**Example**:
244 -)))
245 245  
246 -(((
247 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
248 -)))
129 +To use NSE01 in your city, make sure meet below requirements:
249 249  
250 -(((
251 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
252 -)))
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
253 253  
254 -
255 -
256 -=== 2.3.6 Soil Conductivity (EC) ===
257 -
258 258  (((
259 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
260 260  )))
261 261  
262 -(((
263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 -)))
265 265  
266 -(((
267 -Generally, the EC value of irrigation water is less than 800uS / cm.
268 -)))
140 +[[image:1657249419225-449.png]]
269 269  
270 -(((
271 -
272 -)))
273 273  
274 -(((
275 -
276 -)))
277 277  
278 -=== 2.3.7 MOD ===
144 +=== 2.2.2 Insert SIM card ===
279 279  
280 -Firmware version at least v2.1 supports changing mode.
146 +Insert the NB-IoT Card get from your provider.
281 281  
282 -For example, bytes[10]=90
148 +User need to take out the NB-IoT module and insert the SIM card like below:
283 283  
284 -mod=(bytes[10]>>7)&0x01=1.
285 285  
151 +[[image:1657249468462-536.png]]
286 286  
287 -**Downlink Command:**
288 288  
289 -If payload = 0x0A00, workmode=0
290 290  
291 -If** **payload =** **0x0A01, workmode=1
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
292 292  
293 -
294 -
295 -=== 2.3.8 ​Decode payload in The Things Network ===
296 -
297 -While using TTN network, you can add the payload format to decode the payload.
298 -
299 -
300 -[[image:1654505570700-128.png]]
301 -
302 302  (((
303 -The payload decoder function for TTN is here:
304 -)))
305 -
306 306  (((
307 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
308 308  )))
309 -
310 -
311 -== 2.4 Uplink Interval ==
312 -
313 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
314 -
315 -
316 -
317 -== 2.5 Downlink Payload ==
318 -
319 -By default, LSE50 prints the downlink payload to console port.
320 -
321 -[[image:image-20220606165544-8.png]]
322 -
323 -
324 -(((
325 -**Examples:**
326 326  )))
327 327  
328 -(((
329 -
330 -)))
331 331  
332 -* (((
333 -**Set TDC**
334 -)))
164 +**Connection:**
335 335  
336 -(((
337 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
338 -)))
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
339 339  
340 -(((
341 -Payload:    01 00 00 1E    TDC=30S
342 -)))
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
343 343  
344 -(((
345 -Payload:    01 00 00 3C    TDC=60S
346 -)))
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
347 347  
348 -(((
349 -
350 -)))
351 351  
352 -* (((
353 -**Reset**
354 -)))
173 +In the PC, use below serial tool settings:
355 355  
356 -(((
357 -If payload = 0x04FF, it will reset the LSE01
358 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
359 359  
360 -
361 -* **CFM**
362 -
363 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
364 -
365 -
366 -
367 -== 2.6 ​Show Data in DataCake IoT Server ==
368 -
369 369  (((
370 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
371 371  )))
372 372  
373 -(((
374 -
375 -)))
185 +[[image:image-20220708110657-3.png]]
376 376  
377 -(((
378 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
379 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
380 380  
381 -(((
382 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
383 -)))
384 384  
385 385  
386 -[[image:1654505857935-743.png]]
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
387 387  
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
388 388  
389 -[[image:1654505874829-548.png]]
390 390  
196 +**Use below commands:**
391 391  
392 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
393 393  
394 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
202 +For parameter description, please refer to AT command set
395 395  
204 +[[image:1657249793983-486.png]]
396 396  
397 -[[image:1654505905236-553.png]]
398 398  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
399 399  
400 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
209 +[[image:1657249831934-534.png]]
401 401  
402 -[[image:1654505925508-181.png]]
403 403  
404 404  
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
405 405  
406 -== 2.7 Frequency Plans ==
215 +This feature is supported since firmware version v1.0.1
407 407  
408 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
409 409  
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
410 410  
411 -=== 2.7.1 EU863-870 (EU868) ===
222 +[[image:1657249864775-321.png]]
412 412  
413 -(% style="color:#037691" %)** Uplink:**
414 414  
415 -868.1 - SF7BW125 to SF12BW125
225 +[[image:1657249930215-289.png]]
416 416  
417 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
418 418  
419 -868.5 - SF7BW125 to SF12BW125
420 420  
421 -867.1 - SF7BW125 to SF12BW125
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
422 422  
423 -867.3 - SF7BW125 to SF12BW125
231 +This feature is supported since firmware version v110
424 424  
425 -867.5 - SF7BW125 to SF12BW125
426 426  
427 -867.7 - SF7BW125 to SF12BW125
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
428 428  
429 -867.9 - SF7BW125 to SF12BW125
242 +[[image:1657249978444-674.png]]
430 430  
431 -868.8 - FSK
432 432  
245 +[[image:1657249990869-686.png]]
433 433  
434 -(% style="color:#037691" %)** Downlink:**
435 435  
436 -Uplink channels 1-9 (RX1)
248 +(((
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
250 +)))
437 437  
438 -869.525 - SF9BW125 (RX2 downlink only)
439 439  
440 440  
254 +=== 2.2.7 Use TCP protocol to uplink data ===
441 441  
442 -=== 2.7.2 US902-928(US915) ===
256 +This feature is supported since firmware version v110
443 443  
444 -Used in USA, Canada and South America. Default use CHE=2
445 445  
446 -(% style="color:#037691" %)**Uplink:**
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
447 447  
448 -903.9 - SF7BW125 to SF10BW125
262 +[[image:1657250217799-140.png]]
449 449  
450 -904.1 - SF7BW125 to SF10BW125
451 451  
452 -904.3 - SF7BW125 to SF10BW125
265 +[[image:1657250255956-604.png]]
453 453  
454 -904.5 - SF7BW125 to SF10BW125
455 455  
456 -904.7 - SF7BW125 to SF10BW125
457 457  
458 -904.9 - SF7BW125 to SF10BW125
269 +=== 2.2.8 Change Update Interval ===
459 459  
460 -905.1 - SF7BW125 to SF10BW125
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
461 461  
462 -905.3 - SF7BW125 to SF10BW125
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
463 463  
275 +(((
276 +(% style="color:red" %)**NOTE:**
277 +)))
464 464  
465 -(% style="color:#037691" %)**Downlink:**
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
466 466  
467 -923.3 - SF7BW500 to SF12BW500
468 468  
469 -923.9 - SF7BW500 to SF12BW500
470 470  
471 -924.5 - SF7BW500 to SF12BW500
285 +== 2. Uplink Payload ==
472 472  
473 -925.1 - SF7BW500 to SF12BW500
287 +In this mode, uplink payload includes in total 18 bytes
474 474  
475 -925.7 - SF7BW500 to SF12BW500
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
476 476  
477 -926.3 - SF7BW500 to SF12BW500
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
478 478  
479 -926.9 - SF7BW500 to SF12BW500
480 480  
481 -927.5 - SF7BW500 to SF12BW500
298 +[[image:image-20220708111918-4.png]]
482 482  
483 -923.3 - SF12BW500(RX2 downlink only)
484 484  
301 +The payload is ASCII string, representative same HEX:
485 485  
303 +0x72403155615900640c7817075e0a8c02f900 where:
486 486  
487 -=== 2.7.3 CN470-510 (CN470) ===
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
488 488  
489 -Used in China, Default use CHE=1
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
490 490  
491 -(% style="color:#037691" %)**Uplink:**
315 +== 2.4  Payload Explanation and Sensor Interface ==
492 492  
493 -486.3 - SF7BW125 to SF12BW125
494 494  
495 -486.5 - SF7BW125 to SF12BW125
318 +=== 2.4.1  Device ID ===
496 496  
497 -486.7 - SF7BW125 to SF12BW125
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
498 498  
499 -486.9 - SF7BW125 to SF12BW125
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
500 500  
501 -487.1 - SF7BW125 to SF12BW125
324 +**Example:**
502 502  
503 -487.3 - SF7BW125 to SF12BW125
326 +AT+DEUI=A84041F15612
504 504  
505 -487.5 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
506 506  
507 -487.7 - SF7BW125 to SF12BW125
508 508  
509 509  
510 -(% style="color:#037691" %)**Downlink:**
332 +=== 2.4.2  Version Info ===
511 511  
512 -506.7 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
513 513  
514 -506.9 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
515 515  
516 -507.1 - SF7BW125 to SF12BW125
517 517  
518 -507.3 - SF7BW125 to SF12BW125
519 519  
520 -507.5 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
521 521  
522 -507.7 - SF7BW125 to SF12BW125
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
523 523  
524 -507.9 - SF7BW125 to SF12BW125
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
525 525  
526 -508.1 - SF7BW125 to SF12BW125
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
527 527  
528 -505.3 - SF12BW125 (RX2 downlink only)
529 529  
530 530  
356 +=== 2.4.4  Signal Strength ===
531 531  
532 -=== 2.7.4 AU915-928(AU915) ===
358 +NB-IoT Network signal Strength.
533 533  
534 -Default use CHE=2
360 +**Ex1: 0x1d = 29**
535 535  
536 -(% style="color:#037691" %)**Uplink:**
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
537 537  
538 -916.8 - SF7BW125 to SF12BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
539 539  
540 -917.0 - SF7BW125 to SF12BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
541 541  
542 -917.2 - SF7BW125 to SF12BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
543 543  
544 -917.4 - SF7BW125 to SF12BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
545 545  
546 -917.6 - SF7BW125 to SF12BW125
547 547  
548 -917.8 - SF7BW125 to SF12BW125
549 549  
550 -918.0 - SF7BW125 to SF12BW125
374 +=== 2.4.5  Soil Moisture ===
551 551  
552 -918.2 - SF7BW125 to SF12BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
553 553  
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
554 554  
555 -(% style="color:#037691" %)**Downlink:**
384 +(((
385 +
386 +)))
556 556  
557 -923.3 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
558 558  
559 -923.9 - SF7BW500 to SF12BW500
560 560  
561 -924.5 - SF7BW500 to SF12BW500
562 562  
563 -925.1 - SF7BW500 to SF12BW500
394 +=== 2.4.6  Soil Temperature ===
564 564  
565 -925.7 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
566 566  
567 -926.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
568 568  
569 -926.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
570 570  
571 -927.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
572 572  
573 -923.3 - SF12BW500(RX2 downlink only)
574 574  
575 575  
414 +=== 2.4.7  Soil Conductivity (EC) ===
576 576  
577 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
578 578  
579 -(% style="color:#037691" %)**Default Uplink channel:**
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
580 580  
581 -923.2 - SF7BW125 to SF10BW125
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
582 582  
583 -923.4 - SF7BW125 to SF10BW125
428 +(((
429 +
430 +)))
584 584  
432 +(((
433 +
434 +)))
585 585  
586 -(% style="color:#037691" %)**Additional Uplink Channel**:
436 +=== 2.4.8  Digital Interrupt ===
587 587  
588 -(OTAA mode, channel added by JoinAccept message)
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
589 589  
590 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
440 +The command is:
591 591  
592 -922.2 - SF7BW125 to SF10BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
593 593  
594 -922.4 - SF7BW125 to SF10BW125
595 595  
596 -922.6 - SF7BW125 to SF10BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
597 597  
598 -922.8 - SF7BW125 to SF10BW125
599 599  
600 -923.0 - SF7BW125 to SF10BW125
448 +Example:
601 601  
602 -922.0 - SF7BW125 to SF10BW125
450 +0x(00): Normal uplink packet.
603 603  
452 +0x(01): Interrupt Uplink Packet.
604 604  
605 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
606 606  
607 -923.6 - SF7BW125 to SF10BW125
608 608  
609 -923.8 - SF7BW125 to SF10BW125
456 +=== 2.4.9  ​+5V Output ===
610 610  
611 -924.0 - SF7BW125 to SF10BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
612 612  
613 -924.2 - SF7BW125 to SF10BW125
614 614  
615 -924.4 - SF7BW125 to SF10BW125
461 +The 5V output time can be controlled by AT Command.
616 616  
617 -924.6 - SF7BW125 to SF10BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
618 618  
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
619 619  
620 -(% style="color:#037691" %)** Downlink:**
621 621  
622 -Uplink channels 1-8 (RX1)
623 623  
624 -923.2 - SF10BW125 (RX2)
469 +== 2. Downlink Payload ==
625 625  
471 +By default, NSE01 prints the downlink payload to console port.
626 626  
473 +[[image:image-20220708133731-5.png]]
627 627  
628 -=== 2.7.6 KR920-923 (KR920) ===
629 629  
630 -Default channel:
631 631  
632 -922.1 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
633 633  
634 -922.3 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
635 635  
636 -922.5 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
637 637  
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
638 638  
639 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
640 640  
641 -922.1 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
642 642  
643 -922.3 - SF7BW125 to SF12BW125
501 +(((
502 +
503 +)))
644 644  
645 -922.5 - SF7BW125 to SF12BW125
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
646 646  
647 -922.7 - SF7BW125 to SF12BW125
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
648 648  
649 -922.9 - SF7BW125 to SF12BW125
650 650  
651 -923.1 - SF7BW125 to SF12BW125
514 +* (% style="color:blue" %)**INTMOD**
652 652  
653 -923.3 - SF7BW125 to SF12BW125
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
654 654  
655 655  
656 -(% style="color:#037691" %)**Downlink:**
657 657  
658 -Uplink channels 1-7(RX1)
520 +== 2.6  ​LED Indicator ==
659 659  
660 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
661 661  
662 662  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
663 663  
664 -=== 2.7.7 IN865-867 (IN865) ===
665 665  
666 -(% style="color:#037691" %)** Uplink:**
667 667  
668 -865.0625 - SF7BW125 to SF12BW125
669 669  
670 -865.4025 - SF7BW125 to SF12BW125
535 +== 2.7  Installation in Soil ==
671 671  
672 -865.9850 - SF7BW125 to SF12BW125
537 +__**Measurement the soil surface**__
673 673  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
674 674  
675 -(% style="color:#037691" %) **Downlink:**
541 +[[image:1657259653666-883.png]] ​
676 676  
677 -Uplink channels 1-3 (RX1)
678 678  
679 -866.550 - SF10BW125 (RX2)
544 +(((
545 +
680 680  
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
681 681  
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
682 682  
556 +[[image:1654506665940-119.png]]
683 683  
684 -== 2.8 LED Indicator ==
558 +(((
559 +
560 +)))
685 685  
686 -The LSE01 has an internal LED which is to show the status of different state.
687 687  
688 -* Blink once when device power on.
689 -* Solid ON for 5 seconds once device successful Join the network.
690 -* Blink once when device transmit a packet.
563 +== 2.8  ​Firmware Change Log ==
691 691  
692 692  
566 +Download URL & Firmware Change log
693 693  
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
694 694  
695 -== 2.9 Installation in Soil ==
696 696  
697 -**Measurement the soil surface**
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
698 698  
699 699  
700 -[[image:1654506634463-199.png]] ​
701 701  
702 -(((
703 -(((
704 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
705 -)))
706 -)))
575 +== 2.9  ​Battery Analysis ==
707 707  
577 +=== 2.9.1  ​Battery Type ===
708 708  
709 709  
710 -[[image:1654506665940-119.png]]
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
711 711  
712 -(((
713 -Dig a hole with diameter > 20CM.
714 -)))
715 715  
716 -(((
717 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
718 -)))
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
719 719  
720 720  
721 -== 2.10 ​Firmware Change Log ==
586 +The battery related documents as below:
722 722  
723 -(((
724 -**Firmware download link:**
725 -)))
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
726 726  
727 727  (((
728 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
593 +[[image:image-20220708140453-6.png]]
729 729  )))
730 730  
731 -(((
732 -
733 -)))
734 734  
735 -(((
736 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
737 -)))
738 738  
739 -(((
740 -
741 -)))
598 +2.9.2 
742 742  
743 -(((
744 -**V1.0.**
745 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
746 746  
747 -(((
748 -Release
749 -)))
750 750  
603 +Instruction to use as below:
751 751  
752 -== 2.11 ​Battery Analysis ==
753 753  
754 -=== 2.11.1 Battery Type ===
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
755 755  
756 -(((
757 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
758 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
759 759  
760 -(((
761 -The battery is designed to last for more than 5 years for the LSN50.
762 -)))
763 763  
764 -(((
765 -(((
766 -The battery-related documents are as below:
767 -)))
768 -)))
611 +Step 2: Open it and choose
769 769  
770 -* (((
771 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
772 -)))
773 -* (((
774 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
775 -)))
776 -* (((
777 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
778 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
779 779  
780 - [[image:image-20220610172436-1.png]]
617 +And the Life expectation in difference case will be shown on the right.
781 781  
782 782  
783 783  
784 -=== 2.11.2 ​Battery Note ===
621 +=== 2.9. ​Battery Note ===
785 785  
786 786  (((
787 787  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
... ... @@ -789,22 +789,12 @@
789 789  
790 790  
791 791  
792 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
793 793  
794 -(((
795 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
796 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
797 797  
798 -(((
799 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
800 -)))
801 801  
802 -(((
803 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
804 -)))
805 805  
806 -
807 -
808 808  = 3. ​Using the AT Commands =
809 809  
810 810  == 3.1 Access AT Commands ==
... ... @@ -1015,15 +1015,15 @@
1015 1015  
1016 1016  = 5. Trouble Shooting =
1017 1017  
1018 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1019 1019  
1020 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1021 1021  
1022 1022  
1023 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
1024 1024  
1025 1025  (((
1026 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 1027  )))
1028 1028  
1029 1029  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content