Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
From version 40.1
edited by Edwin Chen
on 2022/06/29 19:12
on 2022/06/29 19:12
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -13,775 +13,612 @@ 13 13 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 20 20 21 21 21 += 1. Introduction = 22 22 23 -= 1. Introduction =23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 24 25 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 - 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 32 32 33 -((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 35 -))) 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 39 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 44 44 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 + 47 47 ))) 48 48 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 54 54 55 55 56 56 57 57 == 1.2 Features == 58 58 59 - * LoRaWAN 1.0.3 Class A60 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 61 61 * Monitor Soil Moisture 62 62 * Monitor Soil Temperature 63 63 * Monitor Soil Conductivity 64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 70 70 71 -== 1.3 Specification == 62 +== 1.3 Specification == 72 72 73 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 75 - [[image:image-20220606162220-5.png]]65 +(% style="color:#037691" %)**Common DC Characteristics:** 76 76 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 77 77 70 +(% style="color:#037691" %)**NB-IoT Spec:** 78 78 79 -== 1.4 Applications == 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 80 80 81 - *SmartAgriculture79 +(% style="color:#037691" %)**Probe Specification:** 82 82 83 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 84 - 81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 85 85 86 - == 1.5 FirmwareChangelog==83 +[[image:image-20220708101224-1.png]] 87 87 88 88 89 -**LSE01 v1.0 :** Release 90 90 87 +== 1.4 Applications == 91 91 89 +* Smart Agriculture 92 92 93 -= 2. Configure LSE01 to connect to LoRaWAN network = 91 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 92 + 94 94 95 -== 2.1Howitworks ==94 +== 1.5 Pin Definitions == 96 96 97 -((( 98 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 99 -))) 100 100 101 -((( 102 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 103 -))) 97 +[[image:1657246476176-652.png]] 104 104 105 105 106 106 107 -= =2.2Quick guide to connect toLoRaWANserver(OTAA)==101 += 2. Use NSE01 to communicate with IoT Server = 108 108 109 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below isthenetworktructure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.103 +== 2.1 How it works == 110 110 111 111 112 -[[image:1654503992078-669.png]] 113 - 114 - 115 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 116 - 117 - 118 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 119 - 120 -Each LSE01 is shipped with a sticker with the default device EUI as below: 121 - 122 -[[image:image-20220606163732-6.jpeg]] 123 - 124 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 125 - 126 -**Add APP EUI in the application** 127 - 128 - 129 -[[image:1654504596150-405.png]] 130 - 131 - 132 - 133 -**Add APP KEY and DEV EUI** 134 - 135 -[[image:1654504683289-357.png]] 136 - 137 - 138 - 139 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 140 - 141 - 142 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 143 - 144 -[[image:image-20220606163915-7.png]] 145 - 146 - 147 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 148 - 149 -[[image:1654504778294-788.png]] 150 - 151 - 152 - 153 -== 2.3 Uplink Payload == 154 - 155 - 156 -=== 2.3.1 MOD~=0(Default Mode) === 157 - 158 -LSE01 will uplink payload via LoRaWAN with below payload format: 159 - 160 160 ((( 161 - Uplinkpayload includesin total11bytes.107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 162 162 ))) 163 163 164 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 165 -|((( 166 -**Size** 167 167 168 -**(bytes)** 169 -)))|**2**|**2**|**2**|**2**|**2**|**1** 170 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 171 -Temperature 172 - 173 -(Reserve, Ignore now) 174 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 175 -MOD & Digital Interrupt 176 - 177 -(Optional) 178 -))) 179 - 180 -=== 2.3.2 MOD~=1(Original value) === 181 - 182 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 183 - 184 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 -|((( 186 -**Size** 187 - 188 -**(bytes)** 189 -)))|**2**|**2**|**2**|**2**|**2**|**1** 190 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 -Temperature 192 - 193 -(Reserve, Ignore now) 194 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 195 -MOD & Digital Interrupt 196 - 197 -(Optional) 198 -))) 199 - 200 -=== 2.3.3 Battery Info === 201 - 202 202 ((( 203 - CheckthebatteryvoltageforLSE01.112 +The diagram below shows the working flow in default firmware of NSE01: 204 204 ))) 205 205 206 -((( 207 -Ex1: 0x0B45 = 2885mV 208 -))) 115 +[[image:image-20220708101605-2.png]] 209 209 210 210 ((( 211 -Ex2: 0x0B49 = 2889mV 212 -))) 213 - 214 - 215 - 216 -=== 2.3.4 Soil Moisture === 217 - 218 -((( 219 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 220 -))) 221 - 222 -((( 223 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 224 -))) 225 - 226 -((( 227 227 228 228 ))) 229 229 230 -((( 231 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 232 -))) 233 233 234 234 123 +== 2.2 Configure the NSE01 == 235 235 236 -=== 2.3.5 Soil Temperature === 237 237 238 -((( 239 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 240 -))) 126 +=== 2.2.1 Test Requirement === 241 241 242 -((( 243 -**Example**: 244 -))) 245 245 246 -((( 247 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 248 -))) 129 +To use NSE01 in your city, make sure meet below requirements: 249 249 250 - (((251 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C252 - )))131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 253 253 254 - 255 - 256 -=== 2.3.6 Soil Conductivity (EC) === 257 - 258 258 ((( 259 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 260 260 ))) 261 261 262 -((( 263 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 264 -))) 265 265 266 -((( 267 -Generally, the EC value of irrigation water is less than 800uS / cm. 268 -))) 140 +[[image:1657249419225-449.png]] 269 269 270 -((( 271 - 272 -))) 273 273 274 -((( 275 - 276 -))) 277 277 278 -=== 2. 3.7MOD===144 +=== 2.2.2 Insert SIM card === 279 279 280 - Firmwareversionatleastv2.1supportschanging mode.146 +Insert the NB-IoT Card get from your provider. 281 281 282 - For example,bytes[10]=90148 +User need to take out the NB-IoT module and insert the SIM card like below: 283 283 284 -mod=(bytes[10]>>7)&0x01=1. 285 285 151 +[[image:1657249468462-536.png]] 286 286 287 -**Downlink Command:** 288 288 289 -If payload = 0x0A00, workmode=0 290 290 291 - If****payload=****0x0A01,workmode=1155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 292 292 293 - 294 - 295 -=== 2.3.8 Decode payload in The Things Network === 296 - 297 -While using TTN network, you can add the payload format to decode the payload. 298 - 299 - 300 -[[image:1654505570700-128.png]] 301 - 302 302 ((( 303 -The payload decoder function for TTN is here: 304 -))) 305 - 306 306 ((( 307 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 308 308 ))) 309 - 310 - 311 -== 2.4 Uplink Interval == 312 - 313 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 314 - 315 - 316 - 317 -== 2.5 Downlink Payload == 318 - 319 -By default, LSE50 prints the downlink payload to console port. 320 - 321 -[[image:image-20220606165544-8.png]] 322 - 323 - 324 -((( 325 -**Examples:** 326 326 ))) 327 327 328 -((( 329 - 330 -))) 331 331 332 -* ((( 333 -**Set TDC** 334 -))) 164 +**Connection:** 335 335 336 -((( 337 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 338 -))) 166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 339 339 340 -((( 341 -Payload: 01 00 00 1E TDC=30S 342 -))) 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 343 343 344 -((( 345 -Payload: 01 00 00 3C TDC=60S 346 -))) 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 347 347 348 -((( 349 - 350 -))) 351 351 352 -* ((( 353 -**Reset** 354 -))) 173 +In the PC, use below serial tool settings: 355 355 356 -((( 357 -If payload = 0x04FF, it will reset the LSE01 358 -))) 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 359 359 360 - 361 -* **CFM** 362 - 363 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 364 - 365 - 366 - 367 -== 2.6 Show Data in DataCake IoT Server == 368 - 369 369 ((( 370 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 371 371 ))) 372 372 373 -((( 374 - 375 -))) 185 +[[image:image-20220708110657-3.png]] 376 376 377 -((( 378 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 379 -))) 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 380 380 381 -((( 382 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 383 -))) 384 384 385 385 386 - [[image:1654505857935-743.png]]191 +=== 2.2.4 Use CoAP protocol to uplink data === 387 387 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 388 388 389 -[[image:1654505874829-548.png]] 390 390 196 +**Use below commands:** 391 391 392 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 393 393 394 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01andadd DevEUI.202 +For parameter description, please refer to AT command set 395 395 204 +[[image:1657249793983-486.png]] 396 396 397 -[[image:1654505905236-553.png]] 398 398 207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 399 399 400 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.209 +[[image:1657249831934-534.png]] 401 401 402 -[[image:1654505925508-181.png]] 403 403 404 404 213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 405 405 406 - ==2.7 FrequencyPlans==215 +This feature is supported since firmware version v1.0.1 407 407 408 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 409 409 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 410 410 411 - === 2.7.1EU863-870 (EU868) ===222 +[[image:1657249864775-321.png]] 412 412 413 -(% style="color:#037691" %)** Uplink:** 414 414 415 - 868.1- SF7BW125 to SF12BW125225 +[[image:1657249930215-289.png]] 416 416 417 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 418 418 419 -868.5 - SF7BW125 to SF12BW125 420 420 421 - 867.1-SF7BW125toSF12BW125229 +=== 2.2.6 Use MQTT protocol to uplink data === 422 422 423 - 867.3-SF7BW125toSF12BW125231 +This feature is supported since firmware version v110 424 424 425 -867.5 - SF7BW125 to SF12BW125 426 426 427 -867.7 - SF7BW125 to SF12BW125 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 428 428 429 - 867.9SF7BW125 to SF12BW125242 +[[image:1657249978444-674.png]] 430 430 431 -868.8 - FSK 432 432 245 +[[image:1657249990869-686.png]] 433 433 434 -(% style="color:#037691" %)** Downlink:** 435 435 436 -Uplink channels 1-9 (RX1) 248 +((( 249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 250 +))) 437 437 438 -869.525 - SF9BW125 (RX2 downlink only) 439 439 440 440 254 +=== 2.2.7 Use TCP protocol to uplink data === 441 441 442 - ===2.7.2US902-928(US915)===256 +This feature is supported since firmware version v110 443 443 444 -Used in USA, Canada and South America. Default use CHE=2 445 445 446 -(% style="color:#037691" %)**Uplink:** 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 447 447 448 - 903.9 - SF7BW125to SF10BW125262 +[[image:1657250217799-140.png]] 449 449 450 -904.1 - SF7BW125 to SF10BW125 451 451 452 - 904.3 - SF7BW125to SF10BW125265 +[[image:1657250255956-604.png]] 453 453 454 -904.5 - SF7BW125 to SF10BW125 455 455 456 -904.7 - SF7BW125 to SF10BW125 457 457 458 - 904.9-SF7BW125toSF10BW125269 +=== 2.2.8 Change Update Interval === 459 459 460 - 905.1-SF7BW125toSF10BW125271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 461 461 462 - 905.3-SF7BW125toSF10BW125273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 463 463 275 +((( 276 +(% style="color:red" %)**NOTE:** 277 +))) 464 464 465 -(% style="color:#037691" %)**Downlink:** 279 +((( 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 281 +))) 466 466 467 -923.3 - SF7BW500 to SF12BW500 468 468 469 -923.9 - SF7BW500 to SF12BW500 470 470 471 - 924.5-SF7BW500 toSF12BW500285 +== 2.3 Uplink Payload == 472 472 473 - 925.1-SF7BW500toSF12BW500287 +In this mode, uplink payload includes in total 18 bytes 474 474 475 -925.7 - SF7BW500 to SF12BW500 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 476 476 477 - 926.3-SF7BW500to SF12BW500295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 478 478 479 -926.9 - SF7BW500 to SF12BW500 480 480 481 - 927.5-SF7BW500 to SF12BW500298 +[[image:image-20220708111918-4.png]] 482 482 483 -923.3 - SF12BW500(RX2 downlink only) 484 484 301 +The payload is ASCII string, representative same HEX: 485 485 303 +0x72403155615900640c7817075e0a8c02f900 where: 486 486 487 -=== 2.7.3 CN470-510 (CN470) === 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 488 488 489 -Used in China, Default use CHE=1 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 490 490 491 - (%style="color:#037691"%)**Uplink:**315 +== 2.4 Payload Explanation and Sensor Interface == 492 492 493 -486.3 - SF7BW125 to SF12BW125 494 494 495 -4 86.5 - SF7BW125toSF12BW125318 +=== 2.4.1 Device ID === 496 496 497 - 486.7-SF7BW125toSF12BW125320 +By default, the Device ID equal to the last 6 bytes of IMEI. 498 498 499 - 486.9-SF7BW125toSF12BW125322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 500 500 501 - 487.1 - SF7BW125 to SF12BW125324 +**Example:** 502 502 503 - 487.3 - SF7BW125to SF12BW125326 +AT+DEUI=A84041F15612 504 504 505 - 487.5-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 506 506 507 -487.7 - SF7BW125 to SF12BW125 508 508 509 509 510 - (%style="color:#037691" %)**Downlink:**332 +=== 2.4.2 Version Info === 511 511 512 - 506.7-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 513 513 514 - 506.9-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 515 515 516 -507.1 - SF7BW125 to SF12BW125 517 517 518 -507.3 - SF7BW125 to SF12BW125 519 519 520 - 507.5- SF7BW125toSF12BW125340 +=== 2.4.3 Battery Info === 521 521 522 -507.7 - SF7BW125 to SF12BW125 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 523 523 524 -507.9 - SF7BW125 to SF12BW125 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 525 525 526 -508.1 - SF7BW125 to SF12BW125 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 527 527 528 -505.3 - SF12BW125 (RX2 downlink only) 529 529 530 530 356 +=== 2.4.4 Signal Strength === 531 531 532 - ===2.7.4AU915-928(AU915)===358 +NB-IoT Network signal Strength. 533 533 534 - DefaultuseCHE=2360 +**Ex1: 0x1d = 29** 535 535 536 -(% style="color: #037691" %)**Uplink:**362 +(% style="color:blue" %)**0**(%%) -113dBm or less 537 537 538 - 916.8-SF7BW125toSF12BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 539 539 540 - 917.0- SF7BW125toSF12BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 541 541 542 - 917.2-SF7BW125toSF12BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 543 543 544 -9 17.4-SF7BW125toSF12BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 545 545 546 -917.6 - SF7BW125 to SF12BW125 547 547 548 -917.8 - SF7BW125 to SF12BW125 549 549 550 - 918.0- SF7BW125toSF12BW125374 +=== 2.4.5 Soil Moisture === 551 551 552 -918.2 - SF7BW125 to SF12BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 553 553 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 554 554 555 -(% style="color:#037691" %)**Downlink:** 384 +((( 385 + 386 +))) 556 556 557 -923.3 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 558 558 559 -923.9 - SF7BW500 to SF12BW500 560 560 561 -924.5 - SF7BW500 to SF12BW500 562 562 563 - 925.1-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 564 564 565 -925.7 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 566 566 567 -926.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 568 568 569 -926.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 570 570 571 -927.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 572 572 573 -923.3 - SF12BW500(RX2 downlink only) 574 574 575 575 414 +=== 2.4.7 Soil Conductivity (EC) === 576 576 577 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 578 578 579 -(% style="color:#037691" %)**Default Uplink channel:** 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 580 580 581 -923.2 - SF7BW125 to SF10BW125 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 582 582 583 -923.4 - SF7BW125 to SF10BW125 428 +((( 429 + 430 +))) 584 584 432 +((( 433 + 434 +))) 585 585 586 - (% style="color:#037691"%)**AdditionalUplink Channel**:436 +=== 2.4.8 Digital Interrupt === 587 587 588 -( OTAAmode,channeladdedbyJoinAcceptmessage)438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 589 589 590 - (% style="color:#037691" %)**AS920~~AS923 for Japan,Malaysia, Singapore**:440 +The command is: 591 591 592 - 922.2-SF7BW125to SF10BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 593 593 594 -922.4 - SF7BW125 to SF10BW125 595 595 596 - 922.6-SF7BW125toSF10BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 597 597 598 -922.8 - SF7BW125 to SF10BW125 599 599 600 - 923.0 - SF7BW125 to SF10BW125448 +Example: 601 601 602 - 922.0-SF7BW125to SF10BW125450 +0x(00): Normal uplink packet. 603 603 452 +0x(01): Interrupt Uplink Packet. 604 604 605 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 606 606 607 -923.6 - SF7BW125 to SF10BW125 608 608 609 - 923.8- SF7BW125 toSF10BW125456 +=== 2.4.9 +5V Output === 610 610 611 - 924.0-SF7BW125 toSF10BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 612 612 613 -924.2 - SF7BW125 to SF10BW125 614 614 615 - 924.4- SF7BW125 toSF10BW125461 +The 5V output time can be controlled by AT Command. 616 616 617 - 924.6- SF7BW125toSF10BW125463 +(% style="color:blue" %)**AT+5VT=1000** 618 618 465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 619 619 620 -(% style="color:#037691" %)** Downlink:** 621 621 622 -Uplink channels 1-8 (RX1) 623 623 624 - 923.2-SF10BW125(RX2)469 +== 2.5 Downlink Payload == 625 625 471 +By default, NSE01 prints the downlink payload to console port. 626 626 473 +[[image:image-20220708133731-5.png]] 627 627 628 -=== 2.7.6 KR920-923 (KR920) === 629 629 630 -Default channel: 631 631 632 -922.1 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 633 633 634 -922.3 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 635 635 636 -922.5 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 637 637 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 638 638 639 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 640 640 641 -922.1 - SF7BW125 to SF12BW125 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 642 642 643 -922.3 - SF7BW125 to SF12BW125 501 +((( 502 + 503 +))) 644 644 645 -922.5 - SF7BW125 to SF12BW125 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 646 646 647 -922.7 - SF7BW125 to SF12BW125 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 648 648 649 -922.9 - SF7BW125 to SF12BW125 650 650 651 - 923.1-SF7BW125toSF12BW125514 +* (% style="color:blue" %)**INTMOD** 652 652 653 - 923.3-SF7BW125toSF12BW125516 +Downlink Payload: 06000003, Set AT+INTMOD=3 654 654 655 655 656 -(% style="color:#037691" %)**Downlink:** 657 657 658 - Uplinkchannels1-7(RX1)520 +== 2.6 LED Indicator == 659 659 660 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 661 661 662 662 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 663 663 664 -=== 2.7.7 IN865-867 (IN865) === 665 665 666 -(% style="color:#037691" %)** Uplink:** 667 667 668 -865.0625 - SF7BW125 to SF12BW125 669 669 670 - 865.4025- SF7BW125to SF12BW125535 +== 2.7 Installation in Soil == 671 671 672 - 865.9850- SF7BW125toSF12BW125537 +__**Measurement the soil surface**__ 673 673 539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 674 674 675 - (% style="color:#037691" %) **Downlink:**541 +[[image:1657259653666-883.png]] 676 676 677 -Uplink channels 1-3 (RX1) 678 678 679 -866.550 - SF10BW125 (RX2) 544 +((( 545 + 680 680 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 681 681 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 682 682 556 +[[image:1654506665940-119.png]] 683 683 684 -== 2.8 LED Indicator == 558 +((( 559 + 560 +))) 685 685 686 -The LSE01 has an internal LED which is to show the status of different state. 687 687 688 -* Blink once when device power on. 689 -* Solid ON for 5 seconds once device successful Join the network. 690 -* Blink once when device transmit a packet. 563 +== 2.8 Firmware Change Log == 691 691 692 692 566 +Download URL & Firmware Change log 693 693 568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 694 694 695 -== 2.9 Installation in Soil == 696 696 697 - **Measurement the soil surface**571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 698 698 699 699 700 -[[image:1654506634463-199.png]] 701 701 702 -((( 703 -((( 704 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 705 -))) 706 -))) 575 +== 2.9 Battery Analysis == 707 707 577 +=== 2.9.1 Battery Type === 708 708 709 709 710 - [[image:1654506665940-119.png]]580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 711 711 712 -((( 713 -Dig a hole with diameter > 20CM. 714 -))) 715 715 716 -((( 717 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 718 -))) 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 719 719 720 720 721 - ==2.10 FirmwareChangeLog==586 +The battery related documents as below: 722 722 723 - (((724 -* *Firmware downloadlink:**725 - )))588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 726 726 727 727 ((( 728 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]593 +[[image:image-20220708140453-6.png]] 729 729 ))) 730 730 731 -((( 732 - 733 -))) 734 734 735 -((( 736 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 737 -))) 738 738 739 -((( 740 - 741 -))) 598 +2.9.2 742 742 743 -((( 744 -**V1.0.** 745 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 746 746 747 -((( 748 -Release 749 -))) 750 750 603 +Instruction to use as below: 751 751 752 -== 2.11 Battery Analysis == 753 753 754 - ===2.11.1Batteryype===606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 755 755 756 -((( 757 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 758 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 759 759 760 -((( 761 -The battery is designed to last for more than 5 years for the LSN50. 762 -))) 763 763 764 -((( 765 -((( 766 -The battery-related documents are as below: 767 -))) 768 -))) 611 +Step 2: Open it and choose 769 769 770 -* ((( 771 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 772 -))) 773 -* ((( 774 -[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 775 -))) 776 -* ((( 777 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 778 -))) 613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 779 779 780 - [[image:image-20220610172436-1.png]]617 +And the Life expectation in difference case will be shown on the right. 781 781 782 782 783 783 784 -=== 2. 11.2Battery Note ===621 +=== 2.9.3 Battery Note === 785 785 786 786 ((( 787 787 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. ... ... @@ -789,22 +789,12 @@ 789 789 790 790 791 791 792 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 793 793 794 -((( 795 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 796 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 797 797 798 -((( 799 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 800 -))) 801 801 802 -((( 803 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 804 -))) 805 805 806 - 807 - 808 808 = 3. Using the AT Commands = 809 809 810 810 == 3.1 Access AT Commands == ... ... @@ -1015,15 +1015,15 @@ 1015 1015 1016 1016 = 5. Trouble Shooting = 1017 1017 1018 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1019 1019 1020 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1021 1021 1022 1022 1023 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 1024 1024 1025 1025 ((( 1026 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1027 1027 ))) 1028 1028 1029 1029
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content