Last modified by Mengting Qiu on 2024/04/02 16:44

From version 39.1
edited by Xiaoling
on 2022/06/25 16:34
Change comment: There is no comment for this version
To version 97.9
edited by Xiaoling
on 2022/07/09 11:30
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,16 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 16  {{toc/}}
... ... @@ -20,773 +20,655 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
17 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
32 -
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
35 35  )))
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 +
39 39  )))
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
36 +[[image:1657327959271-447.png]]
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 -)))
48 48  
49 49  
50 -[[image:1654503236291-817.png]]
40 +== 1.2 ​ Features ==
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
54 -
55 -
56 -
57 -== 1.2 ​Features ==
58 -
59 -* LoRaWAN 1.0.3 Class A
43 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 60  * Ultra low power consumption
61 -* Monitor Soil Moisture
62 -* Monitor Soil Temperature
63 -* Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
45 +* Distance Detection by Ultrasonic technology
46 +* Flat object range 280mm - 7500mm
47 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
48 +* Cable Length: 25cm
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
53 +* Micro SIM card slot for NB-IoT SIM
54 +* 8500mAh Battery for long term use
70 70  
71 71  
72 -== 1.3 Specification ==
73 73  
74 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
58 +== 1.3  Specification ==
75 75  
76 -[[image:image-20220606162220-5.png]]
77 77  
61 +(% style="color:#037691" %)**Common DC Characteristics:**
78 78  
63 +* Supply Voltage: 2.1v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
79 79  
80 -== ​1.4 Applications ==
66 +(% style="color:#037691" %)**NB-IoT Spec:**
81 81  
82 -* Smart Agriculture
68 +* - B1 @H-FDD: 2100MHz
69 +* - B3 @H-FDD: 1800MHz
70 +* - B8 @H-FDD: 900MHz
71 +* - B5 @H-FDD: 850MHz
72 +* - B20 @H-FDD: 800MHz
73 +* - B28 @H-FDD: 700MHz
83 83  
84 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 -​
75 +(% style="color:#037691" %)**Battery:**
86 86  
87 -== 1.5 Firmware Change log ==
77 +* Li/SOCI2 un-chargeable battery
78 +* Capacity: 8500mAh
79 +* Self Discharge: <1% / Year @ 25°C
80 +* Max continuously current: 130mA
81 +* Max boost current: 2A, 1 second
88 88  
83 +(% style="color:#037691" %)**Power Consumption**
89 89  
90 -**LSE01 v1.0 :**  Release
85 +* STOP Mode: 10uA @ 3.3v
86 +* Max transmit power: 350mA@3.3v
91 91  
92 92  
93 93  
94 -= 2. Configure LSE01 to connect to LoRaWAN network =
90 +== ​1. Applications ==
95 95  
96 -== 2.1 How it works ==
92 +* Smart Buildings & Home Automation
93 +* Logistics and Supply Chain Management
94 +* Smart Metering
95 +* Smart Agriculture
96 +* Smart Cities
97 +* Smart Factory
97 97  
98 -(((
99 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
100 -)))
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
101 101  
102 -(((
103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
104 -)))
105 105  
103 +== 1.5  Pin Definitions ==
106 106  
107 107  
108 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
106 +[[image:1657328609906-564.png]]
109 109  
110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
111 111  
112 112  
113 -[[image:1654503992078-669.png]]
110 += 2.  Use NDDS75 to communicate with IoT Server =
114 114  
112 +== 2.1  How it works ==
115 115  
116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
117 -
118 -
119 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
120 -
121 -Each LSE01 is shipped with a sticker with the default device EUI as below:
122 -
123 -[[image:image-20220606163732-6.jpeg]]
124 -
125 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
126 -
127 -**Add APP EUI in the application**
128 -
129 -
130 -[[image:1654504596150-405.png]]
131 -
132 -
133 -
134 -**Add APP KEY and DEV EUI**
135 -
136 -[[image:1654504683289-357.png]]
137 -
138 -
139 -
140 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
141 -
142 -
143 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
144 -
145 -[[image:image-20220606163915-7.png]]
146 -
147 -
148 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
149 -
150 -[[image:1654504778294-788.png]]
151 -
152 -
153 -
154 -== 2.3 Uplink Payload ==
155 -
156 -
157 -=== 2.3.1 MOD~=0(Default Mode) ===
158 -
159 -LSE01 will uplink payload via LoRaWAN with below payload format: 
160 -
161 161  (((
162 -Uplink payload includes in total 11 bytes.
115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
163 163  )))
164 164  
165 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 -|(((
167 -**Size**
168 168  
169 -**(bytes)**
170 -)))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 -Temperature
173 -
174 -(Reserve, Ignore now)
175 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 -MOD & Digital Interrupt
177 -
178 -(Optional)
179 -)))
180 -
181 -
182 -=== 2.3.2 MOD~=1(Original value) ===
183 -
184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
185 -
186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 -|(((
188 -**Size**
189 -
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 -Temperature
194 -
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 -MOD & Digital Interrupt
198 -
199 -(Optional)
200 -)))
201 -
202 -
203 -=== 2.3.3 Battery Info ===
204 -
205 205  (((
206 -Check the battery voltage for LSE01.
120 +The diagram below shows the working flow in default firmware of NDDS75:
207 207  )))
208 208  
209 209  (((
210 -Ex1: 0x0B45 = 2885mV
124 +
211 211  )))
212 212  
127 +[[image:1657328659945-416.png]]
128 +
213 213  (((
214 -Ex2: 0x0B49 = 2889mV
130 +
215 215  )))
216 216  
217 217  
134 +== 2.2 ​ Configure the NDDS75 ==
218 218  
219 -=== 2.3.4 Soil Moisture ===
220 220  
221 -(((
222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 -)))
137 +=== 2.2.1 Test Requirement ===
224 224  
225 225  (((
226 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
140 +To use NDDS75 in your city, make sure meet below requirements:
227 227  )))
228 228  
229 -(((
230 -
231 -)))
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
232 232  
233 233  (((
234 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
235 235  )))
236 236  
237 237  
152 +[[image:1657328756309-230.png]]
238 238  
239 -=== 2.3.5 Soil Temperature ===
240 240  
241 -(((
242 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
243 -)))
244 244  
245 -(((
246 -**Example**:
247 -)))
156 +=== 2.2.2 Insert SIM card ===
248 248  
249 249  (((
250 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
159 +Insert the NB-IoT Card get from your provider.
251 251  )))
252 252  
253 253  (((
254 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
163 +User need to take out the NB-IoT module and insert the SIM card like below:
255 255  )))
256 256  
257 257  
167 +[[image:1657328884227-504.png]]
258 258  
259 -=== 2.3.6 Soil Conductivity (EC) ===
260 260  
261 -(((
262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
263 -)))
264 264  
265 -(((
266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
267 -)))
171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
268 268  
269 269  (((
270 -Generally, the EC value of irrigation water is less than 800uS / cm.
271 -)))
272 -
273 273  (((
274 -
175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
275 275  )))
276 -
277 -(((
278 -
279 279  )))
280 280  
281 -=== 2.3.7 MOD ===
179 +[[image:image-20220709092052-2.png]]
282 282  
283 -Firmware version at least v2.1 supports changing mode.
181 +**Connection:**
284 284  
285 -For example, bytes[10]=90
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
286 286  
287 -mod=(bytes[10]>>7)&0x01=1.
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
288 288  
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
289 289  
290 -**Downlink Command:**
291 291  
292 -If payload = 0x0A00, workmode=0
190 +In the PC, use below serial tool settings:
293 293  
294 -If** **payload =** **0x0A01, workmode=1
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
295 295  
296 -
297 -
298 -=== 2.3.8 ​Decode payload in The Things Network ===
299 -
300 -While using TTN network, you can add the payload format to decode the payload.
301 -
302 -
303 -[[image:1654505570700-128.png]]
304 -
305 305  (((
306 -The payload decoder function for TTN is here:
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
307 307  )))
308 308  
202 +[[image:1657329814315-101.png]]
203 +
309 309  (((
310 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
311 311  )))
312 312  
313 313  
314 -== 2.4 Uplink Interval ==
315 315  
316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
317 317  
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
318 318  
319 319  
320 -== 2.5 Downlink Payload ==
321 -
322 -By default, LSE50 prints the downlink payload to console port.
323 -
324 -[[image:image-20220606165544-8.png]]
325 -
326 -
327 327  (((
328 -**Examples:**
216 +**Use below commands:**
329 329  )))
330 330  
331 -(((
332 -
219 +* (((
220 +(% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
333 333  )))
334 -
335 335  * (((
336 -**Set TDC**
223 +(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
337 337  )))
338 -
339 -(((
340 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 -)))
342 -
343 -(((
344 -Payload:    01 00 00 1E    TDC=30S
345 -)))
346 -
347 -(((
348 -Payload:    01 00 00 3C    TDC=60S
349 -)))
350 -
351 -(((
352 -
353 -)))
354 -
355 355  * (((
356 -**Reset**
226 +(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
357 357  )))
358 358  
359 359  (((
360 -If payload = 0x04FF, it will reset the LSE01
230 +For parameter description, please refer to AT command set
361 361  )))
362 362  
233 +[[image:1657330452568-615.png]]
363 363  
364 -* **CFM**
365 365  
366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
236 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
367 367  
238 +[[image:1657330472797-498.png]]
368 368  
369 369  
370 -== 2.6 ​Show Data in DataCake IoT Server ==
371 371  
372 -(((
373 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
374 -)))
242 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
375 375  
376 -(((
377 -
378 -)))
379 379  
380 -(((
381 -(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
382 -)))
245 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
247 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/ If the server does not respond, this command is unnecessary
383 383  
384 -(((
385 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
386 -)))
249 +[[image:1657330501006-241.png]]
387 387  
388 388  
389 -[[image:1654505857935-743.png]]
252 +[[image:1657330533775-472.png]]
390 390  
391 391  
392 -[[image:1654505874829-548.png]]
393 393  
256 +=== 2.2.6 Use MQTT protocol to uplink data ===
394 394  
395 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
396 396  
397 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
259 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
261 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
262 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
263 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
264 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
265 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
398 398  
267 +[[image:1657249978444-674.png]]
399 399  
400 -[[image:1654505905236-553.png]]
401 401  
270 +[[image:1657330723006-866.png]]
402 402  
403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
404 404  
405 -[[image:1654505925508-181.png]]
273 +(((
274 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
275 +)))
406 406  
407 407  
408 408  
409 -== 2.7 Frequency Plans ==
279 +=== 2.2.7 Use TCP protocol to uplink data ===
410 410  
411 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
412 412  
282 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
413 413  
414 -=== 2.7.1 EU863-870 (EU868) ===
285 +[[image:image-20220709093918-1.png]]
415 415  
416 -(% style="color:#037691" %)** Uplink:**
417 417  
418 -868.1 - SF7BW125 to SF12BW125
288 +[[image:image-20220709093918-2.png]]
419 419  
420 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
421 421  
422 -868.5 - SF7BW125 to SF12BW125
423 423  
424 -867.1 - SF7BW125 to SF12BW125
292 +=== 2.2.8 Change Update Interval ===
425 425  
426 -867.3 - SF7BW125 to SF12BW125
294 +User can use below command to change the (% style="color:green" %)**uplink interval**.
427 427  
428 -867.5 - SF7BW125 to SF12BW125
296 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
429 429  
430 -867.7 - SF7BW125 to SF12BW125
298 +(((
299 +(% style="color:red" %)**NOTE:**
300 +)))
431 431  
432 -867.9 - SF7BW125 to SF12BW125
302 +(((
303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
304 +)))
433 433  
434 -868.8 - FSK
435 435  
436 436  
437 -(% style="color:#037691" %)** Downlink:**
308 +== 2.3  Uplink Payload ==
438 438  
439 -Uplink channels 1-9 (RX1)
310 +In this mode, uplink payload includes in total 14 bytes
440 440  
441 -869.525 - SF9BW125 (RX2 downlink only)
442 442  
313 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
314 +|=(% style="width: 80px;" %)(((
315 +**Size(bytes)**
316 +)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1**
317 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]]
443 443  
319 +(((
320 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
321 +)))
444 444  
445 -=== 2.7.2 US902-928(US915) ===
446 446  
447 -Used in USA, Canada and South America. Default use CHE=2
324 +[[image:1657331036973-987.png]]
448 448  
449 -(% style="color:#037691" %)**Uplink:**
326 +(((
327 +The payload is ASCII string, representative same HEX:
328 +)))
450 450  
451 -903.9 - SF7BW125 to SF10BW125
330 +(((
331 +0x72403155615900640c6c19029200 where:
332 +)))
452 452  
453 -904.1 - SF7BW125 to SF10BW125
334 +* (((
335 +Device ID: 0x724031556159 = 724031556159
336 +)))
337 +* (((
338 +Version: 0x0064=100=1.0.0
339 +)))
454 454  
455 -904.3 - SF7BW125 to SF10BW125
341 +* (((
342 +BAT: 0x0c6c = 3180 mV = 3.180V
343 +)))
344 +* (((
345 +Signal: 0x19 = 25
346 +)))
347 +* (((
348 +Distance: 0x0292= 658 mm
349 +)))
350 +* (((
351 +Interrupt: 0x00 = 0
456 456  
457 -904.5 - SF7BW125 to SF10BW125
458 458  
459 -904.7 - SF7BW125 to SF10BW125
460 460  
461 -904.9 - SF7BW125 to SF10BW125
355 +
356 +)))
462 462  
463 -905.1 - SF7BW125 to SF10BW125
358 +== 2.4  Payload Explanation and Sensor Interface ==
464 464  
465 -905.3 - SF7BW125 to SF10BW125
466 466  
361 +=== 2.4.1  Device ID ===
467 467  
468 -(% style="color:#037691" %)**Downlink:**
363 +(((
364 +By default, the Device ID equal to the last 6 bytes of IMEI.
365 +)))
469 469  
470 -923.3 - SF7BW500 to SF12BW500
367 +(((
368 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
369 +)))
471 471  
472 -923.9 - SF7BW500 to SF12BW500
371 +(((
372 +**Example:**
373 +)))
473 473  
474 -924.5 - SF7BW500 to SF12BW500
375 +(((
376 +AT+DEUI=A84041F15612
377 +)))
475 475  
476 -925.1 - SF7BW500 to SF12BW500
379 +(((
380 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
381 +)))
477 477  
478 -925.7 - SF7BW500 to SF12BW500
479 479  
480 -926.3 - SF7BW500 to SF12BW500
481 481  
482 -926.9 - SF7BW500 to SF12BW500
385 +=== 2.4.2  Version Info ===
483 483  
484 -927.5 - SF7BW500 to SF12BW500
387 +(((
388 +Specify the software version: 0x64=100, means firmware version 1.00.
389 +)))
485 485  
486 -923.3 - SF12BW500(RX2 downlink only)
391 +(((
392 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
393 +)))
487 487  
488 488  
489 489  
490 -=== 2.7.3 CN470-510 (CN470) ===
397 +=== 2.4.3  Battery Info ===
491 491  
492 -Used in China, Default use CHE=1
399 +(((
400 +Ex1: 0x0B45 = 2885mV
401 +)))
493 493  
494 -(% style="color:#037691" %)**Uplink:**
403 +(((
404 +Ex2: 0x0B49 = 2889mV
405 +)))
495 495  
496 -486.3 - SF7BW125 to SF12BW125
497 497  
498 -486.5 - SF7BW125 to SF12BW125
499 499  
500 -486.7 - SF7BW125 to SF12BW125
409 +=== 2.4. Signal Strength ===
501 501  
502 -486.9 - SF7BW125 to SF12BW125
411 +(((
412 +NB-IoT Network signal Strength.
413 +)))
503 503  
504 -487.1 - SF7BW125 to SF12BW125
415 +(((
416 +**Ex1: 0x1d = 29**
417 +)))
505 505  
506 -487.3 - SF7BW125 to SF12BW125
419 +(((
420 +(% style="color:blue" %)**0**(%%)  -113dBm or less
421 +)))
507 507  
508 -487.5 - SF7BW125 to SF12BW125
423 +(((
424 +(% style="color:blue" %)**1**(%%)  -111dBm
425 +)))
509 509  
510 -487.7 - SF7BW125 to SF12BW125
427 +(((
428 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
429 +)))
511 511  
431 +(((
432 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
433 +)))
512 512  
513 -(% style="color:#037691" %)**Downlink:**
435 +(((
436 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
437 +)))
514 514  
515 -506.7 - SF7BW125 to SF12BW125
516 516  
517 -506.9 - SF7BW125 to SF12BW125
518 518  
519 -507.1 - SF7BW125 to SF12BW125
441 +=== 2.4.5  Distance ===
520 520  
521 -507.3 - SF7BW125 to SF12BW125
443 +Get the distance. Flat object range 280mm - 7500mm.
522 522  
523 -507.5 - SF7BW125 to SF12BW125
445 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
524 524  
525 -507.7 - SF7BW125 to SF12BW125
447 +(((
448 +(((
449 +(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.**
450 +)))
451 +)))
526 526  
527 -507.9 - SF7BW125 to SF12BW125
453 +(((
454 +
455 +)))
528 528  
529 -508.1 - SF7BW125 to SF12BW125
457 +(((
458 +
459 +)))
530 530  
531 -505.3 - SF12BW125 (RX2 downlink only)
461 +=== 2.4.6  Digital Interrupt ===
532 532  
463 +(((
464 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
465 +)))
533 533  
467 +(((
468 +The command is:
469 +)))
534 534  
535 -=== 2.7.4 AU915-928(AU915) ===
471 +(((
472 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
473 +)))
536 536  
537 -Default use CHE=2
538 538  
539 -(% style="color:#037691" %)**Uplink:**
476 +(((
477 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
478 +)))
540 540  
541 -916.8 - SF7BW125 to SF12BW125
542 542  
543 -917.0 - SF7BW125 to SF12BW125
481 +(((
482 +Example:
483 +)))
544 544  
545 -917.2 - SF7BW125 to SF12BW125
485 +(((
486 +0x(00): Normal uplink packet.
487 +)))
546 546  
547 -917.4 - SF7BW125 to SF12BW125
489 +(((
490 +0x(01): Interrupt Uplink Packet.
491 +)))
548 548  
549 -917.6 - SF7BW125 to SF12BW125
550 550  
551 -917.8 - SF7BW125 to SF12BW125
552 552  
553 -918.0 - SF7BW125 to SF12BW125
495 +=== 2.4.7  ​+5V Output ===
554 554  
555 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
499 +)))
556 556  
557 557  
558 -(% style="color:#037691" %)**Downlink:**
502 +(((
503 +The 5V output time can be controlled by AT Command.
504 +)))
559 559  
560 -923.3 - SF7BW500 to SF12BW500
506 +(((
507 +(% style="color:blue" %)**AT+5VT=1000**
508 +)))
561 561  
562 -923.9 - SF7BW500 to SF12BW500
510 +(((
511 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
512 +)))
563 563  
564 -924.5 - SF7BW500 to SF12BW500
565 565  
566 -925.1 - SF7BW500 to SF12BW500
567 567  
568 -925.7 - SF7BW500 to SF12BW500
516 +== 2.5  Downlink Payload ==
569 569  
570 -926.3 - SF7BW500 to SF12BW500
518 +By default, NDDS75 prints the downlink payload to console port.
571 571  
572 -926.9 - SF7BW500 to SF12BW500
520 +[[image:image-20220709100028-1.png]]
573 573  
574 -927.5 - SF7BW500 to SF12BW500
575 575  
576 -923.3 - SF12BW500(RX2 downlink only)
523 +(((
524 +(% style="color:blue" %)**Examples:**
525 +)))
577 577  
527 +(((
528 +
529 +)))
578 578  
531 +* (((
532 +(% style="color:blue" %)**Set TDC**
533 +)))
579 579  
580 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
535 +(((
536 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
537 +)))
581 581  
582 -(% style="color:#037691" %)**Default Uplink channel:**
539 +(((
540 +Payload:    01 00 00 1E    TDC=30S
541 +)))
583 583  
584 -923.2 - SF7BW125 to SF10BW125
543 +(((
544 +Payload:    01 00 00 3C    TDC=60S
545 +)))
585 585  
586 -923.4 - SF7BW125 to SF10BW125
547 +(((
548 +
549 +)))
587 587  
551 +* (((
552 +(% style="color:blue" %)**Reset**
553 +)))
588 588  
589 -(% style="color:#037691" %)**Additional Uplink Channel**:
555 +(((
556 +If payload = 0x04FF, it will reset the NDDS75
557 +)))
590 590  
591 -(OTAA mode, channel added by JoinAccept message)
592 592  
593 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
560 +* (% style="color:blue" %)**INTMOD**
594 594  
595 -922.2 - SF7BW125 to SF10BW125
562 +(((
563 +Downlink Payload: 06000003, Set AT+INTMOD=3
564 +)))
596 596  
597 -922.4 - SF7BW125 to SF10BW125
598 598  
599 -922.6 - SF7BW125 to SF10BW125
600 600  
601 -922.8 - SF7BW125 to SF10BW125
568 +== 2. ​LED Indicator ==
602 602  
603 -923.0 - SF7BW125 to SF10BW125
604 604  
605 -922.0 - SF7BW125 to SF10BW125
571 +The NDDS75 has an internal LED which is to show the status of different state.
606 606  
607 607  
608 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
574 +* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
575 +* Then the LED will be on for 1 second means device is boot normally.
576 +* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds.
577 +* For each uplink probe, LED will be on for 500ms.
609 609  
610 -923.6 - SF7BW125 to SF10BW125
579 +(((
580 +
581 +)))
611 611  
612 -923.8 - SF7BW125 to SF10BW125
613 613  
614 -924.0 - SF7BW125 to SF10BW125
615 615  
616 -924.2 - SF7BW125 to SF10BW125
585 +== 2. Firmware Change Log ==
617 617  
618 -924.4 - SF7BW125 to SF10BW125
619 619  
620 -924.6 - SF7BW125 to SF10BW125
588 +Download URL & Firmware Change log
621 621  
590 +(((
591 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]]
592 +)))
622 622  
623 -(% style="color:#037691" %)** Downlink:**
624 624  
625 -Uplink channels 1-8 (RX1)
595 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
626 626  
627 -923.2 - SF10BW125 (RX2)
628 628  
629 629  
599 +== 2.8  ​Battery Analysis ==
630 630  
631 -=== 2.7.6 KR920-923 (KR920) ===
601 +=== 2.8. ​Battery Type ===
632 632  
633 -Default channel:
634 634  
635 -922.1 - SF7BW125 to SF12BW125
636 -
637 -922.3 - SF7BW125 to SF12BW125
638 -
639 -922.5 - SF7BW125 to SF12BW125
640 -
641 -
642 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
643 -
644 -922.1 - SF7BW125 to SF12BW125
645 -
646 -922.3 - SF7BW125 to SF12BW125
647 -
648 -922.5 - SF7BW125 to SF12BW125
649 -
650 -922.7 - SF7BW125 to SF12BW125
651 -
652 -922.9 - SF7BW125 to SF12BW125
653 -
654 -923.1 - SF7BW125 to SF12BW125
655 -
656 -923.3 - SF7BW125 to SF12BW125
657 -
658 -
659 -(% style="color:#037691" %)**Downlink:**
660 -
661 -Uplink channels 1-7(RX1)
662 -
663 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
664 -
665 -
666 -
667 -=== 2.7.7 IN865-867 (IN865) ===
668 -
669 -(% style="color:#037691" %)** Uplink:**
670 -
671 -865.0625 - SF7BW125 to SF12BW125
672 -
673 -865.4025 - SF7BW125 to SF12BW125
674 -
675 -865.9850 - SF7BW125 to SF12BW125
676 -
677 -
678 -(% style="color:#037691" %) **Downlink:**
679 -
680 -Uplink channels 1-3 (RX1)
681 -
682 -866.550 - SF10BW125 (RX2)
683 -
684 -
685 -
686 -
687 -== 2.8 LED Indicator ==
688 -
689 -The LSE01 has an internal LED which is to show the status of different state.
690 -
691 -* Blink once when device power on.
692 -* Solid ON for 5 seconds once device successful Join the network.
693 -* Blink once when device transmit a packet.
694 -
695 -
696 -
697 -
698 -
699 -== 2.9 Installation in Soil ==
700 -
701 -**Measurement the soil surface**
702 -
703 -
704 -[[image:1654506634463-199.png]] ​
705 -
706 706  (((
707 -(((
708 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
605 +The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
709 709  )))
710 -)))
711 711  
712 -
713 -
714 -[[image:1654506665940-119.png]]
715 -
716 716  (((
717 -Dig a hole with diameter > 20CM.
609 +The battery is designed to last for several years depends on the actually use environment and update interval. 
718 718  )))
719 719  
720 720  (((
721 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
613 +The battery related documents as below:
722 722  )))
723 723  
616 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
617 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
618 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
724 724  
725 -== 2.10 ​Firmware Change Log ==
726 -
727 727  (((
728 -**Firmware download link:**
621 +[[image:image-20220709101450-2.png]]
729 729  )))
730 730  
731 -(((
732 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
733 -)))
734 734  
735 -(((
736 -
737 -)))
738 738  
739 -(((
740 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
741 -)))
626 +=== 2.8.2  Power consumption Analyze ===
742 742  
743 743  (((
744 -
629 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
745 745  )))
746 746  
747 -(((
748 -**V1.0.**
749 -)))
750 750  
751 751  (((
752 -Release
634 +Instruction to use as below:
753 753  )))
754 754  
755 -
756 -== 2.11 ​Battery Analysis ==
757 -
758 -=== 2.11.1 ​Battery Type ===
759 -
760 760  (((
761 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
638 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
762 762  )))
763 763  
764 -(((
765 -The battery is designed to last for more than 5 years for the LSN50.
766 -)))
767 767  
768 768  (((
769 -(((
770 -The battery-related documents are as below:
643 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
771 771  )))
772 -)))
773 773  
774 774  * (((
775 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
647 +Product Model
776 776  )))
777 777  * (((
778 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
650 +Uplink Interval
779 779  )))
780 780  * (((
781 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
653 +Working Mode
782 782  )))
783 783  
784 - [[image:image-20220610172436-1.png]]
656 +(((
657 +And the Life expectation in difference case will be shown on the right.
658 +)))
785 785  
660 +[[image:image-20220709110451-3.png]]
786 786  
787 787  
788 -=== 2.11.2 ​Battery Note ===
789 789  
664 +=== 2.8.3  ​Battery Note ===
665 +
790 790  (((
791 791  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
792 792  )))
... ... @@ -793,298 +793,169 @@
793 793  
794 794  
795 795  
796 -=== 2.11.3 Replace the battery ===
672 +=== 2.8. Replace the battery ===
797 797  
798 798  (((
799 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
675 +The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
800 800  )))
801 801  
678 +
679 +
680 += 3. ​ Access NB-IoT Module =
681 +
802 802  (((
803 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
683 +Users can directly access the AT command set of the NB-IoT module.
804 804  )))
805 805  
806 806  (((
807 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
687 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
808 808  )))
809 809  
690 +[[image:1657333200519-600.png]]
810 810  
811 811  
812 -= 3. ​Using the AT Commands =
813 813  
814 -== 3.1 Access AT Commands ==
694 += 4.  Using the AT Commands =
815 815  
696 +== 4.1  Access AT Commands ==
816 816  
817 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
698 +See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
818 818  
819 -[[image:1654501986557-872.png||height="391" width="800"]]
820 820  
701 +AT+<CMD>?  : Help on <CMD>
821 821  
822 -Or if you have below board, use below connection:
703 +AT+<CMD>         : Run <CMD>
823 823  
705 +AT+<CMD>=<value> : Set the value
824 824  
825 -[[image:1654502005655-729.png||height="503" width="801"]]
707 +AT+<CMD>=?  : Get the value
826 826  
827 827  
828 -
829 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
830 -
831 -
832 - [[image:1654502050864-459.png||height="564" width="806"]]
833 -
834 -
835 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
836 -
837 -
838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
839 -
840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
841 -
842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
843 -
844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
845 -
846 -
847 847  (% style="color:#037691" %)**General Commands**(%%)      
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
712 +AT  : Attention       
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
714 +AT?  : Short Help     
852 852  
853 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
716 +ATZ  : MCU Reset    
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
718 +AT+TDC  : Application Data Transmission Interval
856 856  
720 +AT+CFG  : Print all configurations
857 857  
858 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
722 +AT+CFGMOD           : Working mode selection
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
724 +AT+INTMOD            : Set the trigger interrupt mode
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
726 +AT+5VT  : Set extend the time of 5V power  
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
728 +AT+PRO  : Choose agreement
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
730 +AT+WEIGRE  : Get weight or set weight to 0
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
732 +AT+WEIGAP  : Get or Set the GapValue of weight
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
734 +AT+RXDL  : Extend the sending and receiving time
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
736 +AT+CNTFAC  : Get or set counting parameters
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
738 +AT+SERVADDR  : Server Address
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
741 +(% style="color:#037691" %)**COAP Management**      
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
743 +AT+URI            : Resource parameters
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
746 +(% style="color:#037691" %)**UDP Management**
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
748 +AT+CFM          : Upload confirmation mode (only valid for UDP)
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
751 +(% style="color:#037691" %)**MQTT Management**
891 891  
753 +AT+CLIENT               : Get or Set MQTT client
892 892  
893 -(% style="color:#037691" %)**LoRa Network Management**
755 +AT+UNAME  : Get or Set MQTT Username
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
757 +AT+PWD                  : Get or Set MQTT password
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
759 +AT+PUBTOPI : Get or Set MQTT publish topic
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
761 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
764 +(% style="color:#037691" %)**Information**          
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
766 +AT+FDR  : Factory Data Reset
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
768 +AT+PWOR : Serial Access Password
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
772 += ​5.  FAQ =
914 914  
915 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
774 +== 5.1 How to Upgrade Firmware ==
916 916  
917 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
918 918  
919 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
924 -
925 -
926 -(% style="color:#037691" %)**Information** 
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
937 -
938 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
939 -
940 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
941 -
942 -
943 -= ​4. FAQ =
944 -
945 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
946 -
947 947  (((
948 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
949 -When downloading the images, choose the required image file for download. ​
778 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
950 950  )))
951 951  
952 952  (((
953 -
782 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
954 954  )))
955 955  
956 956  (((
957 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
786 +(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update.
958 958  )))
959 959  
960 -(((
961 -
962 -)))
963 963  
964 -(((
965 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
966 -)))
967 967  
968 -(((
969 -
970 -)))
791 += 6.  Trouble Shooting =
971 971  
972 -(((
973 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
974 -)))
793 +== 6.1  ​Connection problem when uploading firmware ==
975 975  
976 -[[image:image-20220606154726-3.png]]
977 977  
978 -
979 -When you use the TTN network, the US915 frequency bands use are:
980 -
981 -* 903.9 - SF7BW125 to SF10BW125
982 -* 904.1 - SF7BW125 to SF10BW125
983 -* 904.3 - SF7BW125 to SF10BW125
984 -* 904.5 - SF7BW125 to SF10BW125
985 -* 904.7 - SF7BW125 to SF10BW125
986 -* 904.9 - SF7BW125 to SF10BW125
987 -* 905.1 - SF7BW125 to SF10BW125
988 -* 905.3 - SF7BW125 to SF10BW125
989 -* 904.6 - SF8BW500
990 -
991 991  (((
992 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
993 -
994 -* (% style="color:#037691" %)**AT+CHE=2**
995 -* (% style="color:#037691" %)**ATZ**
797 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
996 996  )))
997 997  
800 +(% class="wikigeneratedid" %)
998 998  (((
999 999  
1000 -
1001 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1002 1002  )))
1003 1003  
1004 -(((
1005 -
1006 -)))
1007 1007  
1008 -(((
1009 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1010 -)))
806 +== 6.2  AT Command input doesn't work ==
1011 1011  
1012 -[[image:image-20220606154825-4.png]]
1013 -
1014 -
1015 -
1016 -= 5. Trouble Shooting =
1017 -
1018 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1019 -
1020 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1021 -
1022 -
1023 -== 5.2 AT Command input doesn’t work ==
1024 -
1025 1025  (((
1026 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 -)))
809 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1028 1028  
1029 -
1030 -== 5.3 Device rejoin in at the second uplink packet ==
1031 -
1032 -(% style="color:#4f81bd" %)**Issue describe as below:**
1033 -
1034 -[[image:1654500909990-784.png]]
1035 -
1036 -
1037 -(% style="color:#4f81bd" %)**Cause for this issue:**
1038 -
1039 -(((
1040 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
811 +
1041 1041  )))
1042 1042  
1043 1043  
1044 -(% style="color:#4f81bd" %)**Solution: **
815 += 7. ​ Order Info =
1045 1045  
1046 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1047 1047  
1048 -[[image:1654500929571-736.png||height="458" width="832"]]
818 +Part Number**:** (% style="color:#4f81bd" %)**NSDDS75**
1049 1049  
1050 1050  
1051 -= 6. ​Order Info =
1052 -
1053 -
1054 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1055 -
1056 -
1057 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1058 -
1059 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1060 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1061 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1062 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1063 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1064 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1065 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1066 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1067 -
1068 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1069 -
1070 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1071 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1072 -
1073 1073  (% class="wikigeneratedid" %)
1074 1074  (((
1075 1075  
1076 1076  )))
1077 1077  
1078 -= 7. Packing Info =
826 += 8.  Packing Info =
1079 1079  
1080 1080  (((
1081 1081  
1082 1082  
1083 1083  (% style="color:#037691" %)**Package Includes**:
1084 -)))
1085 1085  
1086 -* (((
1087 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
833 +* NSE01 NB-IoT Distance Detect Sensor Node x 1
834 +* External antenna x 1
1088 1088  )))
1089 1089  
1090 1090  (((
... ... @@ -1091,24 +1091,22 @@
1091 1091  
1092 1092  
1093 1093  (% style="color:#037691" %)**Dimension and weight**:
1094 -)))
1095 1095  
1096 -* (((
1097 -Device Size: cm
842 +
843 +* Device Size: 13.0 x 5 x 4.5 cm
844 +* Device Weight: 150g
845 +* Package Size / pcs : 15 x 12x 5.5 cm
846 +* Weight / pcs : 220g
1098 1098  )))
1099 -* (((
1100 -Device Weight: g
1101 -)))
1102 -* (((
1103 -Package Size / pcs : cm
1104 -)))
1105 -* (((
1106 -Weight / pcs : g
1107 1107  
849 +(((
1108 1108  
851 +
852 +
853 +
1109 1109  )))
1110 1110  
1111 -= 8. Support =
856 += 9.  Support =
1112 1112  
1113 1113  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1114 1114  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
1657332990863-496.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657333200519-600.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content
image-20220709100028-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.8 KB
Content
image-20220709101450-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.5 KB
Content
image-20220709110451-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +611.5 KB
Content