<
From version < 39.1 >
edited by Xiaoling
on 2022/06/25 16:34
To version < 65.3 >
edited by Xiaoling
on 2022/07/08 15:04
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,1071 +20,797 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
23 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
44 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
48 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
70 70  
71 71  
72 -== 1.3 Specification ==
73 73  
74 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
75 75  
76 -[[image:image-20220606162220-5.png]]
66 +== 1.3  Specification ==
77 77  
78 78  
69 +(% style="color:#037691" %)**Common DC Characteristics:**
79 79  
80 -== ​1.4 Applications ==
71 +* Supply Voltage: 2.1v ~~ 3.6v
72 +* Operating Temperature: -40 ~~ 85°C
81 81  
82 -* Smart Agriculture
83 83  
84 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
85 -​
86 86  
87 -== 1.5 Firmware Change log ==
76 +(% style="color:#037691" %)**NB-IoT Spec:**
88 88  
78 +* - B1 @H-FDD: 2100MHz
79 +* - B3 @H-FDD: 1800MHz
80 +* - B8 @H-FDD: 900MHz
81 +* - B5 @H-FDD: 850MHz
82 +* - B20 @H-FDD: 800MHz
83 +* - B28 @H-FDD: 700MHz
89 89  
90 -**LSE01 v1.0 :**  Release
91 91  
92 92  
87 +Probe(% style="color:#037691" %)** Specification:**
93 93  
94 -= 2. Configure LSE01 to connect to LoRaWAN network =
89 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
95 95  
96 -== 2.1 How it works ==
91 +[[image:image-20220708101224-1.png]]
97 97  
98 -(((
99 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
100 -)))
101 101  
102 -(((
103 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
104 -)))
105 105  
95 +== ​1.4  Applications ==
106 106  
97 +* Smart Agriculture
107 107  
108 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
109 109  
110 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 +== 1.5  Pin Definitions ==
111 111  
112 112  
113 -[[image:1654503992078-669.png]]
105 +[[image:1657246476176-652.png]]
114 114  
115 115  
116 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
117 117  
109 += 2.  Use NSE01 to communicate with IoT Server =
118 118  
119 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
111 +== 2.How it works ==
120 120  
121 -Each LSE01 is shipped with a sticker with the default device EUI as below:
122 122  
123 -[[image:image-20220606163732-6.jpeg]]
114 +(((
115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
116 +)))
124 124  
125 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
126 126  
127 -**Add APP EUI in the application**
119 +(((
120 +The diagram below shows the working flow in default firmware of NSE01:
121 +)))
128 128  
123 +[[image:image-20220708101605-2.png]]
129 129  
130 -[[image:1654504596150-405.png]]
125 +(((
126 +
127 +)))
131 131  
132 132  
133 133  
134 -**Add APP KEY and DEV EUI**
131 +== 2.2 Configure the NSE01 ==
135 135  
136 -[[image:1654504683289-357.png]]
137 137  
134 +=== 2.2.1 Test Requirement ===
138 138  
139 139  
140 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
137 +To use NSE01 in your city, make sure meet below requirements:
141 141  
139 +* Your local operator has already distributed a NB-IoT Network there.
140 +* The local NB-IoT network used the band that NSE01 supports.
141 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
142 142  
143 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
144 -
145 -[[image:image-20220606163915-7.png]]
146 -
147 -
148 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
149 -
150 -[[image:1654504778294-788.png]]
151 -
152 -
153 -
154 -== 2.3 Uplink Payload ==
155 -
156 -
157 -=== 2.3.1 MOD~=0(Default Mode) ===
158 -
159 -LSE01 will uplink payload via LoRaWAN with below payload format: 
160 -
161 161  (((
162 -Uplink payload includes in total 11 bytes.
144 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
163 163  )))
164 164  
165 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
166 -|(((
167 -**Size**
168 168  
169 -**(bytes)**
170 -)))|**2**|**2**|**2**|**2**|**2**|**1**
171 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
172 -Temperature
148 +[[image:1657249419225-449.png]]
173 173  
174 -(Reserve, Ignore now)
175 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
176 -MOD & Digital Interrupt
177 177  
178 -(Optional)
179 -)))
180 180  
152 +=== 2.2.2 Insert SIM card ===
181 181  
182 -=== 2.3.2 MOD~=1(Original value) ===
154 +Insert the NB-IoT Card get from your provider.
183 183  
184 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
156 +User need to take out the NB-IoT module and insert the SIM card like below:
185 185  
186 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
187 -|(((
188 -**Size**
189 189  
190 -**(bytes)**
191 -)))|**2**|**2**|**2**|**2**|**2**|**1**
192 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
193 -Temperature
159 +[[image:1657249468462-536.png]]
194 194  
195 -(Reserve, Ignore now)
196 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
197 -MOD & Digital Interrupt
198 198  
199 -(Optional)
200 -)))
201 201  
163 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
202 202  
203 -=== 2.3.3 Battery Info ===
204 -
205 205  (((
206 -Check the battery voltage for LSE01.
207 -)))
208 -
209 209  (((
210 -Ex1: 0x0B45 = 2885mV
167 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
211 211  )))
212 -
213 -(((
214 -Ex2: 0x0B49 = 2889mV
215 215  )))
216 216  
217 217  
172 +**Connection:**
218 218  
219 -=== 2.3.4 Soil Moisture ===
174 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
220 220  
221 -(((
222 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
223 -)))
176 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
224 224  
225 -(((
226 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
227 -)))
178 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
228 228  
229 -(((
230 -
231 -)))
232 232  
233 -(((
234 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
235 -)))
181 +In the PC, use below serial tool settings:
236 236  
183 +* Baud:  (% style="color:green" %)**9600**
184 +* Data bits:** (% style="color:green" %)8(%%)**
185 +* Stop bits: (% style="color:green" %)**1**
186 +* Parity:  (% style="color:green" %)**None**
187 +* Flow Control: (% style="color:green" %)**None**
237 237  
238 -
239 -=== 2.3.5 Soil Temperature ===
240 -
241 241  (((
242 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
190 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
243 243  )))
244 244  
245 -(((
246 -**Example**:
247 -)))
193 +[[image:image-20220708110657-3.png]]
248 248  
249 -(((
250 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
251 -)))
195 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
252 252  
253 -(((
254 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
255 -)))
256 256  
257 257  
199 +=== 2.2.4 Use CoAP protocol to uplink data ===
258 258  
259 -=== 2.3.6 Soil Conductivity (EC) ===
201 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
260 260  
261 -(((
262 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
263 -)))
264 264  
265 -(((
266 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
267 -)))
204 +**Use below commands:**
268 268  
269 -(((
270 -Generally, the EC value of irrigation water is less than 800uS / cm.
271 -)))
206 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
207 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
208 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
272 272  
273 -(((
274 -
275 -)))
210 +For parameter description, please refer to AT command set
276 276  
277 -(((
278 -
279 -)))
212 +[[image:1657249793983-486.png]]
280 280  
281 -=== 2.3.7 MOD ===
282 282  
283 -Firmware version at least v2.1 supports changing mode.
215 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
284 284  
285 -For example, bytes[10]=90
217 +[[image:1657249831934-534.png]]
286 286  
287 -mod=(bytes[10]>>7)&0x01=1.
288 288  
289 289  
290 -**Downlink Command:**
221 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
291 291  
292 -If payload = 0x0A00, workmode=0
223 +This feature is supported since firmware version v1.0.1
293 293  
294 -If** **payload =** **0x0A01, workmode=1
295 295  
226 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
227 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
228 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
296 296  
230 +[[image:1657249864775-321.png]]
297 297  
298 -=== 2.3.8 ​Decode payload in The Things Network ===
299 299  
300 -While using TTN network, you can add the payload format to decode the payload.
233 +[[image:1657249930215-289.png]]
301 301  
302 302  
303 -[[image:1654505570700-128.png]]
304 304  
305 -(((
306 -The payload decoder function for TTN is here:
307 -)))
237 +=== 2.2.6 Use MQTT protocol to uplink data ===
308 308  
309 -(((
310 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
311 -)))
239 +This feature is supported since firmware version v110
312 312  
313 313  
314 -== 2.4 Uplink Interval ==
242 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
244 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
245 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
246 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
247 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
248 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
315 315  
316 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
250 +[[image:1657249978444-674.png]]
317 317  
318 318  
253 +[[image:1657249990869-686.png]]
319 319  
320 -== 2.5 Downlink Payload ==
321 321  
322 -By default, LSE50 prints the downlink payload to console port.
323 -
324 -[[image:image-20220606165544-8.png]]
325 -
326 -
327 327  (((
328 -**Examples:**
257 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
329 329  )))
330 330  
331 -(((
332 -
333 -)))
334 334  
335 -* (((
336 -**Set TDC**
337 -)))
338 338  
339 -(((
340 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 -)))
262 +=== 2.2.7 Use TCP protocol to uplink data ===
342 342  
343 -(((
344 -Payload:    01 00 00 1E    TDC=30S
345 -)))
264 +This feature is supported since firmware version v110
346 346  
347 -(((
348 -Payload:    01 00 00 3C    TDC=60S
349 -)))
350 350  
351 -(((
352 -
353 -)))
267 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
354 354  
355 -* (((
356 -**Reset**
357 -)))
270 +[[image:1657250217799-140.png]]
358 358  
359 -(((
360 -If payload = 0x04FF, it will reset the LSE01
361 -)))
362 362  
273 +[[image:1657250255956-604.png]]
363 363  
364 -* **CFM**
365 365  
366 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
367 367  
277 +=== 2.2.8 Change Update Interval ===
368 368  
279 +User can use below command to change the (% style="color:green" %)**uplink interval**.
369 369  
370 -== 2.6 ​Show Data in DataCake IoT Server ==
281 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
371 371  
372 372  (((
373 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
284 +(% style="color:red" %)**NOTE:**
374 374  )))
375 375  
376 376  (((
377 -
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
378 378  )))
379 379  
380 -(((
381 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
382 -)))
383 383  
384 -(((
385 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
386 -)))
387 387  
293 +== 2.3  Uplink Payload ==
388 388  
389 -[[image:1654505857935-743.png]]
295 +In this mode, uplink payload includes in total 18 bytes
390 390  
297 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 +|=(% style="width: 50px;" %)(((
299 +**Size(bytes)**
300 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
301 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
391 391  
392 -[[image:1654505874829-548.png]]
303 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
393 393  
394 394  
395 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
306 +[[image:image-20220708111918-4.png]]
396 396  
397 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
398 398  
309 +The payload is ASCII string, representative same HEX:
399 399  
400 -[[image:1654505905236-553.png]]
311 +0x72403155615900640c7817075e0a8c02f900 where:
401 401  
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
402 402  
403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
404 404  
405 -[[image:1654505925508-181.png]]
406 406  
407 407  
408 408  
409 -== 2.7 Frequency Plans ==
326 +== 2. Payload Explanation and Sensor Interface ==
410 410  
411 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
412 412  
329 +=== 2.4.1  Device ID ===
413 413  
414 -=== 2.7.1 EU863-870 (EU868) ===
331 +By default, the Device ID equal to the last 6 bytes of IMEI.
415 415  
416 -(% style="color:#037691" %)** Uplink:**
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
417 417  
418 -868.1 - SF7BW125 to SF12BW125
335 +**Example:**
419 419  
420 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
337 +AT+DEUI=A84041F15612
421 421  
422 -868.5 - SF7BW125 to SF12BW125
339 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
423 423  
424 -867.1 - SF7BW125 to SF12BW125
425 425  
426 -867.3 - SF7BW125 to SF12BW125
427 427  
428 -867.5 - SF7BW125 to SF12BW125
343 +=== 2.4.2  Version Info ===
429 429  
430 -867.7 - SF7BW125 to SF12BW125
345 +Specify the software version: 0x64=100, means firmware version 1.00.
431 431  
432 -867.9 - SF7BW125 to SF12BW125
347 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
433 433  
434 -868.8 - FSK
435 435  
436 436  
437 -(% style="color:#037691" %)** Downlink:**
351 +=== 2.4.3  Battery Info ===
438 438  
439 -Uplink channels 1-9 (RX1)
353 +(((
354 +Check the battery voltage for LSE01.
355 +)))
440 440  
441 -869.525 - SF9BW125 (RX2 downlink only)
357 +(((
358 +Ex1: 0x0B45 = 2885mV
359 +)))
442 442  
361 +(((
362 +Ex2: 0x0B49 = 2889mV
363 +)))
443 443  
444 444  
445 -=== 2.7.2 US902-928(US915) ===
446 446  
447 -Used in USA, Canada and South America. Default use CHE=2
367 +=== 2.4.4  Signal Strength ===
448 448  
449 -(% style="color:#037691" %)**Uplink:**
369 +NB-IoT Network signal Strength.
450 450  
451 -903.9 - SF7BW125 to SF10BW125
371 +**Ex1: 0x1d = 29**
452 452  
453 -904.1 - SF7BW125 to SF10BW125
373 +(% style="color:blue" %)**0**(%%)  -113dBm or less
454 454  
455 -904.3 - SF7BW125 to SF10BW125
375 +(% style="color:blue" %)**1**(%%)  -111dBm
456 456  
457 -904.5 - SF7BW125 to SF10BW125
377 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
458 458  
459 -904.7 - SF7BW125 to SF10BW125
379 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
460 460  
461 -904.9 - SF7BW125 to SF10BW125
381 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
462 462  
463 -905.1 - SF7BW125 to SF10BW125
464 464  
465 -905.3 - SF7BW125 to SF10BW125
466 466  
385 +=== 2.4.5  Soil Moisture ===
467 467  
468 -(% style="color:#037691" %)**Downlink:**
387 +(((
388 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
389 +)))
469 469  
470 -923.3 - SF7BW500 to SF12BW500
391 +(((
392 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
393 +)))
471 471  
472 -923.9 - SF7BW500 to SF12BW500
395 +(((
396 +
397 +)))
473 473  
474 -924.5 - SF7BW500 to SF12BW500
399 +(((
400 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
401 +)))
475 475  
476 -925.1 - SF7BW500 to SF12BW500
477 477  
478 -925.7 - SF7BW500 to SF12BW500
479 479  
480 -926.3 - SF7BW500 to SF12BW500
405 +=== 2.4.6  Soil Temperature ===
481 481  
482 -926.9 - SF7BW500 to SF12BW500
407 +(((
408 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
409 +)))
483 483  
484 -927.5 - SF7BW500 to SF12BW500
411 +(((
412 +**Example**:
413 +)))
485 485  
486 -923.3 - SF12BW500(RX2 downlink only)
415 +(((
416 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
417 +)))
487 487  
419 +(((
420 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
421 +)))
488 488  
489 489  
490 -=== 2.7.3 CN470-510 (CN470) ===
491 491  
492 -Used in China, Default use CHE=1
425 +=== 2.4.7  Soil Conductivity (EC) ===
493 493  
494 -(% style="color:#037691" %)**Uplink:**
427 +(((
428 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
429 +)))
495 495  
496 -486.3 - SF7BW125 to SF12BW125
431 +(((
432 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
433 +)))
497 497  
498 -486.5 - SF7BW125 to SF12BW125
435 +(((
436 +Generally, the EC value of irrigation water is less than 800uS / cm.
437 +)))
499 499  
500 -486.7 - SF7BW125 to SF12BW125
439 +(((
440 +
441 +)))
501 501  
502 -486.9 - SF7BW125 to SF12BW125
443 +(((
444 +
445 +)))
503 503  
504 -487.1 - SF7BW125 to SF12BW125
447 +=== 2.4. Digital Interrupt ===
505 505  
506 -487.3 - SF7BW125 to SF12BW125
449 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
507 507  
508 -487.5 - SF7BW125 to SF12BW125
451 +The command is:
509 509  
510 -487.7 - SF7BW125 to SF12BW125
453 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
511 511  
512 512  
513 -(% style="color:#037691" %)**Downlink:**
456 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
514 514  
515 -506.7 - SF7BW125 to SF12BW125
516 516  
517 -506.9 - SF7BW125 to SF12BW125
459 +Example:
518 518  
519 -507.1 - SF7BW125 to SF12BW125
461 +0x(00): Normal uplink packet.
520 520  
521 -507.3 - SF7BW125 to SF12BW125
463 +0x(01): Interrupt Uplink Packet.
522 522  
523 -507.5 - SF7BW125 to SF12BW125
524 524  
525 -507.7 - SF7BW125 to SF12BW125
526 526  
527 -507.9 - SF7BW125 to SF12BW125
467 +=== 2.4.9  ​+5V Output ===
528 528  
529 -508.1 - SF7BW125 to SF12BW125
469 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
530 530  
531 -505.3 - SF12BW125 (RX2 downlink only)
532 532  
472 +The 5V output time can be controlled by AT Command.
533 533  
474 +(% style="color:blue" %)**AT+5VT=1000**
534 534  
535 -=== 2.7.4 AU915-928(AU915) ===
476 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
536 536  
537 -Default use CHE=2
538 538  
539 -(% style="color:#037691" %)**Uplink:**
540 540  
541 -916.8 - SF7BW125 to SF12BW125
480 +== 2.5  Downlink Payload ==
542 542  
543 -917.0 - SF7BW125 to SF12BW125
482 +By default, NSE01 prints the downlink payload to console port.
544 544  
545 -917.2 - SF7BW125 to SF12BW125
484 +[[image:image-20220708133731-5.png]]
546 546  
547 -917.4 - SF7BW125 to SF12BW125
548 548  
549 -917.6 - SF7BW125 to SF12BW125
487 +(((
488 +(% style="color:blue" %)**Examples:**
489 +)))
550 550  
551 -917.8 - SF7BW125 to SF12BW125
491 +(((
492 +
493 +)))
552 552  
553 -918.0 - SF7BW125 to SF12BW125
495 +* (((
496 +(% style="color:blue" %)**Set TDC**
497 +)))
554 554  
555 -918.2 - SF7BW125 to SF12BW125
499 +(((
500 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
501 +)))
556 556  
503 +(((
504 +Payload:    01 00 00 1E    TDC=30S
505 +)))
557 557  
558 -(% style="color:#037691" %)**Downlink:**
507 +(((
508 +Payload:    01 00 00 3C    TDC=60S
509 +)))
559 559  
560 -923.3 - SF7BW500 to SF12BW500
511 +(((
512 +
513 +)))
561 561  
562 -923.9 - SF7BW500 to SF12BW500
515 +* (((
516 +(% style="color:blue" %)**Reset**
517 +)))
563 563  
564 -924.5 - SF7BW500 to SF12BW500
519 +(((
520 +If payload = 0x04FF, it will reset the NSE01
521 +)))
565 565  
566 -925.1 - SF7BW500 to SF12BW500
567 567  
568 -925.7 - SF7BW500 to SF12BW500
524 +* (% style="color:blue" %)**INTMOD**
569 569  
570 -926.3 - SF7BW500 to SF12BW500
526 +Downlink Payload: 06000003, Set AT+INTMOD=3
571 571  
572 -926.9 - SF7BW500 to SF12BW500
573 573  
574 -927.5 - SF7BW500 to SF12BW500
575 575  
576 -923.3 - SF12BW500(RX2 downlink only)
530 +== 2. ​LED Indicator ==
577 577  
532 +(((
533 +The NSE01 has an internal LED which is to show the status of different state.
578 578  
579 579  
580 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
536 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
537 +* Then the LED will be on for 1 second means device is boot normally.
538 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
539 +* For each uplink probe, LED will be on for 500ms.
540 +)))
581 581  
582 -(% style="color:#037691" %)**Default Uplink channel:**
583 583  
584 -923.2 - SF7BW125 to SF10BW125
585 585  
586 -923.4 - SF7BW125 to SF10BW125
587 587  
545 +== 2.7  Installation in Soil ==
588 588  
589 -(% style="color:#037691" %)**Additional Uplink Channel**:
547 +__**Measurement the soil surface**__
590 590  
591 -(OTAA mode, channel added by JoinAccept message)
549 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
592 592  
593 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
551 +[[image:1657259653666-883.png]] ​
594 594  
595 -922.2 - SF7BW125 to SF10BW125
596 596  
597 -922.4 - SF7BW125 to SF10BW125
554 +(((
555 +
598 598  
599 -922.6 - SF7BW125 to SF10BW125
557 +(((
558 +Dig a hole with diameter > 20CM.
559 +)))
600 600  
601 -922.8 - SF7BW125 to SF10BW125
561 +(((
562 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
563 +)))
564 +)))
602 602  
603 -923.0 - SF7BW125 to SF10BW125
566 +[[image:1654506665940-119.png]]
604 604  
605 -922.0 - SF7BW125 to SF10BW125
568 +(((
569 +
570 +)))
606 606  
607 607  
608 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
573 +== 2.8  ​Firmware Change Log ==
609 609  
610 -923.6 - SF7BW125 to SF10BW125
611 611  
612 -923.8 - SF7BW125 to SF10BW125
576 +Download URL & Firmware Change log
613 613  
614 -924.0 - SF7BW125 to SF10BW125
578 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
615 615  
616 -924.2 - SF7BW125 to SF10BW125
617 617  
618 -924.4 - SF7BW125 to SF10BW125
581 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
619 619  
620 -924.6 - SF7BW125 to SF10BW125
621 621  
622 622  
623 -(% style="color:#037691" %)** Downlink:**
585 +== 2.9  ​Battery Analysis ==
624 624  
625 -Uplink channels 1-8 (RX1)
587 +=== 2.9.1  ​Battery Type ===
626 626  
627 -923.2 - SF10BW125 (RX2)
628 628  
590 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
629 629  
630 630  
631 -=== 2.7.6 KR920-923 (KR920) ===
593 +The battery is designed to last for several years depends on the actually use environment and update interval. 
632 632  
633 -Default channel:
634 634  
635 -922.1 - SF7BW125 to SF12BW125
596 +The battery related documents as below:
636 636  
637 -922.3 - SF7BW125 to SF12BW125
598 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
599 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 638  
639 -922.5 - SF7BW125 to SF12BW125
640 -
641 -
642 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
643 -
644 -922.1 - SF7BW125 to SF12BW125
645 -
646 -922.3 - SF7BW125 to SF12BW125
647 -
648 -922.5 - SF7BW125 to SF12BW125
649 -
650 -922.7 - SF7BW125 to SF12BW125
651 -
652 -922.9 - SF7BW125 to SF12BW125
653 -
654 -923.1 - SF7BW125 to SF12BW125
655 -
656 -923.3 - SF7BW125 to SF12BW125
657 -
658 -
659 -(% style="color:#037691" %)**Downlink:**
660 -
661 -Uplink channels 1-7(RX1)
662 -
663 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
664 -
665 -
666 -
667 -=== 2.7.7 IN865-867 (IN865) ===
668 -
669 -(% style="color:#037691" %)** Uplink:**
670 -
671 -865.0625 - SF7BW125 to SF12BW125
672 -
673 -865.4025 - SF7BW125 to SF12BW125
674 -
675 -865.9850 - SF7BW125 to SF12BW125
676 -
677 -
678 -(% style="color:#037691" %) **Downlink:**
679 -
680 -Uplink channels 1-3 (RX1)
681 -
682 -866.550 - SF10BW125 (RX2)
683 -
684 -
685 -
686 -
687 -== 2.8 LED Indicator ==
688 -
689 -The LSE01 has an internal LED which is to show the status of different state.
690 -
691 -* Blink once when device power on.
692 -* Solid ON for 5 seconds once device successful Join the network.
693 -* Blink once when device transmit a packet.
694 -
695 -
696 -
697 -
698 -
699 -== 2.9 Installation in Soil ==
700 -
701 -**Measurement the soil surface**
702 -
703 -
704 -[[image:1654506634463-199.png]] ​
705 -
706 706  (((
707 -(((
708 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
603 +[[image:image-20220708140453-6.png]]
709 709  )))
710 -)))
711 711  
712 712  
713 713  
714 -[[image:1654506665940-119.png]]
608 +=== 2.9.2  Power consumption Analyze ===
715 715  
716 716  (((
717 -Dig a hole with diameter > 20CM.
611 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
718 718  )))
719 719  
720 -(((
721 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
722 -)))
723 723  
724 -
725 -== 2.10 ​Firmware Change Log ==
726 -
727 727  (((
728 -**Firmware download link:**
616 +Instruction to use as below:
729 729  )))
730 730  
731 731  (((
732 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
620 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
733 733  )))
734 734  
735 -(((
736 -
737 -)))
738 738  
739 739  (((
740 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
625 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
741 741  )))
742 742  
743 -(((
744 -
628 +* (((
629 +Product Model
745 745  )))
746 -
747 -(((
748 -**V1.0.**
631 +* (((
632 +Uplink Interval
749 749  )))
634 +* (((
635 +Working Mode
636 +)))
750 750  
751 751  (((
752 -Release
639 +And the Life expectation in difference case will be shown on the right.
753 753  )))
754 754  
642 +[[image:image-20220708141352-7.jpeg]]
755 755  
756 -== 2.11 ​Battery Analysis ==
757 757  
758 -=== 2.11.1 ​Battery Type ===
759 759  
760 -(((
761 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
762 -)))
646 +=== 2.9.3  ​Battery Note ===
763 763  
764 764  (((
765 -The battery is designed to last for more than 5 years for the LSN50.
649 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
766 766  )))
767 767  
768 -(((
769 -(((
770 -The battery-related documents are as below:
771 -)))
772 -)))
773 773  
774 -* (((
775 -[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
776 -)))
777 -* (((
778 -[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
779 -)))
780 -* (((
781 -[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
782 -)))
783 783  
784 - [[image:image-20220610172436-1.png]]
654 +=== 2.9.4  Replace the battery ===
785 785  
786 -
787 -
788 -=== 2.11.2 ​Battery Note ===
789 -
790 790  (((
791 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
657 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
792 792  )))
793 793  
794 794  
795 795  
796 -=== 2.11.3 Replace the battery ===
662 += 3. ​ Access NB-IoT Module =
797 797  
798 798  (((
799 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
665 +Users can directly access the AT command set of the NB-IoT module.
800 800  )))
801 801  
802 802  (((
803 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
669 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
804 804  )))
805 805  
806 -(((
807 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
808 -)))
672 +[[image:1657261278785-153.png]]
809 809  
810 810  
811 811  
812 -= 3. Using the AT Commands =
676 += 4.  Using the AT Commands =
813 813  
814 -== 3.1 Access AT Commands ==
678 +== 4.1  Access AT Commands ==
815 815  
680 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
816 816  
817 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
818 818  
819 -[[image:1654501986557-872.png||height="391" width="800"]]
683 +AT+<CMD>?  : Help on <CMD>
820 820  
685 +AT+<CMD>         : Run <CMD>
821 821  
822 -Or if you have below board, use below connection:
687 +AT+<CMD>=<value> : Set the value
823 823  
689 +AT+<CMD>=?  : Get the value
824 824  
825 -[[image:1654502005655-729.png||height="503" width="801"]]
826 826  
827 -
828 -
829 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
830 -
831 -
832 - [[image:1654502050864-459.png||height="564" width="806"]]
833 -
834 -
835 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
836 -
837 -
838 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
839 -
840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
841 -
842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
843 -
844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
845 -
846 -
847 847  (% style="color:#037691" %)**General Commands**(%%)      
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
694 +AT  : Attention       
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
696 +AT?  : Short Help     
852 852  
853 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
698 +ATZ  : MCU Reset    
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
700 +AT+TDC  : Application Data Transmission Interval
856 856  
702 +AT+CFG  : Print all configurations
857 857  
858 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
704 +AT+CFGMOD           : Working mode selection
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
706 +AT+INTMOD            : Set the trigger interrupt mode
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
708 +AT+5VT  : Set extend the time of 5V power  
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
710 +AT+PRO  : Choose agreement
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
712 +AT+WEIGRE  : Get weight or set weight to 0
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
714 +AT+WEIGAP  : Get or Set the GapValue of weight
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
716 +AT+RXDL  : Extend the sending and receiving time
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
718 +AT+CNTFAC  : Get or set counting parameters
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
720 +AT+SERVADDR  : Server Address
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
723 +(% style="color:#037691" %)**COAP Management**      
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
725 +AT+URI            : Resource parameters
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
728 +(% style="color:#037691" %)**UDP Management**
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
730 +AT+CFM          : Upload confirmation mode (only valid for UDP)
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
733 +(% style="color:#037691" %)**MQTT Management**
891 891  
735 +AT+CLIENT               : Get or Set MQTT client
892 892  
893 -(% style="color:#037691" %)**LoRa Network Management**
737 +AT+UNAME  : Get or Set MQTT Username
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
739 +AT+PWD                  : Get or Set MQTT password
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
741 +AT+PUBTOPI : Get or Set MQTT publish topic
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
743 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
746 +(% style="color:#037691" %)**Information**          
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
748 +AT+FDR  : Factory Data Reset
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
750 +AT+PWOR : Serial Access Password
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
754 += ​5.  FAQ =
914 914  
915 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
756 +== 5.1 How to Upgrade Firmware ==
916 916  
917 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
918 918  
919 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
924 -
925 -
926 -(% style="color:#037691" %)**Information** 
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
937 -
938 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
939 -
940 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
941 -
942 -
943 -= ​4. FAQ =
944 -
945 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
946 -
947 947  (((
948 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
949 -When downloading the images, choose the required image file for download. ​
760 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
950 950  )))
951 951  
952 952  (((
953 -
764 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
954 954  )))
955 955  
956 956  (((
957 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
768 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
958 958  )))
959 959  
960 -(((
961 -
962 -)))
963 963  
964 -(((
965 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
966 -)))
967 967  
968 -(((
969 -
970 -)))
773 += 6.  Trouble Shooting =
971 971  
972 -(((
973 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
974 -)))
775 +== 6.1  ​Connection problem when uploading firmware ==
975 975  
976 -[[image:image-20220606154726-3.png]]
977 977  
978 -
979 -When you use the TTN network, the US915 frequency bands use are:
980 -
981 -* 903.9 - SF7BW125 to SF10BW125
982 -* 904.1 - SF7BW125 to SF10BW125
983 -* 904.3 - SF7BW125 to SF10BW125
984 -* 904.5 - SF7BW125 to SF10BW125
985 -* 904.7 - SF7BW125 to SF10BW125
986 -* 904.9 - SF7BW125 to SF10BW125
987 -* 905.1 - SF7BW125 to SF10BW125
988 -* 905.3 - SF7BW125 to SF10BW125
989 -* 904.6 - SF8BW500
990 -
778 +(% class="wikigeneratedid" %)
991 991  (((
992 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
993 -
994 -* (% style="color:#037691" %)**AT+CHE=2**
995 -* (% style="color:#037691" %)**ATZ**
780 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
996 996  )))
997 997  
998 -(((
999 -
1000 1000  
1001 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1002 -)))
1003 1003  
1004 -(((
1005 -
1006 -)))
785 +== 6.2  AT Command input doesn't work ==
1007 1007  
1008 1008  (((
1009 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
788 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1010 1010  )))
1011 1011  
1012 -[[image:image-20220606154825-4.png]]
1013 1013  
1014 1014  
793 += 7. ​ Order Info =
1015 1015  
1016 -= 5. Trouble Shooting =
1017 1017  
1018 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
796 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1019 1019  
1020 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1021 1021  
1022 -
1023 -== 5.2 AT Command input doesn’t work ==
1024 -
1025 -(((
1026 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 -)))
1028 -
1029 -
1030 -== 5.3 Device rejoin in at the second uplink packet ==
1031 -
1032 -(% style="color:#4f81bd" %)**Issue describe as below:**
1033 -
1034 -[[image:1654500909990-784.png]]
1035 -
1036 -
1037 -(% style="color:#4f81bd" %)**Cause for this issue:**
1038 -
1039 -(((
1040 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1041 -)))
1042 -
1043 -
1044 -(% style="color:#4f81bd" %)**Solution: **
1045 -
1046 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1047 -
1048 -[[image:1654500929571-736.png||height="458" width="832"]]
1049 -
1050 -
1051 -= 6. ​Order Info =
1052 -
1053 -
1054 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1055 -
1056 -
1057 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1058 -
1059 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1060 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1061 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1062 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1063 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1064 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1065 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1066 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1067 -
1068 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1069 -
1070 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1071 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1072 -
1073 1073  (% class="wikigeneratedid" %)
1074 1074  (((
1075 1075  
1076 1076  )))
1077 1077  
1078 -= 7. Packing Info =
804 += 8.  Packing Info =
1079 1079  
1080 1080  (((
1081 1081  
1082 1082  
1083 1083  (% style="color:#037691" %)**Package Includes**:
1084 -)))
1085 1085  
1086 -* (((
1087 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
811 +
812 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
813 +* External antenna x 1
1088 1088  )))
1089 1089  
1090 1090  (((
... ... @@ -1091,24 +1091,20 @@
1091 1091  
1092 1092  
1093 1093  (% style="color:#037691" %)**Dimension and weight**:
1094 -)))
1095 1095  
1096 -* (((
1097 -Device Size: cm
821 +
822 +* Size: 195 x 125 x 55 mm
823 +* Weight:   420g
1098 1098  )))
1099 -* (((
1100 -Device Weight: g
1101 -)))
1102 -* (((
1103 -Package Size / pcs : cm
1104 -)))
1105 -* (((
1106 -Weight / pcs : g
1107 1107  
826 +(((
1108 1108  
828 +
829 +
830 +
1109 1109  )))
1110 1110  
1111 -= 8. Support =
833 += 9.  Support =
1112 1112  
1113 1113  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1114 1114  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0